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Abstract: We provide several extensions of the modular method which were moti-
vated by the problem of completing previous work to prove that, for any integer n ≥ 2,

the equation

x13 + y13 = 3zn

has no non-trivial primitive solutions. In particular, we present four elimination tech-

niques which are based on: (1) establishing reducibility of certain residual Galois
representations over a totally real field; (2) generalizing image of inertia arguments

to the setting of abelian surfaces; (3) establishing congruences of Hilbert modular
forms without the use of often impractical Sturm bounds; and (4) a unit sieve argu-

ment which combines information from classical descent and the modular method.

The extensions are of broader applicability and provide further evidence that it is
possible to obtain a complete resolution of a family of generalized Fermat equations

by remaining within the framework of the modular method. As a further illustration

of this, we complete a theorem of Anni–Siksek to show that, for `,m ≥ 5, the only
primitive solutions to the equation x2` + y2m = z13 are trivial.
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1. Introduction

In [4], it was shown that it is possible to get an optimal result for
a family of generalized Fermat equations, specifically x5 + y5 = 3zn

for n ≥ 2 an integer, using a refined modular method with the multi-
Frey approach over totally real fields. These methods were also applied
to the equation

(1.1) x13 + y13 = 3zp,

where p is prime, but failed for p = 7; this failure is due to the presence of
five specific Hilbert modular forms after level lowering which the authors
were not able to eliminate. Four of the obstructing forms are newforms
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of weight 2 defined over the real cubic subfield of Q(ζ13), the cyclotomic
field of a 13th root of unity, whose level is the unique ideal of norm 2808 =
23 ·33 ·13. The remaining one, which is the most relevant to us, is denoted
by g; it is a newform defined over Q(

√
13) of parallel weight 2, level N =

(2313), and field of coefficients Q(
√

2) appearing in [4, Proposition 9].
The techniques in this paper provide extensions of the modular

method which were initially motivated by the problem of eliminating
these five obstructing forms, but are of broader applicability. In partic-
ular, we successfully treat the remaining case p = 7 of equation (1.1).

Our first step is to reduce the resolution of (1.1) for p = 7 to the
problem of dealing with the form g. For this, we consider the Frey
curve F = Fa,b defined in [4, Section 7.2]. The refined elimination tech-
nique from [4, Section 7.3] applied to F shows that the obstruction to
the modular method arises from the four obstructing newforms defined
over the real cubic subfield of Q(ζ13), with level of norm 2808. We are
then able to show that each of these forms has a reducible mod p rep-
resentation for some prime p | 7 (see Proposition 3.2). Since the mod 7
representation attached to F is irreducible by assumption, this allows us
to discard these four forms (see Sections 2 and 4). However, establishing
the reducibility property for the four obstructing forms requires a bit of
care since the usual approach, which involves using the Sturm bound, is
not computationally feasible in the setting of Hilbert modular forms.

The remaining obstructing form g arises for the Frey curve E = Ea,b
defined in [4, Section 7.1], more specifically, when trying to prove [4,
Theorem 7] for p = 7. We will introduce three different methods for
discarding this form.

The first method eliminates g by extending an ‘image of inertia ar-
gument’ to the setting of abelian surfaces. For this, we will combine
modularity of an abelian surface with the study of the inertial types of g
at suitable primes.

The second method is to show that g is congruent modulo 7 to the
Hilbert newform associated to the Frey curve corresponding to the trivial
solution (1,−1, 0); see also [4, Remark 7.4]. In general, the proof of
such congruences requires computing Hecke eigenvalues up to the Sturm
bound, which is often not practical for Hilbert modular forms, as is the
case in our situation. Instead, we exploit a multiplicity 1 phenomenon
for the residual Galois representations attached to the Hilbert newforms
in our situation, to establish the desired congruence.

The third method is based on combining the study of units in clas-
sical descent with local information coming from the modular method
together with restrictions on the solutions coming from the multi-Frey
approach in [4].
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As a consequence, we obtain a complete resolution of the generalized
Fermat equations in (1.1). More precisely, we establish the following
result.

Theorem 1.1.For all integers n≥2, there are no integer solutions (a, b, c)
to the equation

x13 + y13 = 3zn

such that abc 6= 0 and gcd(a, b, c) = 1.

An integer solution (a, b, c) to (1.1) is said to be a primitive solution
if gcd(a, b, c) = 1, and trivial if abc = 0.

It is natural to wonder whether one could use Chabauty methods to
solve (1.1) for p = 7 by determining the rational points on the hyperel-
liptic curves associated with (1.1) from the constructions in [14]. This
would necessitate computing the 2-Selmer groups of Jacobians of genus 3
hyperelliptic curves of the form y2 = x7+a, where a belongs to the maxi-
mal totally real sextic subfield F of the field Q(ζ13). Because some values
of a which need to be treated are not seventh powers in F , such calcu-
lations would require working over the extensions F ( 7

√
a) which are of

absolute degree 42. Even under GRH, this would be extremely challeng-
ing with current methods. Moreover, it would only lead to a conditional
resolution of (1.1).

The computations required to support the proof of our theorems were
performed using Magma (V2.25-5) [5], mainly the Hilbert modular forms
package (see [18, 27]). The program and output transcript files are
available at [3] (see Read Me.txt for a description of the files). The
Dokchitser–Doris package for computing the conductor of genus 2 curves
is available at [21].

Acknowledgements. We would like to thank T. Dokchitser and C. Do-
ris for making their algorithm available to us, and for helpful email corre-
spondence. We also thank M. Stoll for conversations regarding the use of
the Chabauty method for the problem treated in this paper, A. Pacetti
for discussions concerning Sturm bounds for Hilbert modular forms, and
N. Mascot for (double-)checking part (i) of Theorem 5.3 using the algo-
rithm in [13]. We finally thank the anonymous referees for their careful
reading and useful remarks.

2. The elimination step away from reducible primes

In this section, we recall the elimination step of the modular method
and discuss ways in which it can fail to yield a contradiction. The discus-
sion will center on equation (1.1) for convenience, but the same principles
apply more generally.
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Let (a, b, c) be a primitive solution to (1.1) and Ea,b/K a Frey curve
attached to it, where K is a totally real number field. Also, let ρEa,b,p be
the mod p representation attached to Ea,b. By assumption ρEa,b,p is an
irreducible representation which is modular. An application of standard
results on level lowering implies that there is a Hilbert newform f of
level N and weight 2, with field of coefficients Qf , such that

(2.1) ρEa,b,p ' ρf,p,

where p | p is a prime in Qf and ρf,p the mod p representation at-
tached to f . In practice, the level N is a concrete ideal dividing the
conductor of Ea,b, independent of (a, b, c) and of ‘small’ norm. So the
new subspace S2(N)new of Hilbert cusp forms of level N, weight 2, and
trivial character is accessible via the Hilbert modular forms package
in Magma [5].

Given f ∈ S2(N)new, a candidate newform, a crucial step in the mod-
ular method consists of showing that the isomorphism (2.1) does not
occur for any prime p of Qf above p. We say that we have eliminated
the form f for the exponent p if we can successfully complete that step.
By eliminating all the newforms in S2(N)new, we obtain a contradiction
to the fact that ρEa,b,p is modular, thus solving (1.1) for the exponent p.

By taking traces at Frobenius elements on both sides of (2.1) one gets

(2.2) aq(Ea,b) ≡ aq(f) (mod p) for all primes q - p · cond(Ea,b),

where aq(f) is the Hecke eigenvalue of f at q, and aq(Ea,b) the trace of
Frobenius of E at q.

Let q 6= p be a rational prime coprime to the level N of f . Suppose
that Ea,b has good reduction at each prime ideal q dividing q in K, and
define the quantity

Bq(Ea,b, f) = gcd({Norm(aq(Ea,b)− aq(f)) : q | q}).
Note that (2.2) implies the exponent p divides qBq(Ea,b, f).

Suppose instead that Ea,b has multiplicative reduction at a prime q | q.
Then, the isomorphism (2.1) implies that the form f satisfies level raising
conditions, hence we have the congruence:

(2.3) aq(f) ≡ ±(Norm(q) + 1) (mod p).

In the elimination step, we find rational primes q such that, for all a, b
mod q not both zero, the Frey curve Ea,b has either good reduction at
all q | q or multiplicative reduction at all q | q. Then, for a newform f ∈
S2(N)new, we define

Aq(f) := q
∏

(0,0) 6=(a,b)∈F2
q

Bq(Ea,b, f) ·
∏
q|q

Norm(aq(f)2− (Norm(q) + 1)2),
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where the first part accounts for the possibility of E having good re-
duction at q whilst the second product accounts for the case of multi-
plicative reduction. The quantity Aq(f) is independent of p, so once we
find one prime q such that Aq(f) 6= 0, we have eliminated f for large p.
For most f , trying a few auxiliary primes often suffices to find such
a q. This is then enough to eliminate f for all exponents p - Aq(f).
Furthermore, by using several primes q1, . . . , qs, we eliminate f for all
p - gcd(Aq1(f), . . . , Aqs(f)).

For a given newform f , the elimination step leads to a set of primes Pf ,
which cannot be excluded by this process. This set usually consists of
a few small primes, but it can also be empty or equal to the set of the
prime numbers; the latter only occurs when all the auxiliary primes we
tried gave Aq(f) = 0.

In [4, Section 7.3], four of the authors introduced the following refined
elimination technique to deal with the remaining primes in Pf . The key
observation of this refinement is that (2.2) and (2.3) imply p | Aq(f) but
the converse is not true. So, for the primes p ∈ Pf , they test for the
congruences (2.2) and (2.3), which result from the isomorphism (2.1),
directly. In other words, for each prime p | p in Qf , they check the
following congruences by direct computations:

(i) for all q | q of good reduction for Ea,b we have aq(f) ≡ aq(Ea,b)
(mod p);

(ii) for all q | q of multiplicative reduction for Ea,b we have aq(f) ≡
±(Norm(q) + 1) (mod p).

This can be done as long as we can factor the primes p ∈ Pf in the
field Qf . If (i) and (ii) fail for p | p, then we have eliminated the
pair (f, p). Excluding all such pairs then eliminates f for the expo-
nent p. In [4, Section 7.3], this refinement allowed for the resolution
of (1.1) for p = 5, 11.

Let us now discuss one way in which the argument above can fail.
Suppose for some form f and a prime p0 | p ∈ Pf in Qf , the mod p0
representation is reducible and, moreover, it satisfies ρssf,p0

' χp ⊕ 1,
where χp is the mod p cyclotomic character. Then, this form satisfies
aq(f) ≡ Norm(q) + 1 (mod p0), and therefore congruence (ii) holds
with p = p0. Thus we are unable to eliminate the pair (f, p0) using
the refined elimination technique.

However, we note that the isomorphism (2.1) was obtained via level
lowering theorems, which require the representations involved to be resid-
ually irreducible. So, in testing for the congruences (i) and (ii), we only
need to consider those pairs (f, p), where p | p is a prime in Qf such that
ρf,p is irreducible. This allows us to circumvent the reducibility issue
raised in the previous paragraph. We will see in Section 3 that one of
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the reasons why equation (1.1) does not follow directly from the methods
in [4], for p = 7, is the presence of reducible pairs (f, p0).

We note that this idea of avoiding reducible primes p0 appeared in
the work of Bugeaud–Mignotte–Siksek [7], where they work with classi-
cal forms over Q. In that setting, a practical Sturm bound is available,
allowing them to prove isomorphism of the form ρssf,p0

' χp⊕ 1. For our
purpose, due to the lack of practical Sturm bounds for Hilbert modular
forms, we will establish the existence of our reducible pairs (f, p0) using
base change arguments.

3. A reducibility result for Hilbert modular forms

In this section, we let K = Q(b) be the real cubic subfield of Q(ζ13),
where b3 +b2−4b+1 = 0. We let q13 be the unique ramified prime in K,
which lies above 13. We note that 2 and 3 are inert in K.

Let N = 2 ·3 ·q13, and write S2(N)new for the new subspace of Hilbert
cusp forms of level N, weight 2, and trivial character. For f ∈ S2(N)new

we let Qf denote the field of coefficients of f . For a newform f and p | p
a prime in Qf , write ρf,p : GK→GL2(Fp) the mod p representation at-
tached to f . Recall that ρf,p can ramify only at primes dividing N and p.

For certain newforms f ∈ S2(N)new, we will establish the reducibility
of ρf,p, where p | 7 is a ramified prime in Qf . We remark that, for
cubic fields (or higher degree fields), there are no effective Sturm bounds
available in the literature. Furthermore, even in the quadratic case, such
effective bounds are too large to be of any practical use (see Section 6).

Instead, we present a method for establishing reducibility in certain
situations when the residual representation is a base change from Q. The
method is presented in the particular case of interest, but could apply
in other similar settings.

The space S2(N)new has dimension 181, and decomposes into 15 Hecke
constituents as:

(3.1) 181 = 1+1 + 1 + 1︸ ︷︷ ︸+3+6+6+12+15+18+18+21+24+27+27.

More specifically, there are:

(1) Four newforms with rational Hecke eigenvalues. One of them cor-
responds to the base change of the elliptic curve with Cremona la-
bel 78a1. The other three correspond to non-base change elliptic
curves over K which are permuted by the action of Gal(K/Q).

(2) One newform with Hecke eigenvalues in the real cubic field Q(ζ7)+ ⊂
Q(ζ7).

(3) Ten newforms whose Hecke eigenvalue fields have degrees 6, 12, 15,
18, 21, 24, or 27. For each of the fields Qf , there is a unique sub-
field E such that Qf is a ray class field of degree 3 over E. We



Fermat Equations of Signature (13, 13, n) 721

have summarized the structure of these Hecke eigenvalue fields in
Table 1. When [Qf : Q] ≤ 21, we have given a generator for the
conductor fQf of Qf/E, and its factorization. For [Qf : Q] > 21,
only the factorization is provided.

[Qf : Q] = 6

E Q(w) := Q[x]/(x2 − x− 7)

fQf (2w + 2) = p2p7

[Qf : Q] = 6

E Q(w) := Q[x]/(x2 − x− 1)

fQf (−8w + 6) = p2p19

[Qf : Q] = 12

E Q(w) := Q[x]/(x4 + 2x3 − 9x2 − 12x− 3)

fQf (−w2 − 3w + 3) = p2p7

[Qf : Q] = 15

E Q(w) := Q[x]/(x5 − 47x3 − 105x2 + 70x+ 1)

fQf (1/8(−3w4 − w3 + 138w2 + 369w + 9)) = p2

[Qf : Q] = 18

E Q(w) := Q[x]/(x6 − x5 − 58x4 − 79x3 + 856x2 + 2865x+ 2495)

fQf (−8w5 + 32w4 + 363w3 − 425w2 − 5425w − 7264) = p2p31

[Qf : Q] = 18

E Q(w) := Q[x]/(x6 − 28x4 − 2x3 + 104x2 + 104x+ 28)

fQf (1/2(−w4 + 2w3 + 26w2 − 48w − 40)) = p2p7

[Qf : Q] = 21

E Q(w) := Q[x]/(x7 + x6 − 58x5 + 172x4 + 84x3 − 744x2 + 512x+ 144)

fQf (1/8(−17w6 − 77w5 + 726w4 − 296w3 − 2904w2 + 2144w + 592)) = p2p7p
′
7

[Qf : Q] = 24

E Q(w) := Q[x]/(x8 + 3x7 − 53x6 − 84x5 + 1018x4 + 190x3 − 6992x2 + 5440x+ 5060)

fQf p2p7

[Qf : Q] = 27

E Q(w) := Q[x]/(x9 + 2x8 − 96x7 − 99x6 + 2894x5 + 1462x4 − 32500x3

+ 2240x2 + 119964x− 102212)

fQf p2p7p13

[Qf : Q] = 27

E Q(w) := Q[x]/(x9 − x8 − 90x7 + 106x6 + 2878x5 − 4048x4 − 38316x3

+ 61316x2 + 172200x− 284688)

fQf p2p1153

Table 1. The Hecke eigenvalue fields for the newforms in

S2(N)new over the cubic subfield K of Q(ζ13)+ which are a cubic
extension of a unique subfield.
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Let σ be a generator for Gal(K/Q). Let f be a newform in a Hecke con-
stituent in S2(N)new, and df the dimension of this constituent. By cyclic
base change and Shimura [41], there exists a newform fσ ∈ S2(N)new

such that Qfσ = Qf and

aq(fσ) = aqσ (f), for all primes q of K,

so that Gal(K/Q) acts on the Hecke constituents. Since [K : Q] = 3
the orbits of this action are either of size 1 or 3. The Hecke constituents
of dimension 1 split into two orbits under this action: there is one or-
bit of size 1 which corresponds to the base change of the elliptic curve
with Cremona label 78a1; the other orbit of size 3, underlined in (3.1),
corresponds to a set of three elliptic curves permuted by Gal(K/Q).

Assume that df ≥ 3. Then, since the number of Hecke constituents
of dimension df ≥ 3 is at most two, we conclude these constituents
must be fixed by the action of Gal(K/Q). Thus, f and fσ belong to
the same constituent. However, a quick inspection of the first few Hecke
eigenvalues shows that f is not a base change. Therefore, there exists a
non-trivial element τ ∈ Gal(Qf/E) such that

aq(fσ) = aqσ (f) = τ(aq(f)), for all primes q of K.

Lemma 3.1. For d = 6, 12, 18, 21, 24, or 27, let Sd ⊂ S2(N)new be the
unique Hecke constituent of dimension d containing a newform f = fd
with 7 | Norm(fQf ), where fQf is as in Table 1. Then, for every prime p0 |
gcd(fQf , (7)), we have Norm(p0) = 7, and p0 totally ramifies in Qf/E.

Proof: This follows from a computation in Magma.

Proposition 3.2. For d = 12, 21, 24, or 27, let f ∈ Sd and p0 in Qf be
as in Lemma 3.1. Suppose that ρf,p0

ramifies at all the primes dividing
the level N. Then, ρf,p0

is reducible.

Proof: Let f and p0 be as in the statement. Suppose that ρf,p0
is irre-

ducible.
Recall from the discussion preceding Lemma 3.1 that for a non-triv-

ial σ ∈ Gal(K/Q) there is τ ∈ Gal(Qf/E) such that

aqσ (f) = τ(aq(f)), for all primes q.

Since p0 is totally ramified in Qf/E, and the residue field is Fp0
= F7,

τ : Qf → Qf gives rise to the identity map F7 → F7. It follows that

(3.2) aqσ (f) ≡ aq(f) (mod p0), for all primes q.
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Let σ̃ ∈ Gal(Q/Q) be a lift for σ. Consider the conjugate representa-
tion ρσf,p0

which satisfies

ρσf,p0
(Frobq) := ρf,p0

(Frobqσ ) = ρf,p0
(σ̃ Frobq σ̃

−1).

(We note that these equalities are independent of the lift σ̃.) By equa-
tion (3.2), we have

Tr(ρσf,p0
(Frobq)) = aqσ (f) ≡ aq(f) ≡ Tr(ρf,p0

(Frobq)) (mod p0),

for all primes q. Since ρf,p0
is irreducible (hence absolutely irreducible

since p0 - 2), the representations ρf,p0
and ρσf,p0

are isomorphic. From
[24, Theorem 2.14, Chapter III], we conclude that there is an irreducible
representation ρ : GQ → GL2(F7) such that ρ|GK = ρf,p0

.
We will now determine the Serre level N = N(ρ), the nebentypus ε(ρ),

and the Serre weight k(ρ).
We have k(ρ) = 2 because ρ|GK = ρf,p0

is of parallel weight 2 and 7
is unramified in K.

Recall that 2 and 3 are inert in K, and that 13 is the only ramified
prime in K. By assumption ρf,p0

ramifies at all primes q | N = 2 ·3 ·q13,
hence ρf,p0

is a Steinberg representation at these primes (since q‖N). It
follows that ρ is Steinberg at 2 and 3; thus υ`(N(ρ)) = 1 for ` = 2, 3.
At ` = 13, the representation ρ is either Steinberg or a twist of Steinberg
by a character χ of GQ that becomes trivial over K. In the latter case,
χ is of conductor 131 and the conductor of ρ at 13 is 132. So twisting ρ
by χ, if necessary, we can assume also that υ13(N(ρ)) = 1 since both ρ
and ρ⊗ χ restrict to ρf,p0

. Thus N(ρ) = 2 · 3 · 13 = 78.
Since ρ is Steinberg at ` = 2, 3, 13 it follows that the nebentypus ε(ρ)

is locally trivial at `; thus ε(ρ) = 1 as there are no other ramified primes
for ρ.

From the above discussion and Khare–Wintenberger (Serre’s conjec-
ture) [28], ρ is modular; hence, there is a classical newform h and a
prime p | 7 in Qh such that ρ ' ρh,p. It follows that there is a new-
form h ∈ S2(78)new such that ρ ' ρh,p for some prime p | 7 in Qh.

There is only one such h, corresponding to the isogeny class of the
elliptic curve W , with Cremona label 78a1, whose trace of Frobenius
at q = 5 is a5(W ) = 2. The prime 5 splits in K so, for q | 5, we must
have the following congruences:

Tr(ρf,p0
(Frobq)) = Tr(ρ(Frobq)) = Tr(ρh,p(Frobq))

= Tr(ρW,7(Frob5)) ≡ 2 (mod 7).

But we easily check that we have ρf,p0
(Frobq) 6≡ 2 (mod 7).

This contradiction implies that ρf,p0
must be reducible, as desired.
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Remark 3.3. Let f be a newform in the unique Hecke constituent S18

such that 7 ramifies in Qf (as described in Table 1). Then, one easily
checks that ρf,p is irreducible for the unique prime p | fQf above 7. By
adapting the proof of Proposition 3.2, one can show that f is in fact
congruent to the base change of one of the newforms in S2(78, χ)new. In
this case, we see that ρf,p is unramified at q13.

Remark 3.4. Let f ∈ S2(N)new be a newform as in Proposition 3.2.
Then, f appears in the cohomology of a Shimura curve. For q = (2), (3)
and q13, we have Uqf = ±f , where Uq is the Hecke operator at q. We
believe that the reducibility of ρf,p can be proved by generalizing work
of Martin [35] or of Ribet [39] and Yoo [44] on non-optimal levels for
reducible representations to the setting of Shimura curves over totally
real number fields.

4. Reduction to the problem of eliminating the form g

We recall that in order to get a complete resolution of equation (1.1),
it only remains to deal with the prime p = 7. There are five possible
obstructing forms to this, four of which are described in Proposition 3.2
and Table 1; and the form g defined over Q(

√
13) described in the in-

troduction. The goal of this section is to explain how we discard the
four forms in Proposition 3.2 by using the refined elimination technique
described in Section 2. We then deal with g in three different ways in
Sections 5, 6, and 7.

Since we are following the same strategy as in [4], a crucial step in
solving (1.1) for p = 7 is to extend [4, Theorem 7] to the exponent p = 7.
To this end, we must prove the following:

Theorem 4.1. Let (a, b, c) be a non-trivial primitive solution to equa-
tion (1.1) for p = 7.

Then 13 | a+ b and 4 | a+ b.

From [4, Remark 7.4], Theorem 4.1 follows provided we can discard
the form g. The following theorem reduces the resolution of (1.1) for p =
7 to the elimination of the form g by discarding the other four obstructing
forms.

Theorem 4.2. Assume Theorem 4.1. Then Theorem 1.1 holds.

Proof of Theorem 4.2: It suffices to consider x13 +y13 = 3zn with n = p
a prime number.

The case p 6= 7 is precisely [4, Theorem 2], so we can assume p = 7.
Suppose (a, b, c) is a non-trivial primitive solution to equation (1.1)

with p = 7. From Theorem 4.1 we can assume that 4 | a+b and 13 | a+b.
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Let F = Fa,b be the Frey curve defined over K, which was introduced
in [4, Section 7.2]. Note that υ2(a + b) = υ2(3cp) ≥ 3 and 3 | a + b,
therefore [4, Lemma 11] gives that ρF,7

∼= ρf,p, for some f ∈ S2(N)new

and p | 7 in Qf .
The elimination technique described in Section 2, applied with the

quantities Aq(f) for the rational primes q = 5, 7, 11, 17, 31, shows that
ρF,7 6∼= ρf,p except when f is as in Proposition 3.2. To complete the proof
of the theorem, we make use of the refinement explained in Section 2 to
rule out the remaining four forms. To this end, let f be as in Proposi-
tion 3.2 (see also Table 1), and suppose that ρF,7

∼= ρf,p, where p | 7
in Qf . Since ρF,7 has conductor N, the same is true for ρf,p. Further-
more, ρf,p is irreducible (because ρF,7 is irreducible by [4, Theorem 8]) so
by Proposition 3.2 we can assume that p is unramified in Qf . Choosing
a q 6= 2, 3, 13 satisfying q 6≡ 1 (mod 13), we obtain from [4, Lemma 8]
that

(i) either q - a+ b and then for all q above q we have aq(f) ≡ aq(Fa,b)
(mod p);

(ii) or q | a+b and then for all q above q we have aq(f) ≡ ±(Norm(q)+
1) (mod p).

By computing aq(Fx,y) for each q | q and all x, y ∈ {0, . . . , q − 1} not
both zero, we eliminate f by checking that neither of the above congru-
ences holds for all unramified primes p | 7 in Qf . Indeed, the auxiliary
prime q = 5 suffices to eliminate all the four possible f .

5. An image of inertia argument with an abelian surface

In this section, we give a proof of Theorem 4.1 based on generalizing
an image of inertia argument to the setting of abelian surfaces.

From now on, we let K = Q(w), where w2 = 13. We let OK = Z[u],
with u = 1+w

2 , be the ring of integers of K. We consider the hyperelliptic
curve C defined over K by

C : y2 =(32u+ 36)x6+(24u+ 40)x5+(−u− 32)x4+(−16u+8)x3

+ (17u− 28)x2 + (−6u+ 16)x+ 6u− 16,
(5.1)

and we denote its Jacobian by J .

Lemma 5.1. The surface J has potentially good reduction at the
primes (2) and (w), and we have cond(J) = N2, where N = (23w2).

Proof: We use Magma [5] to compute the odd part of the conductor of J ,
and the Dokchitser–Doris algorithm [20] to get the even part. This yields
that cond(J) = N2.
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Let q be either of the primes (2) and (w) of K and consider C over Kq.
By [34, Théorème 1(V)], there is a stable model C of C over an exten-
sion F of Kq such that the special fiber of C is a union of two elliptic
curves intersecting at a single point.

Let J be the Néron model of the Jacobian of C . By the discussion
preceding [34, Proposition 2] and [34, Proposition 2(v)] itself, the special
fiber of J is an abelian variety. Hence, J has potentially good reduction
at the primes (2) and (w).

We record the following additional lemma for later, which also proves
more concretely the assertion that J has potentially good reduction
at (w). Let K ′ = Q(ζ13 + ζ−113 ) be the maximal totally real subfield
of Q(ζ13). Then K ′/K is a cyclic extension ramified at (w) only. Let K ′w
be the completion of K ′ at the unique prime above (w).

Lemma 5.2. The surface J acquires good reduction over K ′w.

Proof: Using Magma [5], the conductor exponent of J at the unique prime
of K ′ above w is computed to be 0.

Let g be the Hilbert newform over K with parallel weight 2, triv-
ial character, and level N = (23w2) listed in [4, Proposition 9]. Since
ord2(N) = 3 is odd, the local component πg,2 of the automorphic rep-
resentation πg attached to g is supercuspidal. Therefore, the Eichler–
Shimura conjecture for totally real fields holds (see [37, Proposi-
tion 2.20.2] or [45, Theorem B]). Thus, there is an abelian surface Ag
with RM by Z[

√
2] attached to g. The theorem below shows that Ag is

isogenous to J .

Theorem 5.3. Let C and J be given by (5.1). Then, we have the fol-
lowing:

(i) The ring EndK(J) contains Z[
√

2], i.e., J is of GL2-type with real

multiplication (RM) by Q(
√

2).
(ii) The surface J is modular and corresponds to the Hecke constituent

of the Hilbert newform g. In other words, J and Ag are isogenous.

Proof: In [22, Theorem 17], there is an equation for the Humbert sur-
face H8 of discriminant 8, which parametrizes principally polarized
abelian surfaces with RM by Z[

√
2] (but where the action of Z[

√
2] by en-

domorphisms is forgotten), and is birational to the projective plane P2
r,s.

Let Y−(8) be the Hilbert modular surface in [22] which is the coarse
moduli space that parametrizes principally polarized abelian surfaces
with real multiplication by Z[

√
2]. The loc. cit. gives the Hilbert modular

surface Y−(8) as a double cover of P2
r,s and this is a birational model
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of Y−(8) over Q. Additionally, a birational map from Y−(8) to the moduli
space M2 of genus 2 curves is described. When this map is defined and
evaluated at a point (A, φ), where φ is the moduli structure imposed on A
by Y−(8), it gives the Igusa–Clebsch invariants of the genus 2 curve C ′

whose Jacobian is A.
The point

(r′, s′) :=

(
−20u− 24

81
,
−1456u+ 3354

81

)
determines the K-isomorphism class of an abelian surface A arising as
the Jacobian of C ′ whose Igusa–Clebsch invariants are given by

I ′2 =
18112u− 38832

81
,

I ′4 =
−112736u+ 270660

6561
,

I ′6 =
2386589920u− 5484934104

531441
,

I ′10 =
532320256u− 1222121472

3486784401
.

Using Magma’s implementation of Mestre’s method [36], we can find a
hyperelliptic curve C ′ of genus 2 defined over K whose Igusa–Clebsch
invariants are the I ′2i above for i = 1, 2, 3, 5. Hence, A arises from the
Jacobian of C ′/K and is thus itself defined over K.

Let I2, I4, I6, and I10 be the Igusa–Clebsch invariants of the curve C,
and α = −60u − 48. Then, we have I2i = α2iI ′2i for i = 1, 2, 3, 5. This
shows that C/K is isomorphic to C ′/K over K.

The points in Y−(8) corresponding to (r′, s′) are still rational over K,
hence by the modular interpretation of Y−(8) there is a choice of A
in its K-isomorphism class such that A is defined over K and A has
RM by Z[

√
2]. Since Aut(C) ∼= Aut(C ′) is of order 2, we see that C/K

and C ′/K differ by a quadratic twist. Thus, EndK(J) also contains Z[
√

2]
by [42, Lemma 2.2], hence proving (i).

Alternatively, the algorithm in [13] can be used to show that the

endomorphism ring EndK(J) contains Z[
√

2]. We thank N. Mascot and
the authors of [13] for checking this.

We now prove (ii). Recall that 3 is inert in Q(
√

2), and consider the
2-dimensional 3-adic Galois representation attached to J

ρJ,3 : Gal(Q/K)→ GL2(Q3(
√

2)).
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Since J is of GL2-type, it follows from Ribet [38, Proposition 3.4] (note
that the proof generalizes to abelian varieties defined over totally real
fields) that the determinant of ρJ,3 is the cyclotomic character, hence
for q - 3N its characteristic polynomial at q is of the form

charpoly(ρJ,3(Frobq)) = x2 − aqx+ Norm(q),

where tr(ρJ,3(Frobq)) = aq ∈ Q(
√

2), and Norm(q) is the norm of q.
Let ρJ,3 be the mod 3 reduction of this representation. By construc-

tion, ρJ,3 is odd and we see that the image of ρJ,3 is contained in

{u ∈ GL2(F9) : det(u) ∈ F×3 }
and, since −1 is a square in F×9 , the projective image lands in PSL2(F9).
By computing the orders of the conjugacy classes of ρJ,3(Frobq) for the
primes q above 17 and 53, we see that the projective image of ρJ,3
contains elements of orders 2, 4, and 5. There is no proper subgroup
of PSL2(F9) which contains three elements with those orders, hence the
projective image of ρJ,3 is PSL2(F9). In particular, we see that the image
of ρJ,3 contains SL2(F9), so ρJ,3 is absolutely irreducible.

The prime 3 splits in K. Writing (3) = v1v2, where v1 = (u− 1) and
v2 = (u), we get that

tr(ρJ,3(Frobv1)) = 2±
√

2 and tr(ρJ,3(Frobv2)) = ±
√

2

by computing the Euler factors of the curve C at both places and fac-
toring over Q(

√
2). These traces are units modulo 3, so ρJ,3 is ordinary

at each v | 3. Further, since 5 - N, we see that ρJ,3|I5 is trivial, hence
it has odd order. Since 3 and 5 have odd ramification indices in K, it
follows that ρJ,3 satisfies the conditions of [23, Theorem 3.2 and Propo-
sition 3.4]. Hence, it is modular.

We use [29, Theorem 3.5.5] to conclude that ρJ,3, and hence J , is
modular.

By local-global compatibility ([11, Théorème (A)]) and Lemma 5.1,
the level of the Hilbert newform attached to J is N = (23w2). There is
a unique Hecke constituent of weight 2 and level N whose Euler factors
match those of the surface J , namely, the one corresponding to the
newform g.

The ‘image of inertia argument’ discards the possibility of the mod p
representation of the Frey curve and that of a newform f being isomor-
phic by showing they have different image sizes at an inertia subgroup.
This idea, originally from [31, p. 8], has been extensively applied and
refined [2] (see [4, Section 3] for a description of two refinements) in the
case of f corresponding to an elliptic curve. In its essence, this argument
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boils down to showing that the Frey curve and the newform f have differ-
ent inertial types at some prime q dividing the level of f . Thus far, such
inertia arguments have been restricted to the case of f corresponding to
an elliptic curve because a method to explicitly determine the inertial
types of a form f with non-rational coefficients has not been worked out
in general.

In this section, we will use the modularity in Theorem 5.3 to de-
scribe (see Theorem 5.6) the inertial type of the non-rational form g at
the prime (2); this together with the local information at (w) given by
Lemma 5.2 allows for a proof of Theorem 1.1.

Before proceeding we need some notation. Let E = E1,−1 be the Frey
curve attached to the trivial solution (1,−1, 0) in [4, Section 7.1]; it
admits a minimal model given by

E : y2 = x3 − ux2 + (9u− 25)x− 17u+ 49.

Also let J be as above and p7 be the prime of Q(
√

2) above 7 generated

by 3 +
√

2.
Let K2/Q2 be the unique unramified quadratic extension and Kun

2

its maximal unramified extension in a fixed algebraic closure of Q2. For
an abelian variety A/K2 with potentially good reduction, there is a
minimal extension MA/K

un
2 where A obtains good reduction. By a result

of Serre–Tate ([40, Section 2, Corollary 3]), we have MA = Kun
2 (A[p])

for any odd prime p.
We recall that the curve E has potentially good reduction at 2. By

Lemma 5.1, the same is true for J ; so ME = Kun
2 (E[3]) and MJ =

Kun
2 (J [3]).

Proposition 5.4. We have ME = MJ and Gal(ME/K
un
2 ) ∼= SL2(F3).

Proof: Computing the standard invariants of E, we find that they have
the following valuations at (2):

(υ2(c4(E)), υ2(c6(E)), υ2(∆(E))) = (5, 5, 4).

Hence υ2(j(E)) = 11 and E has potentially good reduction at (2). It
follows from [10, p. 675, Corollaire] that E has semistability defect e =
24, hence Gal(ME/K

un
2 ) ∼= SL2(F3) by [30].

On the other hand, J also has potentially good reduction at (2) by
Lemma 5.1, and as a byproduct, the Dokchitser–Doris algorithm ([20])
returns the totally ramified field K2(J [3]) with a defining polynomial
over K2 of degree 24.

We check that E has good reduction over K2(J [3]), so ME ⊂ MJ =
Kun

2 (J [3]) by minimality. Since [ME : Kun
2 ] = 24 = [MJ : Kun

2 ] the
result follows.
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The following well-known result will be of use for us; due to a lack of
a clear reference we include a proof here.

Lemma 5.5. Let K be a totally real field and q a prime above 2 in K.
Let Iq ⊂ GK be an inertia subgroup at q. Let h be a Hilbert modular
form over K of level N and field of coefficients Qh. Assume that q | N
and that h has a supercuspidal exceptional type at q.

Then, for all primes p coprime to 6N and all primes P | p in Qh, we
have ρh,P(Iq) ' SL2(F3).

Proof: Let πh be the automorphic representation attached to h, and
πh,q the local component at q. Also, let σh,q : Wq → GL2(C) be the Weil
representation attached to πh,q by the local Langlands correspondence
(see [32]). Since πh,q is a supercuspidal exceptional representation, then
σh,q is an exceptional representation, which means that the projective
image of σh,q is either A4 or S4 (the A5 case cannot occur since Wq is
solvable).

Let p be a rational prime coprime to 6N and P | p a prime in Qh. Let
Dq ⊃ Iq be a decomposition group at q in GK . By local-global compati-

bility ([11, Théorème (A)]), the projective image of ρh,P|Dq
in PGL2(Qp)

is either A4 or S4, and ρh,P|Iq acts irreducibly [9, Section 42.1] (in loc.
cit., supercuspidal exceptional representations are called primitive rep-
resentations). Since p - 6, the image of ρh,P|Dq

in PGL2(Fp) is also A4

or S4, and ρh,P|Iq acts irreducibly. A careful analysis of the proof of [19,
Proposition 2.4] shows that it carries over to any finite local extension
of Q2. In particular, this implies that the projective image of ρh,P|Iq is

equal to A4. Therefore, the image of ρh,P|Iq ⊂ SL2(Fp) is isomorphic
to either A4 or SL2(F3); the result now follows since there is only one
element of order 2 in SL2(Fp) (for p > 2), hence no subgroup of SL2(Fp)
is isomorphic to A4.

Theorem 5.6. Let P | 7 in F = Q(
√

2) be a prime. Then, we have

MJ = Kun
2 (J [7]) = Kun

2 (J [P])

and, moreover,
ρg,P|I2 ∼= ρE,7|I2 .

Here, I2 denotes an inertia subgroup at (2) in GK .

Proof: Let P, P′ be the two primes above 7 in Q(
√

2). By [43, Theo-
rem 4.3.1], we have that

J [7] = J [P]× J [P′].

This means that the fieldMJ =Kun
2 (J [7]) is the compositum ofKun

2 (J [P])
and Kun

2 (J [P′]), the fields cut out by ρJ,P|I2 and ρJ,P′ |I2 respectively.



Fermat Equations of Signature (13, 13, n) 731

We will now show that these three fields have the same degree and
the first statement follows. By Theorem 5.3, we have ρJ,P

∼= ρg,P and
ρJ,P′

∼= ρg,P′ . By Proposition 5.4 and the discussion preceding it, we
only need to show that the fields cut out by ρg,P|I2 and ρg,P′ |I2 have
degree # SL2(F3) = 24.

Note that if ρg,P|I2 is reducible, then the conductor exponent at 2 is
either 1 (special representation) or even (because the determinant of ρg,P
is cyclotomic, and hence on restriction to inertia the diagonal characters
must be inverses of each other); therefore, ρg,P|I2 is irreducible and g
has supercuspidal type at 2 which is not given by an induction from the
unramified quadratic extension. We conclude that g is either supercus-
pidal induced from a ramified extension or exceptional. In the former
case, then ρg,P|I2 would have projective dihedral image; since the field
cut out by ρg,P|I2 is a Galois subextension of Kun

2 (J [7])/Kun
2 , which has

Galois group SL2(F3), and SL2(F3) does not have any quotients which
are dihedral, we conclude that g must have a supercuspidal exceptional
type at 2. By Lemma 5.5, we obtain that the fields cut out by ρg,P|I2
have degree # SL2(F3) = 24 as required.

We now prove the last statement. From the first part of the theorem,
Theorem 5.3, and Proposition 5.4, we have that MJ is the field cut out
by both ρg,P|I2 and ρE,7|I2 . Thus, ρg,P|I2 , and ρE,7|I2 have the same
kernel, and image SL2(F3) ↪→ SL2(F7) ⊂ GL2(F7). Therefore, it follows
from [25, Lemma 2] that they are isomorphic representations.

Finally, we now show Theorem 4.1 using the information on the iner-
tial types.

First proof of Theorem 4.1: Let (a, b, c) be a non-trivial primitive solu-
tion to equation (1.1) with n = p = 7.

Let Ea,b be the Frey curve defined in [4, Section 7.1]. The proof of [4,
Theorem 7] uses [4, Proposition 9], which asserts that ρEa,b,p

∼= ρZ,p,
where Z is one of E1,−1, E1,0, E1,1. In the case p = 7, there is the

additional possibility that ρEa,b,7
∼= ρg,P, where P | 7 in Q(

√
2). By [4,

Remark 7.4] we have P = p7.
Suppose Z is one of the three curves above; the arguments of [4,

Theorem 7] still hold for p = 7. For instance, if Z = E1,−1 and 4 - a+ b,
then it is shown that

(5.2) ρEa,b,p |I2 6∼= ρZ,p |I2 .

To complete the proof, we only have to eliminate the possibility that
ρEa,b,7

∼= ρg,p7
.
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By Theorem 5.3, we have ρg,p7
∼= ρJ,p7

. The proof of [4, Theorem 7(A)]
then remains valid by simply replacing Z/K ′ with J/K ′w and using
Lemma 5.2. This shows 13 | a+ b.

Finally, we note that ρg,p7
|I2 ∼= ρE1,−1,7|I2 by Theorem 5.6, and that

ρE1,−1,7|I2 6∼= ρEa,b,7|I2 by (5.2), for 4 - a+b. This shows that 4 | a+b.

Remark 5.7. The obstruction to solving (1.1) comes from an abelian
surface with real multiplication; namely, the surface Ag attached to the
form g. The approach in this section relies crucially on the fact that
Ag is isogenous over Q(

√
13) to a principally polarized abelian surface

with real multiplication, i.e., Ag is a Q(
√

13)-rational point on some
Humbert surface. Hence, the methods in [17, Section 4.1.2] and [22,
Section 7] can be applied to explicitly find a hyperelliptic curve C such

that Ag is isogenous over Q(
√

13) to the Jacobian J of C. There is thus a
reasonable chance for the method in this section to succeed whenever the
obstruction to the modular method for solving a Diophantine equation
like the one in (1.1) is isogenous to a principally polarized abelian surface
with real multiplication and reasonably sized height.

Remark 5.8. Although we apply this generalized inertia argument to
a situation with fixed exponent p = 7, the method described is also
applicable to a setting with general exponent p (unlike the methods in
Sections 6 and 7). This can be useful when working with certain Frey
hyperelliptic curves as in the Darmon program for the generalized Fermat
equation [15].

For example, in forthcoming work [12], the equation xp + yp = z5 is
studied using a Frey hyperelliptic curve C−5 = C−5 (a, b, c) constructed
by Darmon (see [15, p. 425]), where (a, b, c) is a non-trivial primitive
solution satisfying 2 | ab, 5 - ab. The Jacobian J−5 = J−5 (a, b, c) of C−5
is defined over Q and becomes of GL2-type over F = Q(

√
5) with real

multiplication by F . In applying the modular method in this case, one
finds that it is not possible to rule out an isomorphism

(5.3) ρJ−5 ,P
∼= ρh,P

by comparing traces of Frobenius at primes not dividing 10, where h is
a certain Hilbert newform of parallel weight 2, trivial character, and
level (24r2) over F ; here, P is a prime above p, r is the prime above 5 of F ,
and note that 2 is inert in F . By modularity and comparing a few traces,
one checks that the Hilbert newform h corresponds to J−5 (8,−8, 0)

twisted by the quadratic character associated to F (
√

2). Applying the
Dokchitser–Doris algorithm [20], we deduce that J−5 (8,−8, 0) achieves
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good reduction over a degree 10 totally ramified extension of Fun2

(see [3]), so ρh,P(I2) has order dividing 20 and divisible by 5. More-

over, it is shown in [12] that J−5 (a, b, c) has potentially multiplicative
reduction at 2 when 2 | ab, 5 - ab for p > 5. Therefore, this implies
that ρJ−5 ,P

is a quadratic twist of Steinberg at 2 and hence ρJ−5 ,P
(I2) has

order dividing 2p. We thus obtain a contradiction to isomorphism (5.3)
when p > 5.

6. A residual multiplicity 1 argument

In this section, we outline a proof of Theorem 4.1 based on establish-
ing the mod 7 congruence mentioned in the introduction and described
below; see also [4, Remark 7.4] for more details.

The natural attempt to use a Sturm bound such as the one in [8] fails
because it necessitates the computation of Hecke eigenvalues for primes
of K = Q(

√
13) of norm at least 106, which is not computationally

feasible.
The method we introduce for establishing ρg,p7

∼= ρf,7 below, without
the use of a Sturm bound, relies on a residual multiplicity 1 argument.
It applies for more general f , g, and p. For example, it has also been
used in [16] to show the isomorphism of some residual mod 2 Galois
representations arising from Hilbert modular forms over the maximal
totally real subfield of Q(ζ32), the cyclotomic field of a 32nd root of
unity.

Let E = E1,−1 and p7 be as in the previous section; in particular, we
have Fp7

= F7.
Let S2(N)new be the new subspace of Hilbert cusp forms of weight 2,

trivial character, and level N = (23w2). The elliptic curve E is modular
by [26] and corresponds to a newform f ∈ S2(N)new. Similarly, in Theo-
rem 5.3, we prove that the surface J is modular and corresponds to the
form g ∈ S2(N)new. So, we have ρf,7 ' ρE,7 and ρg,p7

' ρJ,p7
.

Let D =
(−1,−1

K

)
be the totally definite quaternion algebra over K

ramified at both places at infinity only. Let OD be a maximal order in D.

Also, let D̂ = D⊗ Ẑ, ÔK = OK ⊗ Ẑ, and ÔD = OD ⊗ Ẑ, where Ẑ is the

profinite completion of Z. We fix an isomorphism (ÔD)× ' GL2(ÔK),
and we define the compact open subgroup

U0(N) :=

{
γ ∈ (ÔD)× : γ ≡

(
∗ ∗
0 ∗

)
mod N

}
.

We consider the space

SD2 (N) = {f : D×\D̂×/U0(N)→ C}
which has an action of Hecke operators Tq for q - N.
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Let TN be the Hecke algebra acting on SD2 (N) which is generated by
the operators Tq. There is a decomposition

SD2 (N) = SD2 (N)old ⊕ SD2 (N)new,

where the subspaces SD2 (N)old and SD2 (N)new are TN-stable, and
SD2 (N)new is the orthogonal complement of SD2 (N)old under a certain
inner product defined on SD2 (N).

The Z-submodule of SD2 (N) given by

SD2 (N,Z) = {f : D×\D̂×/U0(N)→ Z}
is stable under TN and generates SD2 (N) over C (i.e., is an integral
structure for SD2 (N)).

Let SD2 (N,Z)new be the orthogonal projection of SD2 (N,Z) to
SD2 (N)new. Then SD2 (N,Z)new is an integral structure for SD2 (N)new; in
particular, the matrices representing the action of the Tq on SD2 (N)new

have integer coefficients.
For any commutative ring with unity A, define

SD2 (N, A) := SD2 (N,Z)⊗A,
SD2 (N, A)new := SD2 (N,Z)new ⊗A.

We recall that, since [K : Q] = 2 is even, the Jacquet–Langlands
correspondence implies that there is an isomorphism of Hecke mod-
ules JL : SD2 (N) ' S2(N), which maps SD2 (N)new onto S2(N)new. We let
φ = JL−1(f) and ψ = JL−1(g).

Proposition 6.1. Consider the residual representations

ρg,p7
: Gal(Q/K)→ GL2(F7) and ρf,7 : Gal(Q/K)→ GL2(F7).

Then, we have ρg,p7
∼= ρf,7.

Proof: Recall that the coefficient field of f is Q and that of g is L =
Q(
√

2). Let OL = Z[
√

2] and OL,p7 be the completion of OL at p7. Let

θ : SD2 (N,OL,p7
)new � SD2 (N,F7)new

be the natural reduction map.
Up to scaling, we may assume φ and ψ are elements in SD2 (N,OL,p7)

new

and their reductions φ = θ(φ) and ψ = θ(ψ) are non-zero elements
in SD2 (N,F7)new. Hence, φ and ψ are eigenvectors of Tq (mod 7) for
all q - 7N.

Let T ⊆ EndF7(SD2 (N,F7)new) be the Hecke algebra generated by the
operators Tq (mod 7) for all primes q - 7N, and Wφ (resp. Wψ) be the

T-submodule generated by φ (resp. ψ) in SD2 (N,F7)new.
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Let T′ ⊆ T be the subalgebra generated by the Hecke operators Tq for
prime ideals q - 7N of norm up to 43, and S the socle of SD2 (N,F7)new

considered as a T′-module, i.e., the sum of all simple T′-submodules
of SD2 (N,F7)new, which is semisimple.

Since both φ and ψ are eigenvectors for T′, Wφ and Wψ are simple

T′-modules of dimension 1 over F7. Hence, Wφ and Wψ are contained

in S. They are isomorphic as T′-modules, as for all prime ideals q - 7N
of norm up to 43 we have that aq(f) (mod 7) = aq(g) (mod p7) as
elements in F7, where aq(u) denotes the eigenvalue of Tq acting on an
eigenvector u ∈ SD2 (N).

Using Magma [5], we can compute the T′-module S, which has di-
mension 348 over F7. There are 34 (non-isomorphic) simple constituents
which have dimension 1 over F7, and each appears with multiplicity 1.
Thus, Wφ = Wψ inside S ⊆ SD2 (N,F7)new. Since Wφ = Wψ inside

SD2 (N,F7)new and both are T-modules as well, we obtain that aq(f)
(mod 7) = aq(g) (mod p7) as elements of F7, for all prime ideals q -
7N.

Second proof of Theorem 4.1: The bulk of the argument of the proof of
this theorem given in Section 5, including the identity (5.2), still applies.

Therefore, we only need to show that the isomorphism ρEa,b,7
∼= ρg,p7

is not possible. Suppose we have that ρEa,b,7
∼= ρg,p7

. Then by Proposi-
tion 6.1 we have

ρEa,b,7
∼= ρg,p7

∼= ρE1,−1,7.

Now the arguments that eliminated E1,−1 apply to eliminate g, thereby
completing the proof.

7. A unit sieve argument

In this section, we give a proof of Theorem 4.1 based on combining the
study of units in classical descent with local restrictions on the solutions
coming from the multi-Frey approach in [4].

Let ζ be a primitive 13th root of unity. Suppose (a, b, c) is a non-trivial
primitive solution to (1.1). We then have the factorization in Z[ζ],

a13 + b13 = (a+ b)

12∏
i=1

(a+ ζib) = 3c7.

The integers a+ b and a13+b13

a+b are coprime away from 13 (see, e.g., [14,

Lemma 2.1]). Let ` 6≡ 1 (mod 13) be a prime number dividing a13 + b13.
Since a and b are coprime, we have that ` - ab and hence there exists
an integer b′ such that bb′ ≡ −1 (mod `). Therefore we have (ab′)13 ≡ 1
(mod `) and since ` 6≡ 1 (mod 13) it follows that ` divides a + b. In
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particular, we have that 3 - a+ ζb. Furthermore, by classical descent, we
have that

(7.1) a+ ζb =

{
εβ7 if 13 - a+ b,

ε(1− ζ)β7 if 13 | a+ b,

where ε is a unit of Z[ζ] and β ∈ Z[ζ]. We only need to consider ε up
to seventh powers, which means that there are initially 16807 possible
choices for ε.

One can now reduce (7.1) modulo a prime q of Z[ζ] above the rational
prime q. If q is such that the order of the multiplicative group of the
residue field at q is divisible by 7, the condition of being a seventh power
is non-trivial.

The primes q = 11, 17, 23, 29, 37, 41 satisfy the condition above; more-
over, we can obtain local information from the modular method: if
ρEa,b,7

∼= ρg,p7
, locally at q this congruence imposes constraints on the

solutions (a, b) modulo q (in both cases of good or multiplicative reduc-
tion of Ea,b at q) and hence on the unit ε.

Note we cannot obtain information from q = 2 in the same way,
because 2 divides the level of g. However, since the multiplicative group
of the residual field of K at q = (2) has order a multiple of 7, this
together with the assumption 4 - a+ b also imposes restrictions on ε.

Third proof of Theorem 4.1: We first note that the condition 4 - a + b
is equivalent to 2 - a + b for our equation. Now we sieve the set of
possible units in the two cases of equation (7.1), assuming 2 - a+ b for a
contradiction. More precisely, in both the cases 13 - a+ b and 13 | a+ b,
using the primes q = 2, 11, 19, 23 the set of units which passes all local
conditions is empty. Thus 4 | a+ b, as desired.

We will now prove that 13 | a + b. From the above we can assume
4 | a + b and 13 - a + b for a contradiction. Using the local information
at the primes q = 2, 11, 19, 23, 29, 41, again the set of units which passes
all local conditions is empty, concluding the proof.

Remark 7.1. This method of sieving units also appears in [14], in the
context of reducing the number of hyperelliptic curves to be considered
for Chabauty. However, only the primes q not dividing the level are
considered there. In our case, we succeed without the need to apply
Chabauty since we can sieve also at q = 2, which is a prime in the level.
It should also be noted that the reason why the unit ε = 1 does not
pass the local conditions from the modular method (unlike the situation
in [14]) is that our original equation (1.1) does not have the trivial
solutions ±(1, 0, 1), ±(0, 1, 1) due to the coefficient 3.
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8. A remark on the equation x2` + y2m = zp

To conclude this paper, we use the technique from Section 3 to com-
plete the following result of Anni–Siksek [1].

Theorem 8.1 (Anni–Siksek). Let p = 3, 5, 7, 11 or 13. Let `,m ≥ 5 be
primes, and if p = 13, suppose moreover that m, ` 6= 7. Then the only
primitive solutions to

x2` + y2m = zp

are the trivial ones (x, y, z) = (±1, 0, 1) and (0,±1, 1).

The proof of this theorem is a remarkable application of the modular
method over totally real subfields of Q(ζp)

+. The extra conditions m, ` 6=
7 for p = 13 are required due to the presence of a single Hilbert newform,
denoted f11 in loc. cit., which evades the elimination step.

Let K ⊂ Q(ζ13)+ be the cubic field of Section 3. Recall that 2 is inert
in K and that q13 is the unique prime above 13. The newform f11 belongs
to S2(2 · q13)new, the new subspace of Hilbert cusp forms of level 2 · q13,
weight 2, and trivial character. It is the unique newform in this space
with field of coefficients Qf11 = Q(ζ7)+ the real cubic subfield of the
cyclotomic field of seventh roots of unity, in which 7 is totally ramified.
Let p0 be the unique prime of Qf11 above 7. The authors are not able to
exclude the possibility that

(8.1) ρE′,7 ' ρf11,p0
,

where E′ is the Frey curve defined in [1, p. 10]; see [1, p. 19] for further
details. However, as observed in loc. cit., numerical evidence strongly
suggests that ρssf11,p0

' χ7 ⊕ 1, so, in particular, ρf11,p0
is reducible. In

Proposition 8.3, we show that this is indeed the case. This means that
the isomorphism (8.1) cannot occur since ρE′,7 is irreducible. Therefore,
since p0 is the only prime in Qf11 above 7, we have successfully completed
the elimination step for the form f11. This in turn allows us to remove
the assumption that m, ` 6= 7 for p = 13 in Theorem 8.1. Thus we have
the following corollary.

Corollary 8.2. Let `,m ≥ 5 be primes. Then the only primitive solu-
tions to

x2` + y2m = z13

are the trivial ones (x, y, z) = (±1, 0, 1) and (0,±1, 1).

We now complete the proof of this result by showing that ρf11,p0
is

indeed reducible.
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Proposition 8.3. The representation ρf11,p0
: GK → GL2(F7) is re-

ducible.

Proof: Suppose ρf11,p0
is irreducible for a contradiction.

The conductor of ρf11,p0
is N′ = (1), (2), q13, or 2q13. From the

irreducibility assumption on ρf11,p0
and [6, Theorem 3.2.2], we conclude

there exists a Hilbert newform g ∈ S2(N′)new such that ρf11,p0
' ρg,p′

for some prime p′ | 7 in the coefficient field Qg of g.
For N′ = (1) and N′ = q13, we have dimS2(N′)new = 0, so N′ = (2)

or 2q13.
For N′ = (2), we have dimS2(N′)new = 1. The unique newform cor-

responds to the isogeny class of the base change to K of the elliptic
curve W with Cremona label 338b1. From [33, Elliptic curves over Q],
we see that ρW,7 is reducible, hence ρf11,p0

6' ρW,7|GK .
We conclude that ρf11,p0

ramifies at both (2) and q13, that is, N′ =
2q13.

Now, a similar argument to the one used in the proof of Proposition 3.2
shows that ρf11,p0

extends to an irreducible representation ρ : GQ →
GL2(F7), and that there is a classical newform h ∈ S2(26)new such that
ρ ' ρh,p for some prime p | 7 in Qh. There are two newforms h1, h2 ∈
S2(26)new, with rational coefficients, corresponding to the isogeny classes
of the elliptic curves W1 and W2 with Cremona label 26a1 and 26b1
respectively.

The curve W2 has a 7-torsion point, so ρh2,7 is reducible, hence ρ 6'
ρh2,7.

Finally, we observe that a5(W1) = −3 for the prime 5, which is split
in K. So, for a prime q | 5 in K, we have

Tr(ρh1,7|GK (Frobq)) = Tr(ρW1,7(Frob5)) ≡ −3 (mod 7).

But we easily check that Tr(ρf11,p0
(Frobq)) ≡ 6 6≡ −3 (mod p0), showing

that ρ 6' ρh1,7.
Since there are no other possible forms h we obtain the desired con-

tradiction.
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de Hilbert, Ann. Sci. École Norm. Sup. (4) 19(3) (1986), 409–468. DOI: 10.

24033/asens.1512.

[12] I. Chen and A. Koutsianas, A modular approach to Fermat equations of signa-

ture (p, p, 5) using Frey hyperelliptic curves, Preprint (2022). arXiv:2210.02316.
[13] E. Costa, N. Mascot, J. Sijsling, and J. Voight, Rigorous computation of

the endomorphism ring of a Jacobian, Math. Comp. 88(317) (2019), 1303–1339.
DOI: 10.1090/mcom/3373.

[14] S. R. Dahmen and S. Siksek, Perfect powers expressible as sums of two fifth or

seventh powers, Acta Arith. 164(1) (2014), 65–100. DOI: 10.4064/aa164-1-5.
[15] H. Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last the-

orem, Duke Math. J. 102(3) (2000), 413–449. DOI: 10.1215/S0012-7094-00-

10233-5.
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