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BOUNDEDNESS OF SUBLINEAR OPERATORS ON THE
HOMOGENEOUS HERZ SPACES

Guoen Hu

Abstract
Some boundedness results are established for sublinear operators
on the homogeneous Herz spaces. As applications, some new the-
orems about the boundedness on homogeneous Herz spaces for
commutators of singular integral operators are obtained.

1. Introduction

We will work on R
n, n ≥ 1. Let K(x) be a function on R

n\{0} which
satisfies the size condition

|K(x)| ≤ C|x|−n, x ∈ R
n\{0}.

A celebrated result of Stein [15] tells us that if the operator

Tf(x) = p.v.
∫

Rn

K(x − y)f(y) dy

is bounded on Lq(Rn) for some q > 1, then T is also bounded on
Lq(Rn, |x|α dx) provided that −n < α < n(q− 1), where Lq(Rn, |x|α dx)
denotes the weighted Lebesgue space defined by

Lq(Rn, |x|α dx) =
{

f is measurable on R
n and

‖f‖Lq(Rn,|x|α dx) =
∫

Rn

|f(x)|q|x|α dx < ∞
}

.

Soria and Weiss [14] gave some beautiful generalizations of Stein’s re-
sult. In particular, they obtained the result of Stein in the case q = 1.
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Yang and some other authors (see [10], [11] and [12]) considered the
boundedness of sublinear operators on homogeneous Herz spaces. Since
the homogeneous Herz spaces are some kind of generalization of the
weighted Lebesgue spaces with power weights, these results are of great
interest. Lu and Yang [12], Hu, Lu and Yang [10] considered the bound-
edness on homogeneous Herz spaces for commutators and obtained many
useful theorems. But in some interesting cases, the methods and results
in [12] and [10] break down. Let us consider the commutator of singular
integral operator defined by

Tb,mf(x) =
∫

Rn

(b(x) − b(y))m Ω(x − y)
|x − y|n f(y) dy,(1)

where Ω is homogeneous of degree zero and has mean value zero on
the unit sphere Sn−1, m is a positive integer and b ∈ BMO(Rn). If
Ω ∈ Lq(Sn−1) for some q > 1, we can deduce the boundedness on Herz
space for Tb,m by employing the results of [12] and [10]. Although it was
proved in [9] that Ω ∈ L(log L)m+1(Sn−1) (i.e.

∫
Sn−1 |Ω(x)| logm+1(2 +

|Ω(x)|) dx < ∞) is a sufficient condition such that the operator Tb,m

defined by (1) is bounded on Lp(Rn) with bound C(n, m, p)‖b‖m
BMO(Rn)

for all 1 < p < ∞, we do not know the behaviour on homogeneous Herz
spaces, even on weighted Lebesgue spaces with power weights, for Tb,m

when Ω /∈ ∪q>1L
q(Sn−1). The main purpose of this paper is to establish

some boundedness results on the homogeneous Herz spaces for sublinear
operators which are particularly suitable for commutators of singular
integral operators and some other important operators. To state our
results, let us recall the definition of the homogeneous Herz spaces.

Let Ck = {x ∈ R
n : 2k−1 < |x| ≤ 2k} for k ∈ Z. For a measurable

set E ⊂ R
n, denote by χ

E
the characteristic function of E. Set χ

k
= χ

Ck
.

Definition. Let α ∈ R, 0 < p, q ≤ ∞. The homogeneous Herz
space K̇α,p

q (Rn) is defined by

K̇α,p
q (Rn) = {f ∈ Lq

loc(R
n\{0}) : ‖f‖K̇α,p

q (Rn) < ∞},

where

‖f‖K̇α,p
q (Rn) =

{ ∞∑
k=−∞

2kαp‖fχ
k
‖p

Lq(Rn)

}1/p

with the usual modification made when p = ∞ or q = ∞.
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For the properties and applications of the space K̇α,p
q (Rn), and the

boundedness of some classical operators on K̇α,p
q (Rn), we refer to the

references [2], [3], [6], [10], [11] and [12]. It is obvious that K̇
α/q,q
q (Rn) =

Lq(Rn, |x|α dx). Our main results in this paper can be stated as follows.

Theorem 1. Let 1 < q < ∞, 0 < p ≤ ∞, −n < β1 < β2 < n(q − 1),
T be a sublinear integral operator which is bounded on Lq(Rn) and sat-
isfies

|Tf(x)| ≤
∫

Rn

|b(x) − b(y)|m|K(x, y)f(y)| dy,(2)

where m is a positive integer and b ∈ BMO(Rn), K(x, y) is a function on
R

n × R
n\{(x, y) : x �= y}. For s ≥ 1, set Φs(t) = t logs(2 + t). Suppose

that for any 0 < r < ∞ and β1 < β < β2, the operator

Um,rf(x) =
∫

r<|x−y|≤2r

Φm(rn|K(x, y)|)|f(y)| dy(3)

is bounded on Lq(Rn, |x|β dx) with bound Brn and B is independent of r.
Then the operator T is bounded on the Herz space K̇α,p

q (Rn) provided that
β1/q < α < β2/q.

Theorem 2. Let 1 < q < ∞, 0 < p ≤ ∞, −n < β1 < β2 < n(q − 1),
T be a sublinear integral operator which is bounded on Lq(Rn) and sat-
isfies

|Tf(x)| ≤
∫

Rn

|K(x, y)| |Rm+1(A; x, y)|
|x − y|n+m

|f(y)| dy,(4)

where K(x, y) is a function on R
n × R

n\{(x, y) : x �= y}, m is a po-
sitive integer, A has derivatives of order m in BMO(Rn), Rm+1 is the
(m + 1)-th order Taylor series remainder of A at x expanded about y,
that is,

Rm+1(A; x, y) = A(x) −
∑

|µ|≤m

DµA(y)(x − y)µ.

Suppose that for any 0 < r < ∞ and β1 < β < β2, the operator U1,r de-
fined by (3) is bounded on Lq(Rn, |x|β dx) with bound Brn and B is inde-
pendent of r. Then the operator T is bounded on the Herz space K̇α,p

q (Rn)
provided that β1/q < α < β2/q.

To prove Theorem 1 and Theorem 2, we will use
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Theorem 3. Let 1 < q < ∞, 0 < p ≤ ∞, β1, β2 ∈ R and β1 < β2, T be
a sublinear integral operator which is bounded on Lq(Rn) and satisfies

|Tf(x)| ≤
∫

Rn

|K(x, y)f(y)| dy.

Suppose that for any 0 < r < ∞ and β1 < β < β2, the operator

Trf(x) =
∫

r<|x−y|≤2r

|K(x, y)f(y)| dy

is bounded on Lq(Rn, |x|β dx) with bound independent of r. Then T is
bounded on the Herz space K̇α,p

q (Rn) provided that β1/q < α < β2/q.

Remark. Theorem 3 has independent interest and is more general and
suitable for many operators in harmonic analysis, but it should be point-
ed out that the main idea in the proof of this theorem comes from the
paper [10].

Throughout this paper, C denotes the constants that are independent
of the main parameters involved but whose value may differ from line
to line, Aq denotes the weight function class of Muckenhoupt (see [16,
Chapter V] for definition and the properties of Aq). For a cube I, let
I∗ = 4nI. For a locally integrable function f , a real number s ≥ 1, a
cube I and a nonnegative weighted function w, define

‖f‖L(log L)s;I,w =inf
{

λ>0 :
1

w(I)

∫
I

|f(y)|
λ

logs

(
2+

|f(y)|
λ

)
w(y) dy≤1

}
and

‖f‖exp(L)1/s;I,w =inf

{
λ>0 :

1
w(I)

∫
I

exp
( |f(y)|

λ

)1/s

w(y) dy ≤ 2

}
,

where w(I) =
∫

I
w(y) dy. Since that Φs(t) = t logs(2 + t) is a Young

function on [0,∞) and its complementary Young function is Ψs(t) ≈
exp t1/s, the generalized Hölder inequality

1
w(I)

∫
I

|f(y)h(y)| dy ≤ C‖f‖L(log L)s;I,w‖h‖exp(L)1/s;I,w(5)

holds for locally integrable functions f and h, see [1, Chapter 8] or [13,
p. 168] for details.
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2. Proof of Theorems

We begin with some preliminary lemmas.

Lemma 1 (see [4]). Let A(x) be a function on R
n with derivatives of

order m in Ls(Rn) for some n < s ≤ ∞. Then

|Rm(A; x, y)| ≤ Cm,n|x−y|m
∑

|µ|=m

(
1

|Q̃(x, y)|

∫
Q̃(x,y)

|DµA(z)|s dz

)1/s

,

where Q̃(x, y) is the cube centered at x and having diameter 5
√

n|x− y|.

Lemma 2. Let m be a positive integer and b ∈ BMO(Rn), 0 < r < ∞
and 1 < q < ∞, K(x, y) be defined on R

n × R
n. Suppose that for some

w ∈ Aq, the operator

V f(x) =
∫

Rn

Φm(rn|K(x, y)|)f(y) dy

is bounded on Lq(Rn, w(x) dx) with bound Crn. Then there exists some
constant C = C(n, m, q) such that for each integer l with 0 ≤ l ≤ m and
each cube Q with side length r, the operator

Slf(x) =
∫

Rn

Φl(rn|K(x, y)|)f(y) dy

satisfies

‖(Slf)q‖L(log L)(m−l)q,Q∗,w ≤ Crnqw(Q)−1‖f‖q
Lq(Rn,w(x) dx)

provided that supp f ⊂ Q.

Proof: Without loss of generality, we may assume that ‖f‖1 = 1. Note
that

inf
{

λ > 0;
1

w(Q∗)

∫
Q∗

Φ(m−l)q

( |Slf(x)|q
λ

)
w(x) dx ≤ 1

}

≤
(

inf
{

λ > 0;
qmq

w(Q∗)

∫
Q∗

(
Φm−l

( |Slf(x)|
λ

))q

w(x) dx ≤ 1
})q

≤ qqm

(
inf

{
λ > 0;

1
w(Q∗)

∫
Q∗

(
Φm−l

( |Slf(x)|
λ

))q

w(x) dx ≤ 1
})q

.
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Obviously, there exists a positive constant C(m) such that for any t > 0,
Φm−l(Φl(t)) ≤ C(m)Φm(t). By the Jensen inequality, we have

Φm−l(|Slf(x)|) ≤
∫

Q

Φm−l(Φl(rn|K(x, y)|))|f(y)| dy ≤ CV (|f |)(x).

Thus, ∫
Rn

(Φm−l(|Slf(x)|))qw(x) dx ≤ Crnq‖f‖q
Lq(Rn,w(x) dx).

Let q′ = q/(q−1) and w̃(x) = w(x)−q′/q. Recall that ‖f‖1 = 1, it follows
that

1 = ‖f‖q
1 ≤ ‖f‖q

Lq(Rn,w(x) dx)w̃(Q)q/q′
,

which together with the fact w ∈ Aq implies

rnq‖f‖q
Lq(Rn,w(x) dx)

w(Q)
≥ rnq

w(Q)w̃(Q)q/q′ ≥ C.

Choose λ0 = rn‖f‖Lq(Rn,w(x) dx)w(Q)−1/q. Trivial computation gives
that

1
w(Q∗)

∫
Q∗

(
Φm−l

( |Slf(x)|
λ0

))q

w(x) dx

≤ C

w(Q∗)λq
0

∫
Q∗

(Φm−l(|Slf(x)|))qw(x) dx ≤ C,

and so

inf
{

λ > 0;
1

w(Q∗)

∫
Q∗

(
Φm−l

( |Slf(x)|
λ

))q

w(x) dx ≤ 1
}

≤ Cλ0.

This leads to the desired estimate.

Proof of Theorem 3: We only consider the case of 0 < p < ∞, the proof
for the case p = ∞ is very similar. Set α1, α2 ∈ R such that β1/q <
α1/q < α < α2/q < β2/q. Write

f =
∞∑

j=−∞
fχj =

∞∑
j=−∞

fj .
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The Lq(Rn) boundedness of T gives that

‖Tf‖p

K̇α,p
q (Rn)

≤ C

∞∑
k=−∞

2kαp

∥∥∥∥∥∥χ
k
T

 k+2∑
j=k−2

fj

∥∥∥∥∥∥
p

Lq(Rn)

+
∞∑

k=−∞
2kαp

∥∥∥∥∥∥χ
k
T

 k−3∑
j=−∞

fj

∥∥∥∥∥∥
p

Lq(Rn)

+
∞∑

k=−∞
2kαp

∥∥∥∥∥∥χ
k
T

 ∞∑
j=k+3

fj

∥∥∥∥∥∥
p

Lq(Rn)

≤ C

∞∑
k=−∞

2kαp
k+2∑

j=k−2

‖fj‖p
Lq(Rn)

+
∞∑

k=−∞
2k(α−α2/q)p

 k−3∑
j=−∞

‖χ
k
Tfj‖Lq(Rn,|x|α2 dx)

p

+
∞∑

k=−∞
2k(α−α1/q)p

 ∞∑
j=k+3

‖χ
k
Tfj‖Lq(Rn,|x|α1 dx)

p

≤ C‖f‖p

K̇α,p
q (Rn)

+ C

∞∑
k=−∞

2k(α−α2/q)p

 k−3∑
j=−∞

‖χ
k
Tfj‖Lq(Rn,|x|α2 dx)

p

+ C

∞∑
k=−∞

2k(α−α1/q)p

 ∞∑
j=k+3

‖χ
k
Tfj‖Lq(Rn,|x|α1 dx)

p

.

Obviously, if k ∈ Z and j ≤ k − 3, then

|χ
k
(x)Tfj(x)| ≤

∫
2k−2<|x−y|≤2k+1

|K(x − y)fj(y)| dy.

Similary, for k ∈ Z and j ≥ k + 3,

|χ
k
(x)Tfj(x)| ≤

∫
2j−2<|x−y|≤2j+1

|K(x, y)fj(y)| dy.
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Our hypothesis now says that

∞∑
k=−∞

2k(α−α2/q)p

 k−3∑
j=−∞

‖χ
k
Tfj‖Lq(Rn,|x|α2 dx)

p

+
∞∑

k=−∞
2k(α−α1/q)p

 ∞∑
j=k+3

‖χ
k
Tfj‖Lq(Rn,|x|α1 dx)

p

≤ C

∞∑
k=−∞

2k(α−α2/q)p

 k−3∑
j=−∞

‖fj‖Lq(Rn,|x|α2 dx)

p

+ C

∞∑
k=−∞

2k(α−α1/q)p

 ∞∑
j=k+3

‖fj‖Lq(Rn,|x|α1 ) dx

p

≤ C

∞∑
k=−∞

 k−3∑
j=−∞

2jα‖fj‖Lq(Rn)2(k−j)(α−α2/q)

p

+ C

∞∑
k=−∞

 ∞∑
j=k+3

2jα‖fj‖Lq(Rn)2(k−j)(α−α1/q)

p

.

For the case of 0 < p ≤ 1, we have

‖Tf‖K̇α,p
q (Rn) ≤ C‖f‖K̇α,p

q (Rn)

+ C

∞∑
k=−∞

k−3∑
j=−∞

2jαp‖fj‖p
Lq(Rn)2

(k−j)(α−α2/q)p

+ C

∞∑
k=−∞

∞∑
j=k+3

2jαp‖fj‖p
Lq(Rn)2

(k−j)(α−α1/q)p

= C‖f‖p

K̇α,p
q (Rn)

+
∞∑

j=−∞
2jαp‖fj‖p

Lq(Rn)

∞∑
k=j+3

2(k−j)(α−α2/q)p

+ C

∞∑
j=−∞

2jαp‖fj‖p
Lq(Rn)

j−3∑
k=−∞

2(k−j)(α−α2/q)p

= C‖f‖p

K̇α,p
q (Rn)

.
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On the other hand, if 1 < p < ∞, it follows from the Hölder inequality
that

‖Tf‖p

K̇α,p
q (Rn)

≤ C‖f‖p

K̇α,p
q (Rn)

+ C

∞∑
k=−∞

k−3∑
j=−∞

2jαp‖fj‖p
Lq(Rn)2

(k−j)(α−α2/q)p/2

×

 k−3∑
j=−∞

2(k−j)(α−α2/q)p′/2

p/p′

+ C

∞∑
k=−∞

∞∑
j=k+3

2jαp‖fj‖p
Lq(Rn)2

(k−j)(α−α1/q)p/2

×

 ∞∑
j=k+3

2(k−j)(α−α1/q)p′/2

p/p′

≤ C‖f‖p

K̇α,p
q (Rn)

+ C

∞∑
j=−∞

2jαp‖fj‖p
Lq(Rn)

∞∑
k=j+3

2(k−j)(α−α2/q)p/2

+ C

∞∑
j=−∞

2jαp‖fj‖p
Lq(Rn)

j−3∑
k=−∞

2(k−j)(α−α1/q)p/2

≤ C‖f‖p

K̇α,p
q (Rn)

.

This completes the proof of Theorem 3.

Theorem 1 is an easy consequence of Theorem 3 and the following Lem-
ma 3.

Lemma 3. Let m be a positive integer and b ∈ BMO(Rn), 0 < r < ∞
and 1 < q < ∞, K(x, y) be defined on R

n × R
n. Suppose that for some

w ∈ Aq, the operator

Um,rf(x) =
∫

r<|x−y|≤2r

Φm(rn|K(x, y)|)f(y) dy

is bounded on Lq(Rn, w(x) dx) with bound Brn. Then the commutator

Sr;b,mf(x) =
∫

r<|x−y|≤2r

|K(x, y)||b(x) − b(y)|m|f(y)| dy

is bounded on Lq(Rn, w(x) dx) with bound C(n, m, q, B)‖b‖m
BMO(Rn).
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Proof: Without loss of generality, we may assume that ‖b‖BMO(Rn) = 1.
Write R

n =
⋃

j∈Z
Qj , where each Qj is a cube with side length r, and

these cubes have disjoint interiors. Let fj be the restriction of f on Qj .
Then

f(x) =
∑
j∈Z

fj(x), a.e. x ∈ R
n.

Observe that the support of Sr;b,mfj is contained in Q∗
j , and that the

supports of various terms Sr;b,mfj have bounded overlaps. So we have

‖Sr;b,mf‖q
Lq(Rn,w(x) dx) ≤ C

∑
j∈Z

‖Sr;b,mfj‖q
Lq(Rn,w(x) dx),

where C is a positive constant which is independent of f and j. Thus
we may assume that supp f ⊂ Q for some cube Q with side length r.
Let ϕ ∈ C∞

0 (Rn), 0 ≤ ϕ ≤ 1, ϕ is identically one on Q∗ and vanishes
outside Q∗∗. Let b̃(x) = (b(x)−mQ∗(b))ϕ(x), where mQ∗(b) denotes the
mean value of b on Q∗. Define the operator S̃r by

S̃rh(x) = rn

∫
r<|x−y|≤2r

|K(x, y)h(y)| dy.

Write

Sr;b,mf(x) ≤
m∑

l=0

Cl
m |̃b(x)|lS̃r (̃bm−lf)(x)r−n.

It is enough to show that for each l, 0 ≤ l ≤ m,

‖b̃lS̃r (̃bm−lf)‖q
Lq(Rn,w(x) dx) ≤ C‖f‖q

Lq(Rn,w(x) dx)r
nq.(6)

By the generalized Hölder inequality and the well-known John-Nirenberg
inequality,

‖b̃lS̃r (̃bm−lf)‖q
Lq(Rn,w(x) dx)

≤ Cw(Q∗)‖b̃lq‖exp(L)1/(lq),Q∗,w‖(S̃r (̃bm−lf))q‖L(log L)lq,Q∗,w

≤ Cw(Q∗)‖(S̃r (̃bm−lf))q‖L(log L)lq,Q∗,w.

As in the proof of Lemma 2, we have

‖(S̃r (̃bm−lf))q‖L(log L)lq,Q∗,w

≤C

(
inf

{
λ>0;

1
w(Q∗)

∫
Q∗

(
Φl

(
|S̃r (̃bm−lf)(x)|

λ

))q

w(x) dx≤1

})q

.
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Thus, the proof of the estimate (6) can be reduced to proving that

inf

{
λ > 0;

1
w(Q∗)

∫
Q∗

(
Φl

(
|S̃r (̃bm−lf)(x)|

λ

))q

w(x) dx ≤ 1

}

≤ Cw(Q)−1/q‖f‖Lq(Rn,w(x) dx)|Q|.

We claim that

1
w(Q∗)

∫
Q∗

(
Φl

(
|S̃r (̃bm−lf)(x)|

‖b̃m−lf‖1

))q

w(x) dx

≤ Cw(Q)−1|Q|q‖f‖q
Lq(Rn,w(x) dx)‖b̃

m−lf‖−q
1 .

In fact, by the Jensen inequality,

Φl

(
|S̃r (̃bm−lf)(x)|

‖b̃m−lf‖1

)
≤

∫
r<|x−y|≤2r

Φl(rn|K(x, y)|) |̃b
m−l(y)f(y)|
‖b̃m−lf‖1

dy.(7)

Let

Ulh(x) =
∫

r<|x−y|≤2r

Φl(rn|K(x, y|)h(y) dy.

Denote by U∗
l the dual operator of Ul, that is

U∗
l h(y) =

∫
r<|x−y|≤2r

Φl(rn|K(x, y)|)h(x) dx.

For each fixed g ∈ Lq′
(Rn, w̃(x) dx), supp g ⊂ Q∗ and ‖g‖Lq′ (Rn,w̃(x) dx) ≤

1, the inequality (7) says that∫
Rn

g(x)Φl

(
|S̃r (̃bm−lf)(x)|

‖b̃m−lf‖1

)

≤
∫

Rn

|f(y)||̃bm−l(y)|
‖b̃m−lf‖1

∫
r<|x−y|≤2r

Φl(rn|K(x, y)|)g(x) dx dy

≤ ‖f‖Lq(Rn,w(x) dx)‖b̃m−lU∗
l g‖Lq′ (Rn,w̃(x) dx)‖b̃m−lf‖−1

1 .

Applying the generalized Hölder inequality and the John-Nirenberg in-
equality again, we have

‖b̃m−lU∗
l g‖q′

q′,w̃ ≤ Cw̃(Q)‖(U∗
l g)q′‖L(log L)(m−l)q′ ,Q∗∗,w̃.
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A standard duality arguement states that U∗
l is bounded on

Lq′
(Rn, w̃(x) dx). This via Lemma 2 yields

‖(U∗
l g)q′‖L(log L)(m−l)q′ ,Q∗∗,w̃ ≤ Cw̃(Q)−1|Q|q′‖g‖q′

Lq′ (Rn,w̃(x) dx)
.

We thus obtain that

‖Φl(S̃r (̃bm−lf/‖b̃m−lf‖1))‖Lq(Rn,w(x) dx)

= sup
supp g⊂Q∗,‖g‖

Lq′ (Rn,w̃(x) dx)
≤1

∣∣∣∣∣
∫

Rn

g(x)Φl

(
S̃r (̃bm−lf)(x)

‖b̃m−lf‖1

)
dx

∣∣∣∣∣
≤ C‖b̃m−lf‖−1

1 ‖f‖Lq(Rn,w(x) dx)|Q|,

which leads to our claim.

We can now conclude the proof of the inequality (6). Note that w̃ ∈
Aq′ , we can choose r > 1 such that for any cube I,∫

I

w̃(x)r dx ≤ C|I|1−r

(∫
I

w̃(x) dx

)r

.

By the Hölder inequality, it follows that

‖b̃m−lf‖1 ≤ ‖f‖Lq(Rn,w(x) dx)‖b̃(m−l)‖Lq′ (Rn,w̃(x) dx)

≤ ‖f‖Lq(Rn,w(x) dx)

(∫
Q∗∗

b̃(x)(m−l)q′r′
dx

)1/(q′r′)

×
(∫

Q∗∗
w̃(x)r dx

)1/(rq′)

≤ C‖f‖Lq(Rn,w(x) dx)w̃(Q)1/q′
.

Therefore,

‖b̃m−lf‖−q
1 ‖f‖q

Lq(Rn,w(x) dx)|Q|qw(Q)−1 ≥ C|Q|qw(Q)−1w̃(Q)−q/q′ ≥ C.

Our claim together with the last estimate implies that

1
w(Q∗)

∫
Q∗

(
Φl

(
S̃r (̃bm−lf)(x)/‖b̃m−lf‖1)

‖b̃m−lf‖−1
1 w(Q)−1/q|Q|‖f‖Lq(Rn,w(x) dx)

))q

w(x) dx≤C,
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and

inf

{
λ > 0;

1
w(Q∗)

∫
Q∗

(
Φl

(
S̃r (̃bm−lf)(x))

λ

))q

w(x) dx ≤ 1

}

≤ Cw(Q)−1/q‖f‖Lq(Rn,w(x) dx)|Q|.

This finishes the proof of Lemma 3.

Now we turn our attention to the proof of Theorem 2, which can be
obtained from Theorem 3 and the following Lemma 4 directly.

Lemma 4. Let m be a positive integer and 1 < q < ∞, A be a function
on R

n with derivatives of order m in BMO(Rn), K(x, y) be defined on
R

n × R
n. Suppose that for some w ∈ Aq, the operator

U1,rf(x) =
∫

r<|x−y|≤2r

Φ1(rn|K(x, y)|)f(y) dy

is bounded on Lq(Rn, w(x) dx) with bound Brn. Then the operator

VA;rf(x) =
∫

r<|x−y|≤2r

|K(x, y)| |Rm+1(A; x, y)|
|x − y|m |f(y)| dy

is bounded on Lq(Rn, w(x) dx) with bound
C(n, m, q, B)

∑
|µ|=m ‖DµA‖BMO(Rn).

Proof: As in the proof of Lemma 3, we may assume that supp f ⊂ Q
for some cube Q with side length r. Without loss of generality, we may
assume that

∑
|µ|=m ‖DµA‖BMO(Rn) = 1. Set

AQ(y) = A(y) −
∑

|µ|=m

1
µ!

mQ(DµA)yµ.

Note that for x, y ∈ R
n with r < |x − y| ≤ 2r and n < s < ∞, it follows

from Lemma 1 that

|Rm(AQ; x, y)|

≤ C|x − y|m
∑

|µ|=m

(
1

|Q̃(x, y)|

∫
Q̃(x,y)

|DµA(z) − mQ(DµA)|s dz

)1/s

≤ C|x − y|m.
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Therefore,

VA;rf(x) =
∫

r<|x−y|≤2r

|K(x, y)| |Rm+1(AQ; x, y)|
|x − y|m |f(y)| dy

≤ C

∫
r<|x−y|≤2r

|K(x − y)f(y)| dy

+C
∑

|µ|=m

∫
r<|x−y|≤2r

|K(x−y)||DµA(y)−mQ(DµA)||f(y)| dy.

By the estimate (6) (with m = 1 and l = 0) in the proof of Lemma 3,
we finally obtain

‖VA,rf‖Lq(Rn,w(x) dx) ≤ CB‖f‖Lq(Rn,w(x) dx).

3. Some applications

This section is devoted to some applications of our Theorem 1 and
Theorem 2. We begin with the commutator of homogeneous singular
integral operator. Note that Ω ∈ L(log L)m(Sn−1) is equivalent to that
Φm(|Ω|) ∈ L1(Sn−1) and in this case the operator

Wm,rf(x) = r−n

∫
r<|x−y|≤2r

Φm(|Ω(x − y)|)f(y) dy

is bounded on Lq(Rn, |x|α dx) for all 1 < q < ∞ and −1 < α < q − 1
(see [5, p. 874]). This together with Theorem 2 tells us that

Corollary 1. Let 1 < q < ∞, 0 < p ≤ ∞, T be a sublinear operator
which satisfies the size condition

|Tf(x)| ≤
∫

Rn

|b(x) − b(y)|m |Ω(x − y)|
|x − y|n |f(y)| dy,

where m is a positive integer and b ∈ BMO(Rn), Ω is homogeneous
of degree zero. If T is bounded on Lq(Rn) and Ω ∈ L(log L)m(Sn−1),
then T is also bounded on K̇α,p

q with bound C(n, m, p, α) provided that
−1/q < α < (q − 1)/q.

For the operator Tb,m defined by (1) in Section 1, we have

Corollary 2. Let 1 < q < ∞, 0 < p ≤ ∞, Ω be homogeneous of degree
zero and have mean value zero. If Ω ∈ L(log L)m+1(Sn−1) for some pos-
itive integer m, then the operator Tb,m defined by (1) is bounded on K̇α,p

q

with bound C(n, m, p, α) provided that −1/q < α < (q − 1)/q.
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Corollary 1 and Corollary 2 are new even for the the special case of
p = q, i.e., the weighted Lebesgue spaces with power weights.

Now let us consider another class of nonstandard Calderón-Zygmund
operators. We can easily obtain a general version similar to Corollary 1,
but for brevity we only consider the operator defined by

TAf(x) =
∫

Rn

Ω(x − y)
|x − y|n+m

Rm+1(A; x, y)f(y) dy,(8)

where Ω is homogeneous of degree zero and has vanishing moment of
order m, that is∫

Sn−1
Ω(θ)θµ dθ = 0, for any multi-index µ with |µ| = m,

m is a positive integer, A has derivatives of order m in BMO(Rn) and

Rm+1(A; x, y) = A(x) −
∑

|µ|≤m

DµA(y)(x − y)µ.

We have proved in [7, pp. 68–69] that if Ω ∈ L(log L)γ(Sn−1) for some
γ > 1, then Kj(x) = Ω(x)

|x|n χ{2j<|x|≤2j+1}(x) satisfies the Fourier trans-
form estimate

|K̂j(ξ)| ≤ C min{1, log−γ(2 + |2jξ|)}.
This together with Theorem 1 in [8] says that if Ω ∈ L(log L)γ(Sn−1)
for some γ > 3, then the operator TA is bounded on L2(Rn). Thus by
Theorem 3, we can obtain

Corollary 3. Let 0 < p ≤ ∞, Ω be homogeneous of degree zero and
have vanishing moment of order m, A have derivetives of order m in
BMO(Rn). Suppose that Ω ∈ L(log L)γ(Sn−1) for some γ > 3, then the
operator defined by (8) is bounded on K̇α,p

2 provided that −1/2 < α <
1/2.

Also, even for the special case of p = 2, Corollary 3 is new.
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darrera versió rebuda el 23 de setembre de 2002.


