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ON THE INVERSE PROBLEM
OF GALOIS THEORY
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Abstract

The problem of the construction of number fields with Galois
group over Q a given finite groups has made considerable progress
in recent years. The aim of this paper is to survey the current state
of this problem, giving the most significant methods developed in
connection with it.

The inverse problem of Galois theory asks whether given a field K and
a finite group & there exists a polynomial with coefficients in K whose
Galois group over K is isomorphic to the given group G. Different as-
pects of this problem can be pointed out : The existence of solutions,
the effective construction of polynomials, the existence of solutions with
some additional conditions, and so on. In any case, the answers to these
problems are very different according to the prefixed field K. For ex-
ample, over C{7) the inverse problem of Galois theory always has an
affirmative answer, as a consequence of Riemann’s existence theorem. In
contrast, it is well-known that over the finite fields, only cyclic groups
appear as Galois groups, and also, over the p-adic fields only solvable
groups occur as Galois groups.

However, the main problem in this context which is classically known
as the inverse problem of Galois theory is to realize any finite group as
a Galois group over the rational field @. In recent years there has been
considerable progress in this as yet unsolved problem. The aim of this
paper is to survey the current state of this problem, giving the most sig-
nificant methods developed in connection with it. This paper essentially
contains a talk given in the ”Seminario de Geometria Algebraica®, at the
Complutense University of Madrid, in Novemher 1990.
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1. Hilbert’s Irreducibility Theorem: S,, 4,

The origin of the questions related to the construction of polynomials
with prefixed Galcis group can be found in Hilbert. In 1892, in the same
paper in which he established his irreducibility thecrem, he proved that
the symmetric group &, and the alternating group A, are Galois group
over Q{7 and over every number field [Hi].

Hilbert’s irreducibility Theorem. Let K be a nuwmber field Let
F(Ty,...,T,,X) e K[T1,...,Tr, X] be an irreducible polynomial. There
exists infinitely many r-tuples t = (41, ..., ¢7) € Z7 such that the polyno-
mial

Fi(X) = Flty,... b, X) € K[X]
is irreducible. '

Moreover, there cxists infinitely many r-tuples t = (t1,..., ) € Z7
such that the Galots group of F(T1, ..., T, X ) over K(Ty,...,T}) is iso-
morphic to the Galois group af Fi(X) over K, '

Galg(ry,.. .7y (F(T1,. .., T, X))} = Galg (£7( X))
Applying this result to the general equation of degree n,
Py, . T X)= X"+ T X" o 4 T,

we obtain that, for infinitely many values of ¢ = (¢y,....,t,) € £, the
Galois group of Fy(X) over any number field K is

| Galg (Fy(X)) = S,..

Therefore, S, appears as a Galois group over every number field and
in particular over Q. Hilbert also constructed polynomials FI(X,T) and
G{X,T) with rational coefficients which are irreducible over Q(T") and
whose Galois groups over Q(T'} are

Galgm (F(X,T)) = 5,
Galgm (G(X, 1)) = Ay,

for all values of n. The splitting fields of these polynomials are regular
extensions over Q1) {i.e. Q is algebraically closed in these splitting
fields), hence S, and A, are Galois groups over K(T), where K is any
number field. Therefore, by Hilbert’s irreducibility theorem, A, appears
as a Galois group over every number field. Moreover, we have infinitely
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many rational polynomials with Galois groups over @, isomorphic to 5,
and to A,.

From Hilbert's irreducibility theorem, we find that a Galois realization
of a finite group G over Q(7T") provides, in fact, a parametric solution
over Q. Moreover, if the Galois extension over @(T") is regular, we get
an affirmative answer for the group ¢ over any number field.

On the other hand, from a geometric point of view, an irreducible
polynomial F(X,T) € Q[T, X] dcfines an irreducible projective rational
curve C which is a Galois covering of the projective line P, over Q.
The function field of €' is the splitting field N over Q(T) of F(X,T).
Therefore, the curve € is absclutely irrcducible if and only if ¥V is a
regular extension of @(T}.

Noether’s method. Emmy Nocther’s idea to construct equations
with a prescribed Galois group was to extend Hilbert’s method to any
finite group G. Let us consider a finite group G acting faithfully on
a sot of m elements, ¢ C &,,. Let K be a number field and L =
K(T\,...,Tw). The question is whether the invariant field L% is a purely
transcendental extension of K. An affirmative answer to this questicn
for a given G and K would imply, by Hilbert’s irreducibility theorem,
that & can be realized as a Galois group over K. Noether proved that
this was true for every subgroup of S;. Later an affirmative answer
to Noelher’'s question for some cyclic groups was found. Moreover, by
Luroth's theorem every subfield K ¢ L < K(7T) is purely transcendental
over K, and by Castellnuovo’s theorem, this is also true for K = C and
m = 2, but for m > 3 this conclusion hecomes false. This leads to
the problem of the construction of unirational varieties which are not
rational. However Swan [Sw 69] shows that for the cyclic group Cyr
Noether’s question has a negative answer. Other examples have been
obtained, the simplest one is provided by Lenstra [Le 74| for Cg. Still,
Noether’s method has recently been revitalized. Ekedahl [Ek 90] has
given a new proof of Hilbert's irreducibility theorem in which it is proved
that, although the invariant field K€ is not purely transcendental, it
may have sufficiently good properties, in terms of weak approximation of
smooth rational varieties, for Hilbert’s irreducibility theorem to remain
valid and, by spccializing, to obtain a Galois extension with a Galois
group isomorphic to the given group G.

2. Galois embedding problem I: Solvable groups

Let.l] — A — G — G —> 1 be an exact sequence of finite groups.
Suppose that G is a Galois group over a field K, G = Gal(L/K). The
question is whether thiere exists a Galois extension L of K such that
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G = Gal(L/K), L D L D K and the diagram

] —— A [— _ G — ]

l !

1 — Gal(Z/L) —— Gal{L/K) —— Gal(L/K) —— 1

1— u

is commutative.

In other words, let G = Gal(K/ K} be the absolute Galois group of
XK, the Galois extension L/K gives an epimorphism p: Gg — G. The
Galois embedding problem associated with L/K has a solution if there
exists an homomorphism p: G — & such that the diagram

Gr
s pl
1 A G — 6 — 1

is commutative. In fact the homomorphism p defines an algebra which is
an extension of K. If the kernel A is an abelian group and K a number
field then, if the embedding problem has an algebra solution, it also has a
field solution (cf. Tk 60]}. Therefore, in this casc, the two formulations
are equivalent. .

It is casy to see that every abelian group appears as a Galois group
over Q. Let G2 7/mZ x---xZ/n.Z, let p; be a prime such that p; =1
(mod n;}, 1 < 4 < n. Let {; be a primitive p;-th root of unity, let I
be the cyclic subfield of the cyclotomic field Q((;} of degree n; over Q.
Then Gal(K,;/@) = Z/n;Z and the compositum field K --- K, has Galois
group over @ isomorphic to G, since K;NK; =Q, fori# 3 1 <4, < n.

Since a solvable group ¢ admits an abelian tower

G=GDDGlD"'DGn:_{O}:

it may seem to be¢ casy to obtain the solvable case from the abelian
one. It is "only” necessary to solve one to one the successive embedding
problems! This procedure, however, has a lot of difficulties. In 1954,
Safarevit succeeded to prove that: '

Theorem. Ewvery finite solvable group appears-us a Galois group over
any number fleld.

‘The proof of this signiﬁcang result is contained in four interrelated
papers [Sa 54a], [Sa 54b], [Sa 54c¢} and [Sa 54d]. The arithmetic
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propertics of @ plays an cssential roll in Safarevic’s arguments. It should
be emphasized that it is not still known if every solvable group appears as
a Galois group over @{T). The starting point in Safarevié’s rescarch was
the works of Scholz [Sc 37, and Reichardt 'Re37] who, independently,
proved

Theorem. Fuvery £-group appears as Gelois group over @, where £ is
an odd prime.

In order to obtain their results, Scholz and Reichardt solve successive
Galois embedding problens controlling the ranification of the extension
fcld at each step, {or £-groups. Safareviz reconsiders this result and gives
a new proof covering the case £ = 2. He defines the concept of Scholz's
extension and introduces arithmetic invariants whose cancelation assures
the existence of a solution to the correspouding embedding problem. On
the other hand, by Ore's result (cf. [Su82]), it is known that every
solvable group G is isomorphic to a quotieut of a semidirect product of
a solvable group 2 by a nilpotent group N, with |RB| < |G|, Let us
formulate the following result of Ishanov {I8 76],

Theorem. Let L/K be a Galois exlension of number fields with Ga-
lois group G. Let N be a nilpotent group on which G octs. Consider the
semadirect product G=N:GC. Then, the embedding problem associnted
to L{K and G has o solution.

If this theorem is true, a proof of Safarevié’s theorem can be obtained,
by induction on the order of the solvable group G, and using the two
above results. Tt seems that there is a mistake in the proof of Ihanov’s
theorem, as well as, in the original proof of Safarevié, concerning the cven
casg; it will be corrected in a forthecoming hook {IS-Lu-Fa 7]. However,
for the odd ecase an alternative proof using cohomological technigues has
been given by Neukirch [Ne 79].

A possible way to realize the non-solvable groups as Galom groups
over @ is, using the classification of finite groups, to realize all the shinple
groups and to solve all the associated embedding problems. Nevertheless,
some families of non-solvable groups appear as Galois group over @, using
arithmetic-geometric methods.

3. Arithmetic-Geometric methods:
GLa(p), PGLa(p), PSLa{(n)

Les E/K be an ellipbic curve defined over a field K and ¥ > 1 an
integer. The kernel E{N] of the multiplicalion by N defines a Galois
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extension K{F[N])/K whose Galois group is
Gal(K(E[N))/K) C Aut{E[N]) = GLy(Z/NZ).
Let Er be a generic elliptic curve over K = Q(T'), for example
Er oy =42 —Te-T

It is a classical result {cf. [We 09]) that the Galois group of the field
Fy generated by the N-division points of Er over Q(T) is isomorphic
to GL2(Z/NZ). Notice that this is a non regular extension of @(T),
since the cyclotomic field Q{{n ) lies in Fy. Nevertheless, we find that
GLy(Z/NT) appears as a Galois group over @(T) and then, by Hilbert’s
irreducibility theorem, over @. A related classical result {cf. [Fr22]}
is that Ay the field of modular functions with Fourier coeflicients in
Q(¢n) is a Galois extension of @{7) with Galois group isomorphic to
GLo(Z/NZ)/{£1}. Thatis, the modular curve A {N) is a Galois covering
of X{1) defined over Q{¢{y) whose Galois group is GLz{Z/NZ)/{£1}. Let

GO = {(3 2)&6(2/}\'1)‘}/{:‘:1}1

it can be proved that the fixed feld Mﬁ“ is the splitting field of the
modular polynomial. Hence the Galois group of the modular polyno-
mial over Q{7) is isomorphic to PGLy{Z/NZ}. Therefore, the groups
GLa{Z/NZ)/{£1} and PGLo(Z/NZ) are Galois groups over Q(T).

On the other hand, if N = p”, and p an odd prime, the Galois group of
M- over Q(j, {,-) is isomorphic to PSLo(Z/p"Z). Shih [Shi74], study-
ing coverings associated with some twisted modular curves, found that
in fact PSLa{Z/p"Z) occurs as a Galois group over @(7'}, if 2,3, or 7 i3 a
quadratic non-residue modulo p.

Ribet [Ri75], using modular forms, obtains that PSLQ(FT,'B) appears
as a Galois group over @, for p # 47 and such that 144169 is a quadratic
non-residue modulo p. Using hyperelliptic curves with real multiplica-
tion, Mestre [Me 88 proves that PSLz{F 2} is a Galois group over Q(7'),
if p= %2 (mod 5).

4. Constructive Galois Theory: Simple groups

In the last few years, considerable progress has been made in the real-
ization of simple groups as Galois group of regular extensions over §(7T)
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and, consequently, by Hilbert's irreducibility theorem, over every num-
ber field. The constructive Galois theory or the rigidity method validates
a classical idea: To use the known fact that every finite group is a Galois
group of a polymomial with coefficients in C(T") and impose conditions in
order to ensure that the polynomial can be defined over Q(7T). The first
results in this direction can be found in papers of Shih [Shi 74], Fried
[Fr 77] and Belyt [Be 79]. The main {orce behind this method is Matzat,
his rechearch has establishied and developed this theory. Moreover the
work of Thompson has contributed to popularizing and simplifying the
method. With the constructive Galois theory, many simple groups have
been found to be Galols groups of regular extensions of Q7).

C(T): Riemann surfaces. By the Riemann existence theorem for
compact surlaces, we know that there is a one-to-one correspondence
between the finite extensions of C(T7) and the ramified covering of finite
degree of the Riemann sphere P{C). Therefore the problem of ¢lassi-
fiying finite exiensions of C(T') is reduced to a topological problem with
a well known solution. Tet § = {p,,...,p,} be a finite set of points of
P\ (€}, there is a one-to-one correspondence between the finite coverings
of P|{C) unramified outside of § and the finite unramified coverings of
the surface P1(C)\ S. On the other hand, there is a one-to-one corre-
spondence between the fiuite unramified covering of P (€) \ 5 and the
subgroups of finite index of its fundamental group I {F,(C) Y\ S). This
fundamental group has r generators with one relation

I, =L (P{CINS) =< uy, .o U1ty -t = 1 >

Let C(T)* be the maximal Galois extension of C(T') unramified outside
S, its Galois group over C{17)

% = Gal(C{T)%/C(T)) =TI,

is the profinite completation of T1;. Then GF is a profinite group with r
generators and one relation, the subgroups generated by cach generator
and their conjugaies are the inertia groups of primes of C(T)° over the
selected primes p;. i =1,...,7.

Let & be any finite group; we can always consider r generators
91,4 of G with the relation g, ---g. = 1. Then, we can define
an epimorphism

PGS — G,
by (1) = g;. The fixed field N = (C(T)5)*"¥ has a Calois group over
C(T) isomorphic to G

Gal(N/C(I) = G.
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The extension N/C(Z’) is unramified outside S, since N C C(T)*. There-
fore, every finite group G appears as a Galeis group of an extension field
of C{T) which is unramified outside a prefixed set of primes. Indeed by
Lefschetz's principle these arguments remain true if one replaces © by
any algebraically closed subficld of C, in particular by §. The difficult
problem is to descend to Q! It is necessary to impose conditions, "easy”
to compute on the presentation of the group, which enable us to ensure
that in fact the extension N/@(T") is @-defined, that is, Gg-invariant. In
other words, that there exists a regular Galois extension Np/Q(T) such
that No@ = N and

Gal(Ny/Q(T)) = Cal(N/Q(T)) = G.

This will be achieved by forcing the "rigidity” on the presentation of the
group.

Rationality criteria: Rigidity. Let G be a finite group . Lect
Cy,...,C, v > 3, be a r-tuple of conjugacy classes of G. Let us denote

Z:E(Cl,.u,cr)I{(gl,...,g,—)EC;X"‘XC;-IQI"'Q,-II}
A:A(Cl-"':c")I{(gl':"'agr)EE: <Oy 8r >:G}?

clearly A C A and G operates by conjugacy on A and on A. We need
the following definitions:

The family (C1, ..., Cr) is called rigidif A is not empty and G operates
transitively on A.

The family (Cy, ..., Cr) is called strictly rigid if it is rigid and 4 = A.

A conjugacy clags € of G is called rational over § if any irreducible
character of (7 is rational on 7, or equivalently if C' contains all powers
ot of o € C, with ¢ relatively prime to the order of o.

Suppose that a group ¢, with trivial center Z{G) = {1}, has a family
(Chy....Cr) rigid with all the C; rationals. Let G =< g1,...,9, >,
% € Ciand P : G5 — G, (w) = g Let N = (@(T)F)¥, Nis
a Galois extension of Q(T) with a Galois group isomorphic to G. The
main idea is that rational and rigid conditions on the family (C1, ..., Cy)
imply that N/Q(T) is normal and the Galois group I' = Gal{N/Q(T))
contains a complement for . That is, there exists a subgroup H C T
such that T = H . Therefore the fixed field N = N¥ is a Galois
extension of Q(T) with Galois group G, such that No@ = G. Now,
we can establish the rationality theorem following Belyi [Be 79], Matzat
[Ma 84] and Thompson [Th 84a].

Theorem. et G be a finite group with triviel center, let Cy, ..., Cr,
T > 3 be r conjugacy classes of G such that each C; 4s rafional over Q@
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and (Cy,...,C,) is rigid. Let S ={p1,...,p,} be « finite set of primes
of Q(T) which are Q-defined. There exists @ Galois extension N/Q(T)
defined over @ with Gealois group & and unramified outside of S.

Corollary. FEwvery finite simple group with a vigid family of rational
conjugacy classes appears as Galois group of o regular extension of Q(T7).

Note that the condition on the center of the group G, Z{{) = {1}, is
essential for the rationality criterion for the group G.

However, if the rigid conjugacy classes are not rational, the above
resulls remain true if @(T) is replaced by K(T'), wherc K denotes a
cyclotomic field containing all the entries in the character table of G
corresponding to the classes C\, ..., Ch.

In order te apply this theorem for a particular group & it is necessary
to find a family (C4y,...,C; ) of rational conjugacy classes which is rigid.
It is easy to see that (Cl, .., Cy) is rigid if and only if |A(Cy, ..., Cy)| =
|G|; and that {C,...,C,) is 5L|1cL1y rigid if and only if [A(C), ..., C})| =
IG]. On the other hand the cardinality of A = A{C),...,C,) can be
computed if the character table of & is known, 50 we have

by |Cl |C | X (»Lr)
4] = 2 x(l) ’

l e {0

where z; € C;, 1 = 1,...,7, and Ire{G) denotes the set of the complex
irreducible characters of . The rationality of the conjugacy classes can
be also checked from the character table of G.

For further variants and refinements of this result see [Fr 77], [Ma 87|,
[Ma89] and [Ma91]. It is of considerable interest the study of the
Hurwitz braid group actions which enables Matzat [Ma 91] to show that,
among others, the Mathieu group My, is a Galois group over Q.

Simple groups which are Galois group over Q(T), by rigid-
ity. The following theorem sumarizes the results of Dentzer, Feit, Fong,
Hoyden-Sicdersleben, Hunt, Malle, Matzat, Pahlings, Thompson and
Zel-Marschke, concerning the realization of simple groups as Galois
groups over (1), using rationality criteria.

Theorem. The following simple groups uppear as Galois groups of ¢
reqular extension of Q(T), using rigidity methods:

The alternaiing group, A, [Sh74), [Ma91].

All the sporadic simple groups, except the Mathicu group Mo [Th 84al,
{Hoy 85, [Ma-Ze 86]}, [Hu 86!, [Pa 88|, [Pa89], [Ma89.
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The following classical groups of Lie {ype:

PSL2(p), p £+l (mod 24) [Ma 84)
PSLy(p?), p==+2 (mod5) [Fe 84]
PSLs(p), p=1 (mod 4) [Th 84b)
PSUs(p), p=3(modd),p>3;p=35(med7),p>5 [Mal90]
PSp,(p), p=42 (mod 5), p> 3 [De 89
PSp,_1(2), 2 o primitive root mod. the prime £ [H& 7]
PSOLl(Q)? 2 a primitive rool mod. the prime £ [Ha 7|
P3O, ,(2), 2 a primitive root mod. the prime £ > 11 [Th 84d]

The following cxceptional groups of Lie type:

Ga(p), p=5 [Fe-Fo 84] [Th 84c]
Fa(p}, p=+£2,46 {mod 13),p>19  [Mal 88]
Es(p}, p=4,5.6,916,17 (mad 19) [Mal 7]
),  p=43,+7 +09,£10,£11,£12,
+13,+14 (mod 31),p > 131 [Mal 88].

Many nore finite simple groups are known to be Galois groups over
Qe (T, where @2 is the maxirnal abelian extension of @: All classical
simple groups, all sporadic simple groups and most of the exceptional
finite simple groups of Lie type also (¢t [Be 74|, [Ma87], [Mal 89]).

Explicit polynomials. Let L/Q(T} be a finite separable extension
of degree n. Let N/Q{T) be a normal closurc of L over @(T}. The ram-
ification structure of the extension L/Q{T"} can be determined through
the disjoint cycle decomposition, as a permutation of n elements, of the
generators of the Galois group of N/Q(T). The genus of the field L can
be computed, using Hurwitz’s genus formula. If it is zero and L has a
prime of degree 1, then L is a rational function held, L = @fz). If the
ramnified primes of Q{T) are "well” chosen, the relations which satisfy
2 can also be obtained from the ramification structure. Therefore, a
defining equation of the extension N/Q(T) can be obtained.

As an example, we shall obtain equations realizing 5,,, using this
method. Let €4, % aud C3 be the conjugacy classes of the follow-
ing permutations: (nn—1---321), (1 2---k}(k+1k+2---7n) and
{1 £+1). Each conjugacy class C; is rational and (Cy, C2, C3) is a strictly
rigid family. Let pas, Po, 11 be the primes of Q(T), defined over @, given
by

dl\!(T} = Py/Voos le(T - 1) = pl/poo-
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The cycle decomposition of those generators of 5, implies that the ram-
ification of these primes in L must be

Poo = P,  Po= TV "BE,  py =P,

where Poo, Bog, Par, Py are primes and ¥ denotes an ideal of L. An
extension field L/Q(T} of degree n with the above ramification has, by
Hurwitz’s genus formula, genus zero. Then L = Q(z) and we can choose
x such that

div{z) = %e diviz — 1) = ;B_ll
o o0
: P
dl\"(x - G:) = %? div(zﬂ—2 + C\'rn;—SfL'ﬂ_“i + -+ GO) = ":;3“—2 .

Therefore we can deduce that the equation

-k

n—k

Tt

FXT) = XP 75X — L) — ()T,

defines the extension L/Q(T) and its Galois group over Q(T) is isomor-
phic to S,,
GalQ(T)(F(X) T)) = Sn'

Let N be the decomposition field of F(X,T) over @(T). Let M = N4~
the fixed field by A4,. Studying the ramification of M/Q(T) and again
using Hurwitz’s formula, we can find that A = Q(y). We can compute
the defining equation of L/M. Let

X" — AnX —k(n - k}*, nodd
For(X,T) = : .

' X? 4 k"B n X 4 (n - kY B):, n even,
where A = k7~ 2{1 — {(—1)""V/2,,72), B = (- 1)"?k(n — £)T% + 1 and
k < n/2, the Galois group of F, x(X,T) over @(T') is isomorphic to A,
(cf. [Vi85]).

Explicit polynomials over @(T) and over @ with prefixed Galois group
have also been obtained, using this method, for the following groups:

PSLa(p), » =7, 11, 13 [Mal-Ma 85); SL.(8) [Ma84]; A1, Mio
(Ma-Ze 86] and M,; {Mal 88]; all the primitive nonsolvable permuta-
tion groups of degree < 15 [Ma 84, [Mal 87]; Sps(2), GO (2}, G4 {2)
[HE ?).
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5. Galois embedding problem IT:
Extensions of simple groups

Since rationality criteria work for simple groups, but need the condi-
tion of trivial center, it seems therefore that the next step, in order to
realize finite groups as Galois groups over @, will be to consider extension
groups of stmple groups and to study the subsequent Galois cmbcddmg
problems. Let ,

1—H-—G—G—1

be an exact sequence of finite groups. The group G is an extension of
H by G, G=H-G. Firstly we analyze the easy cases. Suppose thai
the exact sequence splits, that is, the extension group is G=HxG If
the group G occurs as a Galois group of a regular extension I of Q(T),
then, by Galois theory, cach Galois extension Np/Q with Galois group
H, defines a Galois extension NgL/Q(T} with Galois group isomorphic
o G. Note that the extension field obtained is non-regular. Should the
extension group be a wreath product G=H!G , an analogous result
15 valid (cf. {Ma87]). If the extension group is a semidirect product
G=~H: G, with H a non-trivial abelian group, an analogous result is
also valid, since the semidirect product H : G is a quotient of a wreath
product # ! G. Let us distinguish two cases for non-split extensions
G=H-G.

Case 1.  non-abelian: Z(H) = {1}. It is known from group theory
that if the extension group G = H - G has H non-abelian with trivial
center then the group G is isomorphic to a subgroup UcCA{H)x G
which satisfies

U N Aut{H) = Inn(H)
pFQ(U) =

Following Matzat [Ma 85], we say that a finite group G has a GAR-rea-
lization over K (T if the following conditions are satisfied:
(G) There exists a regular Galois extension N/K(T) such t,hat G
Gal(N/K(T)).
(A) There exists a subgroup A C. Aut{N/K) such that A = Aut(G)
and K(T) = NG}
(R} Each regular extension R/N# over K with KR = K(T) is a
rational function field over the field K. :

Let / be a number field and Ko/ K a Galois realization of the group
G, C = Gal(Ky/K). Suppose that the group H has a GAR-realization
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over K(T), N/K(T), from condition (A} we can consider I = N4, Let
Ly = Kyl and Ny = Kpl. By Galots theory, we find that NU/L is a
Galois exteiision whose Galeis group is

Gal(Ny /L) =2 Ant(H) % G.

On the other hand, Gis isamorphic to a subgroup & of Gal{Ng/L). The
fixed field M = NV is a rational function field over K, by condition
(R). Therefore, the extension field N, o/ M with Galov—.- group G provides
solutions to the associated Galols embedding problem. Now we can
fornuilate the following result of Matzat [Ma 85]

Theorem. Let K be o number field, H o non-triviel finite group uith
Z(HY = {1} such that it hes a GAR-realization over i(T}. Then every
Galois embedding problem over K with kernel H has an tnfinite number
of solutions.

As a consequence, if a finite group & has a normal tower
GO2GgoGyD--- 36,1={1}

such that G/Gy occurs as Galois group over a number field X, and
G.—1/G; has a GAR-realization over K (1"} for all ¢ = 1,...,n, there
are an infinite number of Galois cxtensions over K with Galois group
isomorphic to G.

Summarizing the results of Hafuer, Folkers, Malle, Matzat and
Pahlings, we can establish:

Theovem. The following simple groups have @ G'A R-reclization over

RT):
The elternating g?‘a'ilxp A, n# 6 [Ma85).

All the sporadic simple groups, ex f,ept the Mathicu qwou;;r Mas [Ma 85],
|Pa 89].

The following classical groups of Lie fype:
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PSLa(p),  p# =1 (mod 24) [Mal-Ma 85]
PSL3(p),  p=5 (mod 12) [Th 84b
PSUs(p), p=7 (mod 12), p=10,19 (mod 21),  [Mal90]
PSp,(p). p =13, 17 (mod 20}, [Ha ?)

P8Sp,_1(2), 2 a primitive root mod. the prime ¢ > 7 [H&?]
PSO/,,(2), 2 a primitive root mod. the prime ¢

£=-] (mod4), £>11 [Ha ?)
PSO;_,(2), 2 a primitive root mod. the prime £ > 11 [Th 84d]

The following exceptional groups of Lie type:

Galp), p25 [Ma 87}
Fy(p), p=+2 16 (mod 13), p>19 [Mal B8]
Es(p), p=4,56,916,17 {mod 19) [Mal 7]
Ey(p), p=+£3,+7, 19,110, £11, £12,

413,414 (mod 31}, p> 131 [Mal88].

Case I1. H abelian: # C Z(G). Let

]_—iH——;é—)G—»l

be a central extension of G, H C Z{G}. These extension groups are on
the opposite side. Rigidity requires a trivial center but any finite group
G, with Z(G) # {1}, can be considered as a central extension of the
group G := G/Z(G) which has a non-trivial center. This leads us to the
study of the realization of these extensions groups as Galols groups.

Suppose that we know that G is a Galois group over a number field K,
G = Gal(N/K), since in this case the kernel H is an abelian group, the
associated Galois embedding problem into G has a solution if and only
if there exists a lifting p: G — G of the projection p : Gx — G. On
the other hand, G as an extension group of G defines a cohomological
element ¢ € H2(G, H). Therefore, there exists a lifting § of p if and
only if inf(¢)=0. Note that if the cxtension group splits, then ¢ = 0 and
inf{c) = 0.

Let G be a perfect group, for example a simple group. There exists
an universal central extension of 7,

1—>H—1CtﬁaG—}1,
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This extension is characterized by Lhe loltlowing universal property: For
every central extension of ¢

l—A—E—G—1,
there exists one and only one homormorphisim from & to £ over G. There-
fore we can formulate the lollowing reduction theoren.

Theorem. fLet K be a number field and G o perfect group. Suppose
that G appears as a Galois group over K, G = Gal(N/K). If the exten-
sion N/K can be embedded into o Galois extension over K with Golois
grOup é_. then NJIC can be embedded in o Galots extension over K whose
Galois group is any central exiension of G.

- Consequently the question.whether a central extension of a perfect
group G occurs as a Galois group is reduced to selve the problem for
the universal extension of . 1t is known that the kernel of the universal
extension of G is the Schur multipliers of G, # = M{G). These groups
are well known for the simple groups {cf. [At 85]), for example,
M{A)2Z/2L, n#6,T, M(Agj = M(A;) = Z/6Z;
MMy = {1}, o M(M) = M(PSLa(F,)) = Z/22.

We will now make a distintion according to whether the kernel of the
embedding problem is Z/2Z or not. '

Suppose now that H = Z/2Z, the obstruction to the Galois embedding
problem lies, in this case, in the 2-component of the Brauer group of K

inf(c) € H(Gy,2/22) = Bry(K).

Suppose that L/ K is a separable extension field of degree n, car(K) #
2,3, such that its normal closure is N/ K. Clearly, G = Gal(N/K) C §,,.
Let 278, be the Schur double cover of 5,, such that the transpositions
are lifted to elements of order two. Let G be the inverse image of & in
27 5,,, we have _
1—2/27 — G — G —1,

Serre |Se 84] has determined the obstruction to this embedding prob-
lem:

Theorem.
inf{e) = (2,dL) +w(L/K),
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where w(L/K) denotes the Hasse-Witt invarian! of the quadratic form
Try ec(z?), and dy, its discriminant.

Then, the problem of realizing G as Galois group over K is reduced
to solving the following steps:

a) Find irreducible polynomials f(X) € K[X] of degree n with Galois
groups isomorphic to G,

b) Compute w(K{a)/K), where a is & root of f(X}.

¢) Impose conditions over f(X) in order to have w{K{a)/K) =
(23 dK(a))'

The first case studied was G = En, the Schur double cover of A,,.
It can be proved [ViB4] that the decomposition field of the previous
equations with Galois group A,, over @{T'} can be embedded into a Galois
extension with Galois group leum for the following values of n:

n=0,1 (mod 8)
n =2 (mod 8) and sum of two squares

n =3 (mod 8) and sum of three squares, n = x? + z3 + 23, {z1,n) = L.

Consequently, any central extension of A, occurs as a Galois group over
any number ficld, for these values of n. Feit [Fe 86|, using Laguerre
polynornials, proved that Eﬁ and ;“:l} are also Galois group over every
number field. Mestre [Me 90| constructs new realizations of A, having
an associated trace form independently of T' such that for T = 0, its
Hasse-Witt invariant is trivial. Then, for any value of n, A, appears as
a Galois group over every number field. Summarizing results of Bayer,
Feit, Hafner, Llorente, Mestre, Sonn and Vila we can formulate

Theorem. The following double covers appear as Gelois groups over
every number field:

2 A, for all values of n [Vi84] [Me 90]
2+8,,,278,,, for all velues of n, [Vi88] {So89]
2 My [Ba-L1-Vi 86]
2 Sps(2) [H5 7).

Construction of double covers Galois extension fields have been ob-
tained by Crespo [Cr 89], [Cr90], as explicit solutions Lo embedding
problems, for 2.4,,, 2%5, and 27 5,,.
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In the case that the kernel H # Z/2Z, it seems to be simpler to
construct extensions with Galois group G. The following idea of Feit {cf.
iFe 89]) allows us the use of rigidity methods: if the group G has an outer
antomorphism p which can be extended to G and acts non trivially on
Z(G), then, if the semidirect exiension group G :< p > has trivial center,
the rationality criteria are applicable. If N/Q(Tl is a Galois extension
with Galois group G :< p > and the fixed ficld N€ is a rational function
ficld, then an extension with Galois group G over QT is found. Using
these arguments, Feit [Fe 89], Malle [Mal 80] and Hifner [HA 7] have
obtained

Theorem. The following triple covers appear as Galois groups over
every number field:

3.A5, 3,A7, 3Ah’1rgz, 3.5&2, 3.1'_‘%.!-24, BOIN [FeSQ]

SUs(p), p=—1{mod 4),p>3; p=3,5 (mod 7),p>35 [Mal90]

3.04(3), 3.804(3) [Ha 7).
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