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BOUNDEDNESS OF THE WEYL FRACTIONAL
INTEGRAL ON ONE-SIDED WEIGHTED LEBESGUE

Abstract

AND LIPSCHITZ SPACES

S. OMBROSI AND L. DE Rosa

In this paper we introduce the one-sided weighted spaces L, (8),
—1 < B < 1. The purpose of this definition is to obtain an
extension of the Weyl fractional integral operator IJ from L%,
into a suitable weighted space.

Under certain condition on the weight w, we have that L, (0)
coincides with the dual of the Hardy space H! (w). We prove
for 0 < B < 1, that £ (8) consists of all functions satisfying a
weighted Lipschitz condition. In order to give another character-
ization of L (8), 0 < 8 < 1, we also prove a one-sided version of
John-Nirenberg Inequality.

Finally, we obtain necessary and sufficient conditions on the
weight w for the boundedness of an extension of IS from L2
into L4 (8), —1 < 8 < 1, and its extension to a bounded operator
from L4, (0) into Loy ().

1. Notations, definitions and prerequisites

Let F C R be a Lebesgue measurable set. We shall denote its
Lebesgue measure by |E| and the characteristic function of E by xg.

As usual, a weight w is a measurable, non-negative and locally inte-
grable function defined on R.

Let w be a weight. Given a Lebesgue measurable set £ C R, its
w-measure will be denote by w(E) = [, w(t) dt.
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Let 1 < p < oco. The weight w belongs to the class A, if there exists
a constant C such that

1 a+h a . p—1
sup [—/ w(z) dx (/ w(x) 71T da:) ] <C,
h>o | WP Jg a—h

for all real number a. In a similar way, w belongs to A; if

p—1
1 a a+h L

sup —/ w(z) dx / w(x) 7T dx <C,

h>0 | BP Jan a

for all real number a. The class A; is defined by the condition

1 a+h
7 / w(z) dx
a

for almost every real number a. The weight w belongs to A} if

wp[%lf w@ﬂmﬂzstm»

h>0 —h

sup < Cw(a),

h>0

for almost every a. These classes A, and A;r were introduced by
E. Sawyer in [12]. We recall three basic results on these weights.

(i) For 1 < p < oo, a weight w belongs to A, if and only if w7

+ 1,1 _
belongs to A7, where - + > = 1.

(i) If 1 <p < q<oo, then A7 C A,
(iii) If 1 < p < oo and w belongs to A, then w belongs to A,__ for
some € > 0.
The proof of (i) and (ii) are very simple and (iii) can be found in Propo-
sition 3 in [3].
In the sequel, for each bounded interval I = [a,b] we shall denote
I~ =[a—|I|,a] and It = [b,b+ |I]].
Let 1 < ¢ < co. A weight w satisfies the condition RH ~(g) if there
exists a constant C such that for every bounded interval I.

1 [wera] <ol [ w@a

We shall say that a weight w belongs to D~ if there exists a constant C'
such that for every bounded interval I,

w(IUTT) < Cw().
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It is well known that if w € A, 1 < p < oo, then w € D™.

Let w be a weight, 1 < p < oo and f a measurable function. We shall
say that f belongs to L? if

= [ @)[]"
P d
= [ [ o
is finite. The function f belongs to f?; if

{x cr: @ t}‘

[f]b.., = supt’
t>0

is finite.
Let 0 < a < 1. Given f a measurable function on R, its Weyl
fractional integral is defined by

_ [T f)

_ x)l—a

whenever this integral is finite.

In the sequel, the letter C' will denote a positive finite constant not
necessarily the same at each occurrence. If 1 < p < oo then p’ will be
its conjugate exponent, that is, 1/p+ 1/p’ = 1.

Let w be a weight and —1 < 8 < 1.

Definition 1.1. We say that a locally integrable function f defined on R
belongs to L£,,(3), if there exists a constant C' such that

1
o 1 = filay < ¢

for every bounded interval I, where f; = ﬁ / ; [ The least constant C
will be denoted || f| ., ()

The spaces L,,(3) were introduced by E. Harboure, O. Salinas and
B. Viviani in [1]. They are a weighted version of the spaces Ly p, for
p =1, defined by J. Peetre in [8]. If w belongs to A;, 1 < g < 2, then
L,(0) is the dual space of the one-sided weighted Hardy space H! (w),
see [10] and [11].
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Definition 1.2. We say that a locally integrable function f defined on R
belongs to L, (), if there exists a constant C such that

1
W/If(y)fﬂdyﬁa

for every bounded interval I. The least constant C satisfying this in-
equality will be denoted [|f]| - 4)-

In the following definition, we consider a one-sided version of the
classes H(«, p) defined in [1].

Definition 1.3. Let 0 < @ < 1 and 1 < p < co. We say that a weight w
belongs to H™ («,p) if there exists a constant C such that for every
bounded interval I = [a, b], the inequality

/ 1/p’
1_ o P I)
I > a+1 / 'LU(y) . dy S Cw( ,
d [ S T 1

holds.

2. Statement of the main results

Lemma 4.1(iii) shows that if w belongs to H (a,p), 1 < p < oo,
then w belongs to D~ and therefore £,,(3) C L,,(8) for every 3: —1 <
(B < 1. The next theorem states that w belonging to D~ is a sufficient
condition for the equality of these spaces, whenever 0 < § < 1.

Theorem 2.1. Let 0 < 6 < 1 and let w belong to D~. Then, the
spaces L.,(8) and L, (5) are equal, and their norms are equivalent.

The next theorem gives us a characterization of the spaces L, (08),
0 < B < 1, whenever w belongs to A, . In the case 8 = 0, we shall
prove this result using Proposition 3.6, which states a one-sided weighted
version of John-Nirenberg Inequality.

Theorem 2.2. Let 0 < (<1 and 1 <p<oo. Let w be a weight such
that w belongs to A;. Then, f € L,(B) if and only if there exists a
constant C' such that

@1 [ 1)~ i @)t ds < Culr)jp,
for all bounded interval I and every q:1<q <p', g < oc.

The following two theorems state a sufficient and necessary condition
on the weight w to obtain extensions of IT defined on certain spaces.
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Theorem 2.3. Let 0 < a < 1,1 < p < o0 and B8 = o« — 1/p. The
following statements are equivalent.

(i) The weight w belongs to H™ (a, p).

(ii) The operator It can be extended to a linear bounded operator I
from LY, into L,(8) by means of

(2.2) [E(f)(x):_/x f(y) dy

xg |y - x|1—oz

e 1 1 - X Xo,To y)
+ / [ - [ t”( f(y) dy,
To

ly — xt=e (y — o)t~

for any xo € R.
(iii) The operator I} can be extended to a linear bounded operator I
from LE into L (B), where I is defined as in (2.2).

Theorem 2.4. Letw a weight and 0 < o < 1. The following statements
are equivalent.

(i) The weight w belongs to H™ (a, 00).
(ii) The operator I} can be extended to a linear bounded operator
I3 : £4,(0) — Ly() by means of
pord * [ Xieooo) %) Xfeoo)(¥)
) = [ | Mo ® - MoV )y,

ly —xo|'m |y — x|t

for an appropriate choice of xy € R.
Remark 2.5. Let1<p<landﬂ:a—l/p<0

(i) Tt is easy to see that if w belongs to RH~ ( 5), then Ly VB ¢
L, (B)-

(ii) By Lemma 4.4 in [9], if w” belongs to A4, then w satisﬁes
the condition RH~(p’), and taking into account that 1+ﬁ <p,

follows that w belongs to RH ™ (73 +ﬁ)

(iii) Theorem 6 in [4] states the fact that w? belongs to A, I8
a necessary and sufficient condition for the boundedness of I}
from LP into La'P C L, (6).

(iv) If w?" belongs to A~ “ppri1, Since w? € Ay, we have that w
belongs to H~ (a,p). However, there exist weights w belonging
to H™ (a, p) such that w?" does not belong to Ayt
w(z) = |x|7 for =8 < v < 1— 3, see Remark 4.3.

for example,
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In consequence, if —1 < g < 0 and w?’ belongs to A:,Gp’Jrl’ the
extension of I in Theorem 2.3 can be obtained from Theorem 6 in [4].
But, (iv) shows that Theorem 2.3 can be applied to a larger class of

weights.

Remark 2.6. Let w be a weight. We shall say that a locally integrable
function f defined on R, belongs to MW~ (w) if there exists a constant C'
such that

1 1

Tl essinf,— w - <
|I] essinf;- w/1|f(y) frldy < C,

for every bounded interval I.

(i) By Definition 1.2, it follows that MW~ (w) C L,,(0). Moreover,
if w belongs to A7 then £,,(0) € MW~ (w), and as a consequence
of Theorem 2.1, £,,(0) = MW~ (w).

(ii) Following the same lines of Theorem 7 in [7], it can be seen that,

in the case a = 1/p, the weight w?' belongs to A] if and only if
the operator I} is bounded from L% into MW~ (w). Also see [2].

(iii) If w”" belongs to A7 then, by Remark 4.3, w belongs to H™ (a, p).

In consequence, the fact that w?’ belongs to A7 implies the bound-
edness of I} from L? into MW~ (w), is contained in Theorem 2.3.

3. The spaces L (8) and L (3)

The next lemma will be used in the proof of Theorem 2.1.

Lemma 3.1. Let —1 < f < 1, f a locally integrable function defined
on R, and w € D™. The following statements are equivalent.

(i) feLy,d)

(ii) There exists a constant C such that for every a € R and h > 0,

1 a+t+h
w([a — h/2,a])hP / |f(¥) = flatn/z.arml dy < C.

(iii) There exists a constant C' such that for every a € R and h > 0,

1 a+h
w([a — h/2,a])h? / |fy) — f[a+h,a+3h]|dy <C.

The constants C'in (ii) and (iii) are equivalent to || f|| ;- 4.
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Proof: (i) = (ii). Using (i) and taking into account that w € D~, we
have

a+h/2
/ F@) — Frasnjzasn] dy
a

a+h/2 a+h
< / |f(y)_f[a+h/4,a+h/2]‘ dy+2/ |f(y)—f[a+h/2,a+h]\ dy
a a+h/4
a+h/2 a+h
< 3/ |f () = fla,arny2| dy + 5/ » |f(¥) = flath/aarn| dy
a a+

< Ol fll o sywlla = h/2. ) +C1 oo gyw(la — h/2,a+ b /4K

< Clfll = gyw(la — h/2. a)h?.

From these inequalities and using (i) again, we have the estimate

a+h
/ |f(Y) = flath/2,a+n)| Ay

a+h/2 a+h
- / FW) — frasn/zasn] dy + / @)~ fusnzarnl
a a-+

< Ol fll o sywla = h/2.a)h? + Ol oo gy (s a + h/2)h°

< Ol fl o sywla — b2, a))?,

which shows that (ii) holds. In a similar way it can be proved that
(ii) = (iii) and (iii) = (i). O

As we have already mencioned if w belongs to D~ then, for every
—1 < # < 1 we have the inclusion £,,(5) € £,,(8). In order to prove
Theorem 2.1, it will be sufficient to show that £, (8) C L, (5).
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Proof of Theorem 2.1: We suppose that f € L (8). Let a € R and
h > 0. For each j > 0 we define a; = a + h/27. Then,

a+h/2
/ F@) — frasnjzasn] dy
a

= Z/] |f(¥) = flatn/2.a+n| dy

(3.1) j=1"a+1
[e%S) a; [eS) h
< Z |f(y)7f[aj,aj,1]|dy+z W|f[aj,aj,1]*f[a1,ao]|
j=17%+1 Jj=2

Taking into account that for each j > 2,

27 [%i-1
|f[aj,aj,1] - f[a1,ao]| < ﬁ/ |f - f[a+h/2,a+h]|

aj

it follows that,
e s} 1 aj_1 1 a+h/2

1<y [ femmarnl =5 [ 150 = fasnparnl v
j=2 " 74 “

Then, by (3.1)

a+h/2
(3.2) / W) — fasn/zarmdy < 2.

Now, using (iii) of Lemma 3.1 and keeping in mind that 3 > 0 we have
that,

o0 h B
(33) I S CZ (2]) w([aj+2,aj+1]) S Chﬁw([a,a+h/4])
j=1
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From (3.2) and (3.3), and taking into account that f € £, (3), we get

a+h
/'|ﬂw—mﬁmﬁm@

a+h/2 a+h

— [ 1@ = farnzamldy+ [ 150 = Fasnparnldy
a a+h/2

< ChPw(la,a + h/4]) + ChPw([a,a + h/2))

< ChPw([a,a + h)).

Therefore,

a+h
/ |f(Y) = fla,asn)| dy

a+h
< 3/ |£(y) = flatn/2.an | dy < ChPw([a,a + h]),
which shows that f € £,(8). O

Remark 3.2. Let —1 < 3 < 0 and w(t) = e~ *. The weight w belongs
to AT however, we only have the strict inclusion £,,(8) C £,(8). For
example, given a > 1 we consider the function

e7 >0
t) = -
ug {1, t <0.

We observe, using Remark 2.5(i), that f € £,,(8). On the other hand,

1 " 3 1 1—e®h e
W/o |f = finon)| = hﬂ(l—e_h){ « a (1—e")
_ (1 _ efah)2
RB(1—eM)a’

which tends to infinite whenever h tends to infinite. This implies that

[ & Luw(B).

The next proposition will be used in the proof of Theorem 2.2.
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Proposition 3.3. Let 0 < § < 1 and let w belong to D~. Then, f €
Ly (8) if and only if, there exists a constant C' such that

(34) [f(z) = fy)l

for almost every real numbers x and y.

Proof: We suppose that f € L£,,(8). We shall show that for every h > 0
and almost every z,

z+h/2 U/(Z)

(3.5) |f(2) = flosn/2.etn] < C/ G—a) B dz.

For each i > 0 let 2; = x + h/2'. If = is a Lebesgue point of f we have
that,

|f(2) = frasn/2,04m] < (@) = floo e

+ ‘f[xi+l,1i] - f[xl,ﬂﬂo”

S |f(.’1:) - f[$1+1,wb]|+z ‘f[ijrhwj] _f[$j,a?j71]‘
j=1

< Z | flag i ws) = fleg sl
j=1

For each j > 1, since f € L£,,(8) we obtain
1

ozl — Jiew | <C
|f[ j+1, J] f[ KRR 1]| (xj+1 _xjfl

i (i @)

From this inequality, (3.6) and taking into account that w € D~ we get,

|f(2) = flosn/2.een| < CZ/ w(z)l —5 dz

Tj+1 JJ)

= C/ w(z) dz

(z—2)1-8

x+h/2 U}(Z)
< T\
e T
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which shows that (3.5) holds. Let z < y two Lebesgue points of f.
By (3.5) we have that,

F@) 1)< |f(@) — fresw | +170) —

== ,y+(y—$)]|

Rl LIS Rl [T S |

ot luzal Y lzal
w(z) : Y w(z) "
[ s e d]

Sl VEERP R S SRS

(3.7)

<C

From the hypotheses f € £,,(8) and w € D~ it follows that the third
term on the right hand is bounded by

C y+(y—=)
/a: () = flay a5z a2

y—x +y;l‘
_ (z+y)/2 (2)
x wlz
SWU’([ ; ])SC/I — 75 4z

Therefore, by (3.7) we have that (3.4) holds.
Conversely, given a real number a and h > 0, by (3.4)

a+h
68 [ 1@~ fuarnlda

a+h z+‘y ath y+|y—m\
w(2) = w(z)
/ / Gou)- ﬁdzdx—l—/ /y G_y) P dzdy].

Changing the order of integration and taking into account that w € D~
it follows that (3.8) is bounded by ChPw([a,a + h]). This completes the
proof of the proposition. O

The next two lemmas will be needed in the proof of Proposition 3.6.

Lemma 3.4. Let w € D~ and f € L£,(0). Given two intervals I C J
the inequality

LJ) /I |f(y) = freIxi-ur(w) dy < C|lfllz.0)

holds with a constant C' only depending on w.
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Proof: Let I = (a,b) and J = (
and § = b+ [I|. Since JN (I~ U

¢,d). We consider o = max{a — |I],c}
I) C (a, 8) we have that,

1 I
by J 1060 = by < s [ 1560 = frelay
3.9

’ -«
: ﬁ [/ [f(y) = fram | dy+ (6|I+ )/1+ |f(y) _f(a,g)|dy] .

We observe that (6 — «) < 3|I|, which implies

B8
(3.9) < % / @) = fras)| dy.

From the hypotheses f € £,(0) and w € D, and taking into account
that (o, 8) € JUJT, (3.9) is bounded by

4
1f1lz.w((a, B) < Cllfllz, )

as we wanted to prove. ]

w(J)

Lemma 3.5. Let 1 < p < oo and w € A, . Then, there exists a con-
stant C' such that for every 8 > 0 the inequality

_ ISR
(3.10) w{z el 1w(x)< p}) <C [ﬁm w(I™),
holds.
Proof: This lemma is a simple variant of Lemma 3.1 in [6]. O

The following result is a one-sided weighted version of John-Nirenberg
Inequality. For its proof we shall use the method employed in Theorem 3
in [6] and the techniques of Lemma 1 in [5].

Proposition 3.6. Let f belong to L,,(0). Then,

(i) If w € AT there exist positive constants Cy and Cy such that for
every A > 0,

w({z € I ¢ |f(x) = frelw(z)™" > A}) < Cre” @MW lew©(17)
holds for every bounded interval I.

(i) Ifw € A, , 1 < p < oo there exists a positive constant C3 such that
for every A > 0,

w({z € I+ [f(z) — freJw(@) ™" > A}) < Cs (14 M| fllewo) " w(I)

holds for every bounded interval I.
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Proof: Without loss of generality we can suppose that || f||z, ) = 1. For
each A > 0 and each bounded interval I, let
AN =w({z e I |f(x) = frelw(@)™" > A}),

and

(3.11) A(A) = sup

where the supremum is taken over all f : || f]|z, oy = 1, and all bounded
interval I. Thus, for every A > 0, we have that A(\) < 1.
By Lemma 3.4 there exists a constant p satisfying

(3.12) E%yl”@%ﬁﬂhru@wyém

for every bounded intervals I C J and every f : || f]|z, ) = 1.
Fixed I = [a,b], let s >y and

Qs ={zeR: M, (If - fr+Ixi-urw™ ") (z) > s},

where M, is the left sided maximal function with respect to the mea-
sure w defined as

_ Jon la()lw(y) dy
M ) = ™ e — ]
Since (), is an open set, we can write {0y = U;>1J;, where the J;’s are
its connected components.
We observe that if J;NI~ # @ then J;NIT = (. In fact, suppose that
JiNI~ #0 and let J; = (o, 8). If 3 > b a simple variant of Lemma 2.1
n [12], shows that

b
u<ss5@55/Nﬂm—ﬁqm“ﬂm@.

However, using (3.12) we have that

b
M/ lf(y) = fr+|xr-ur(y) dy < p.

In consequence, 8 < band J; NI+ = 0.
Let {J; : JinI~ # 0} = {H;}i>1, where H; = (a;,b;). For each i,
since My, (|f — fr+|xr-urw™1)(b;) < s we have that,

(3.13) H; CI"UIl and @/Hﬁ(y)—f]ﬂdy:s.

i



84 S. OMBROSI, L. DE RosA

By Lebesgue’s Differentiation Theorem with respect to w for almost
every x € I~ \ U;>1H;,

[f(2) = frelw(z) ™ < s.
Using (3.13), (3.12) and keeping in mind that w € D~, we obtained that

1) S ult) = =3 [ 1)~ frelay

i>1 i>1

<t [ 1w - reldy < S U D < SOyt
I-ul S S

S

Fixed H; = (a;,b;) we define the sequences (zx)r>1 and (yg)r>1 by
bi — xr = 2(b; — yx) = (2/3)*|H;|, and the intervals H;j = (zg,yx)-
Therefore,

(3.15) H = H,
E>1

1

w(Tﬂ/H Fy) = freldy < s,

and
If(z) = fre|w(z) ™ <\ ae zel” \UHZ—k

ki
Then,

ANT) <Y Jw({z € Hy: [f(2) = fre|w(z) ™! > A}).
ik
If p <s<Xand 0 <~y <A, we have that

(3.16) ANI) <Y w({we Hyy | f(x) - P lw(@) ™ > A =})
ik

+Zw({x € Hy: |fH+k — frelw(z)™t >} =T+ 11.
ik N
From (3.11), (3.15) and (3.14) we obtain the estimate
I<Y AN =yw(H; ) = A=) w(H,)

(3.17) o '

C
< B AN = w(I7).
On the other hand, (3.15) implies that

[Tl

1
3.18 — < — — dy <
©19)  Ufuy, — S0 < pr [ 170 Firldy <
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If w € A7 there exists p > 1 such that for every ¢, k and almost every
LS Hi_k7

Then, using (3.18) we have

|fH1+k —fr+l < psessinfer;k w(z).
In consequence,
w{o € Hyy o fye, = frelw(@) ™ >7})
<w ({1‘ € H) rw(z) < % essinfer;k w(m)}) .

Choosing s = 2uCy, and v = ps, if A > ywe have y < s < Aand Il = 0.
Then, from (3.16) and (3.17) we obtain that

"4()‘ - ’Y)w(l_)a

DN | =

ANT) <
that is, if A > 7,

A) < AN =)

l\DI»—l

Now, proceeding as in Theorem 3 of [6], it can be obtained (i) of this

proposition.
In order to prove (ii), we suppose that w € A;, 1 < p < oo. Us-

ing (3.18), Lemma 3.5 and taking into account that w € D~

wife € Hiy | fys, — frelu(e)™ > 7))

IN
Q

|H1k| )
[7 |H; k| w( m)] w(Hix)

e (5)

IN
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By (3.15) and (3.14), we have

s\ s\¥' sP' 1
Ir<c (—) Zw(Hl_k) =C <—> Zw(H,) < Cu—w(I7).
v ik ) v i e
Then, (3.16) and (3.17) imply that
AA =) 7
Ao = o | B4 20 ),
From this inequality, (ii) follows as in Theorem 3 of [6]. O

Proposition 3.7. Let 0 < <1 and 1 < p < co. Let w be a weight

such that w'* =3P belongs to A, . Then, f € L(B) if and only if there
exists a constant C such that (2.1) holds for all bounded interval I and
every ¢: 1< qg<p'/(1-0).

Proof: Suppose that (2.1) holds for every ¢ : 1 < ¢ < p'/(1—f3). Taking
g = 1 it is easy to show that f € L,(8). Conversely, let f belong
to L, (8). We observe that it will be sufficient to consider ¢ = p’/(1— (),
because from this case and applying Holder’s inequality we obtain (2.1)
for every 1 < ¢ < p’/(1 — ). Given a bounded interval I and using
Proposition 3.3, we have that

[ 11@) = fre )~ de

< [ | Lo wer i
(3.19) +/y+|y; _w) dz> dy] q da
<C Iﬁw(m)l_q (/:+31 % dz)q dx

o e[, /‘%) N

=A+B.




WEYL FRACTIONAL INTEGRAL 87
If we denote J = I~ U T U IT then we have the estimate

A<C’/ )= qI+ (wxy)(x)?dx.

Our hypothesis me” € A, is equivalent to

(3.20) w!'" T € A,

where p’ =1+ 4 and 1 = % + . Then, by Theorem 6 in [4] it follows
that

A<C (/_O; w(z)” 7wy s (z)]* dx) " =C (/J w(z)®/ dm)Q/S :

Since ¢/s = g8+ 1 > 1, applying Hélder’s inequality and taking into
account that w € D~ we obtain

(3.21) A< C/ ) dz

L < cw(I)|1)P.
Let us estimate B. If we set J' = [T UItT UITTT, then

< o [wer e ([ meoww )

Applying Holder’s inequality,

<2 ([werra)( [ ) [ wr-ors o i

From (3.20), it follows that w'~? € A} then, we have that

B < C’/I+ w(y)lfqlg(wxj/)(y)q dx.

Proceeding as in the estimation of A and taking into account that w €
D~ we obtain

(3.22) B < Cw(I7)|I|7.
As consequence of (3.19), (3.21) and (3.22) we get (2.1) and the proof
of this proposition is complete. O

Proof of Theorem 2.2: We shall prove that f belonging to L, (3) is a
sufficient condition for (2.1) holds. The fact that (2.1) is a necessary
condition follows as in the previous proposition. For that, we shall con-
sider different cases.

First of all, we assume that § = 0 and f € £,(0). If w € A] we
have that (2.1) is an immediate consequence of Proposition 3.6(i). If
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we Ay, 1 <p < oo, we have that w € A, for some ¢ > 0. Then,
by Proposition 3.6(ii), and proceeding as in Theorem 4 of [6], we obtain
that f satisfies (2.1).

Let 0 < 8 < 1land 1 < p < oo. Since the weight w belongs to A7

there exists 0 < a < § such that w'"T==? belongs to A, . Proceeding
as in (3.19), we have that

[ 1@ = g ru@ - o

w(z) =1 1 T w(z) .
=¢ I- (=) l|l+ I+ (/w (Z_x)l_ﬂd

L w(z) ’
§0\1|<5—Q>Q/F w(z)' (/ #d;«) do

el [ ([ )
[1]F=a=Da J;- )y e Y

= |[[|*~*)(A + B).

Substituting in the proof of the previous proposition « for § in the
estimation of A and B we obtain this case.

Finally, we suppose that 0 < 8 < 1 and p = 1. Since the weight w
belongs to A it follows that w belongs to A for every 1 < s <
0o. Then, by the previous case we obtain that (2.1) holds for every
1<qg<oo. O

4. The classes H™ (a, p)

The next lemma states necessary conditions for that a weight w be-
longs to H™ («, p).
Lemma 4.1. Let 1 <p <oo. Ifw e H™ («a,p) then,
(i) w? belongs to € D™,
(ii) w belongs to € RH~(p'),
(iii) w belongs to € D~
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Proof: The proof of (i) and (ii) are similar to ones of Lemma 3.7 and
Lemma 3.8, in [1], respectively. Applying Holder’s inequality and (ii),
we obtain (iii). O

Lemma 4.2. Let w be a weight. The following conditions are equiva-
lent.

(a) we H™ (a,p).
(b) we RH™(p') and there exist positive constants C and € such that,
w” ([a,0 -+ 04]) < COC~ ~u (0, a + 1)),
for everya e R, t >0 and 6 > 1.

(¢) There exist positive constants C and € such that,
v o)\ """ t
w (faat o))" _ priia s wla—tial)
ot - t
for everya e R, t >0 and 6 > 1.

Proof: (a) = (b). By Lemma 4.1(ii) we have that w € RH~(p’).
Let I = [a,a + t]. Applying Holder’s inequality and keeping in mind
that w € H™ («, p),

v 1 P e P’
(Y s [ 7

a+t (y - a)(2—a)p

wP (I)
1]

Y

(4.1)

1 a+2k+l

1 / ’

> O|I|(z—tp 7/ w(y)” dy.
lg) (2k+14)2=alp a+2kt

i k
Since Y ;5p (2(2’—+W) =C (2(2_+)p,) , by (4.1) and applying Fubini’s
Theorem,

w'(I) 1 SR "
——O¢ P p
oz ome noE e Z/a | dyz( @ a)p)

+2k¢
a+2k+1
G e oY T
(2it) (2 a)p’ oky
a2t
= C|[|(%*a+1)p’ Z 1 e w(y)p/ dy
(2it)@=)p" | ., ’

i>0
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Therefore,
’ i+1
w” (I) (;7a+1) ’ 1 a+2 ’
7] = C|I'» pZW/a w(y)” dy

’L

21,+1

> C|I| (2 —a+1)p’ Z/ (la, a—l—s])@

; 5(2 @) s
i>0 72t

s(?—a)p’ S )

— C|1|Ga+ 1w /°° w” ([a,a + s]) ds

In consequence,

= w ([,a+s) ds _ w” (0,0 +1)
\ s@—ap g = =)y

Now, using Lemma 3.3 in [1] with ¢(s) = w® ([a, a+s]) and 7 = (2—a)p’
there exist C' and € such that

o(61) < CO™(1),
for every t > 0 and 6 > 1. That is,
w” ([a,a + 60t)) < COP=P ~<w? ([a,a + t]),
for every t > 0 and 6 > 1, This completes the proof of (a) = (b).
(b) = (a). Let I = [a,a+t]. If (b) holds, we have that

00 w(y)p/ ; 1/17/
att (Y —a)=ow Y

e’} a+2kt1g P’ 1/1)/
Sy )

= Jarore  (y—a)Cmer

1

(2kt>(2 a)p

oo 1/p
( ([a+t,a+t+2k+1t])>
=0

IN

k=0

at2t e
/ p dy) tF 72+Oé .
a+t

IN

C

~ | =

1/p’
e 2k+1 (2—a)p’—¢ W
C (Z T r w” (Ja +t,a+ 2t])
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Using the hypothesis w € RH~(p’) we obtain that (4.2) is bounded by

1 [ott a_ t
Ci/ wiy) dytr >+ = oot 1)
t a t;+27a

which shows that w € H™ (a, p).
The proof of (b) = (c) is very simple and we shall omit it.

(¢) = (b). Taking # = 1 in (c) we have that w € RH~(p’). Using (c)
and Holder’s inequality,

, 1/p’ , / 1/p
<wz> ([at,a+0t])> _ <wz> (lo~t,a) | w ([a,a+0t])>

0t ot ot
’ 1/1)/ ’ 1/p’
. (wp (o m])) L cgiti-o- (w (o m])) |

We can suppose that % +1—-—a-— z% > 0, then taking into account that
0>1

w? ([a —t,a —t + 6t)) l/p,< w? ([a —t,a+ 0t]) v
ot - ot

t

’ 1/pl
sty (i)

From these inequalities with a = b 4 ¢ we obtain that
w? ([b,b+ 0t]) < COE=P =cww’ ([b, b + 1)),
which completes the proof. O

Remark 4.3. Tt is easy to see that if w?’ belongs to A] then, w €
H~(a,p). On the other hand, applying Lemma 4.2 (b) = (a), it fol-
lows that if w(z) = |z with 0 < v < 1/p — a + 1, then w belongs to
H~(a,p), but w does not belong to A;. For 0 < o < 1/p, as an imme-
diate consequence of Lemma 4.2 (c) = (a) it follows that if w?" belongs
to A, then, w belongs to H™ (a,p).

The next two lemmas show that if w belongs to H™ (a,p), 1 < p <
0o, then there exists 7 > 0 such that w belongs to H ™ («,q) for every

qg:p—n<qg<p+n.
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Lemma 4.4. Let 1 < p < oo and w € H™ («a,p). Then, there exists
0o € (0,1) such that w € H™ («a, (p'8)") for any § : 6p < § < 1.

Proof: Tt is a simple variant of Lemma 3.13 in [1]. O

Lemma 4.5. Let 1 < p < oo and w € H™ («a,p). Then, there exists
70 > 1 such that w € H™ (o, (p/'7)’) for any 1 <7 < 7.

Proof: Since w € RH™(p') applying Theorem 5.3 in [9], there exists
To > 1 such that for every 7 : 1 < 7 < 79 there exists a constant C such
that

(Cib/bcw(y)”/Tdy)ﬁ<C<bi /b (y)dy)
SC(bia/abw(y)”,dyy%

for every a < b < ¢ with ¢ —b=2(b—a). Let I = [a,b]. Using (4.3) we
have that,

oo p'T
/ w(y) _ay
b

(v— )=

(4.3)

w(y)P ™
= Z/ % dy
1307 25| T <y—a2r+1 | (y—a) p

w(y)?' " dy
Z (2%[11) (2 ) T/2k1|§y—a§2k+1|1|

k>0

1 Y
<CZ (2k|1]) (2 o)p'T— 1< w(y)” dy) .

k
>0 2|11/ om—1)11<y—a<2¥|1]

Taking into account that 7 > 1, (4.4) is bounded by

1 w(y)p/ T
C) 2k1| e
2 2] Skt i<y —asonin (y — @)=

k>0
—r w(y)? ’
<yt / )
%Sy—a (y (Z)
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Keeping in mind that w € H™ («, p) we have,

© w(y) e (wlaa+111/2) | 1 prat
/b—(y dy < Cl1| <—|I| + )

—a)2-op'T |
Cofrm v\
T
which implies that w € H™ (a, (p'7)’). O

Lemma 4.6. Let 1 < p; < p2 < oo. Suppose that w € H™ («,p;) for
i=1,2. Then w € H (a,p) for every p:p; <p < pa.

Proof: This is an one-sided version of Lemma 3.15 in [1]. O

Lemma 4.7. Let 1 < p < oo and w € RH~(p'). There exists a con-

stant C' such that for every f € L%, and every bounded interval I = [a, b),
if we denote I~ = [a — ﬂ a) then,

(@)
J @l < €T

Proof: Since w € RH~(p) by Theorem 5.3 in [9], there exists s > p/
such that w € RH ™ (s), that is, there exists a constant C' such that for
every bounded interval I,

(i ftoraz) " <o

From this fact, the proof follows as in Lemma 4.1 of [1]. O

Lemma 4.8. Let 1 < p < 0o and w € H (a,p). Then there exists a
constant C such that for every f € LY, and every bounded interval I =
[a, 0],

[y < oD
s (Y

7a)2*04 - |I|2+%—O¢

[Flp,uw-

Proof: Taking into account Lemma 4.4 and Lemma 4.5, the proof of this
lemma is similar to one in Lemma 4.4 of [1]. O
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Lemma 4.9. Leta > 0 and§ > 0 such that0 < a+d < 1. Letw € D™.
For a < b, we denote c = “Ter and I = [c,b]. Then, for every f € L,(9),
there exists a constant C' such that,

: |fy) = f1] o w(y)
() /b (y—ap—e dZU<CHf||£ (6)/ Wdy-

. £ (y) = f1] / c w()
ii T dy < C ——dy.
(i) /a (y—ayi—= W= £ 1lc. o) a7
Proof: The proof of (i) and (ii) are similar, then we only prove (i).

For every j > 0, let I; = [a+ 2/|I|,a + 27T!I|]. We observe that
Ip=la+ I|,a+2|I|] = [c,b] = I. Since f € L,,(§) we have that,

) =Sl s~ () - sl
/b (y —a)*~™ Y Z/a+21‘1 (y —a)*« Y

J=1
a+29 1 1|
/ @)~ frldy

+27 1|

o,

2 @)Ee

o 1 a+27 111
S;WV _ |f(y) = fr,|dy

a+27|1|
(4.5)

J

k=1

Cllf Nl ewsyw(L;)(2711])°7

> 1
< E -
=t (271t~

+Z

— I dy]

|Ik 1,

Using that f € £,,(§) and w € D~ we obtain the estimate,

1

T 1F (W) = fr.ldy < Cllfll cusywTe—r) (251!
Hk-1| J1,_,
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Then applying Fubini’s Theorem, (4.5) is bounded by

J

Cllflz., (5)2 21|I| Z (L) (28 |1))°~
71 =

k:o j=k
00 1 a+2F 1|
SCITITNTD Py — / w(y) dy
( )kZ:O (2F|1])2—2=9 at2v||

o w(y)
SC”fH.cw(é)/ (ya(mdy’

as we wanted to prove. ]

5. Proof of Theorems 2.3 and 2.4

Proof of Theorem 2.3: (i) = (ii). Let w € H™ (a,p) and ¢ € R. Given

f e L%, let Ia (f) define as in (2.2). Choose a bounded interval I =
[a,a + h]. We consider Iy = [a + 2h, ] if a + 2h < xy and [y = 0 if
o < a+ 2h, and we also define I} = [xg,a + 2h] if 29 < a + 2h and
I, = 0 in the other case. We set

o :/1 fy) dy+/:° [1—X11(y) B l_X[$07$0+1](y):| () dy.

R L A (PR L R

We shall show that a; is a finite constant.
Suppose that g < a + 2h. Let n be a positive integer such that
a+2"h > xo+ 1 and |a — x| < 2" 'h. Then,

a+2"h X[aco,a+2h] (y) B 1-— X[xg,x0+1] (y):|
e (/ /a+2n ) { (y —a)l—e (y — o)1 c fy) dy

=Ji + Jo.

For each y > a+2"h, by Mean Value Theorem, there exists 6 : 0 < 6 < 1
such that,

1 1

|xo — al |xo — al
(y—a)t=> (y—zo) > |"

ly —0a — (1 —0)zol2~> ~ |y —al?~o
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Then, applying Lemma 4.8, we have that
|Jo| <Clxg—al M)J_adngkvo—(ﬂ
at2nn Y — al

w([a, a + 2"h])

(2nh)* 50 lpiw <oo.

On the other hand, since f € i?; and using Lemma 4.7, we get

a+2"h a+2"h
T L P Y.

yon (¥ — a)l=e o+1 (y — xo)t—@

a+2"h a+2"h
SL/ \f(y)ldy+/ ()] dy < oo

(2h)1=> J oo zo+1
The case g > a + 2h can be proved in a similar way.
Now, let
a+2h f(y)
Az) = / ———dy
( ) T (y - x)lia
(5.1) /°° [ 1 1 }
+ i — | f(y)dy
aton Ly —2)t= (y—a)l=e

It follows that,
(5.2) IE(f)(@) = A(x) +ar.
We shall show that,

/fli.f(f)(x) —arlde < O Pw(I7) [ flp.

We observe that taking into account (5.2) and (5.1) it is sufficient to
prove that

/1 A5 (@)] da < CITIEYPw(T7) [l

for j = 1,2. Applying Mean Value Theorem, Lemma 4.8 and Lem-
ma 4.1(iii) for every x € I = [a,a + h] we have that,

> 1 1
o) < [ o~ | )

= _ Wl w(la, a + 2h])
s ch /a+2h ly —al*>~ = n (2h)2+%_a [f]p,w

pvtla )
h1+5704

[f1p.w-
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Therefore,
/ Ag(2)| dz < OIT[*Y2w(I7) flpo-
I

With respect to A;(x), changing the order of integration and applying
Lemma 4.7,

a+h a+h a+2h
/ |[A1 ()] dx < / / %dydm

a+2h Y d
S/ |f(y)|/ mdy

a+2h
< e / )l dy

< ChHPw(la— hya)) [ flpw,
which completes the proof of (i) = (ii).
The implication (ii) = (iii) is obvious.

(ili) = (i). Let a € R and h > 0. We consider f > 0 such that
sop(f) C [a + 4h,00). For each x € [a,a + h] we have that,

\I(f(f)(a:) - Ii(f)[a+2h,a+3h]|

-1 10) | == — s |
h/(1+2h /a+4h (y—v= (y—a)=
Applying Mean Value Theorem, for each y > a + 4h we obtain,

1 1 > |z — ¢t S h

(y—0 (-~ (y-a? " (y—a)P

In consequence,

> f(y)

[ (f) (@) = I (f)jat2n,a+3m)] = Ch an (y — )T

dy.

Then, if f € L, using (iii) we have that,

50 a+3h
e [~ AU ay <o [T @) - 1 (wasan | do

tan (¥ —a)?
< C(3h)’w([a — 3h,a]) U <@>p dy} 1/,;.
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Now, taking into account that 8 = « — 1/p it follows that,

5.3) pl/p—atl /OO Ad
(5:3) atan (Y —a+3h)>—« Y

coMahar ) [ [~ (jw) dy}””.

B h van \w(Y
For each m > 2 we put,

w(y v
(:-)?Jl)z—cfx[a-&-4h,a+2mh] U)x(0<wem}(v).
y—a "

It is easy to check that f,, € L. Using (5.3) with f,, and taking the
limit, we obtain that

00 ’ 1/1’/
hl/p—cx+1 / w(y)p dy < Cw([a—3h,a—|—4h})
atan (Y —a+ 3h)E= - h ’

fm(y) =

which shows that w € H™ (a, p). O

Remark 5.1. By Theorem 2.1, if 0 < 8 < 1, we can substitute in Theo-
rem 2.3, L,,(8) for £,(5). That is not possible for —1 < 8 < 0. In fact,
if w and f are defined as in Remark 3.2(ii), then

me"””, x>0

ac

I (@) =

«@ a®

@ —ax o) _ _
o 4 e falm‘e Uy ~ldy, x<0.

Therefore, the same arguments used in Remark 3.2 imply that I (f)
does not belong to L, (5).

Proof of Theorem 2.4: (i) = (ii). Let N be a positive integer. For any
integer a applying Fubini’s Theorem and taking into account that w is
a locally integrable function, we have that

a+1 z+N
/ / Ly)l dydxr < oo.
a T (y - ZE) e

In consequence, for almost every x and every positive integer IV

x+N w

Let z( satisfying (5.4). We consider
(55) E(f)(l‘) _ / |: X[zo,00) (y) X[w,oo)(y) f(y) dy.

ly — o[> [y — |t

— 00



WEYL FRACTIONAL INTEGRAL 99

We shall show that if f € £,,(0) then E(f), defined as in (5.5), is finite
for every z satisfying (5.4). Fix z satisfying (5.4). Suppose that zo < z
and let R € Q: zg < & < 29+ R/4. We consider the interval T = [z +

R/2,x0 + R]. Taking into account that the function g(y) = o) (¥)

= ly—zol' e
X[z,oo)(y)
ly—z[t=

is integrable and f y) dy = 0 we can write,

o _ > X[zo,00) (y) . X[m,oo)(y) B
mumw—[w[ U Xm0 ) - 1) dy

ly —zol'~> |y

= Il(m) + 12('7:)7

xo+R (e’
I(x) :/ and I1(x) :/ .
xo zo+R

We shall prove that

where,

(5.6) |15 (f)()]
zo+5R/4 w z+5R/4 w
< ONfllz, ) [/ %dlﬁ'/ Hiy)ady] .

We observe that,

zot+R zo+R
ummg/ 1F(y) - ﬁlyﬁ/ 1w - hil

o ly—xolte ly — x|t~

Let J =[x+ R/2,2 + R]. Applying Lemma 4.9(ii) we have that
:Eo-‘rR

0 Iy—x |1 o
x+R +R
d
o [THO D gy [
«  ly—zl ly — |
ZQ+R/2 w
Y
(5.7) SCHfHLw(o)/ #dy

z+R/2 w
FOllewo [ o dy

R«
+ —I\fr— fsl.
«
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Since g < x < xg + R/4 and f € £,,(0) we have,

R|fr — f1l < C| f]

zo+5/4R w(
)
Y
£ul®) /xo (y—ao)i—o Y

Then, by (5.7)

zo+5R/4 w(y) z+5R/4 w(y)
1 <C —d ——dy]| .
[ (2)[ <Cllfllz. 0) [/m = 20)i—= y+/w ( Y

Now, let us estimate I>. Applying Mean Value Theorem,

1 1
ly =o'~y —a|'~

[f(y) = fildy

|bwﬂs/
xo +R

< Clzg — x|

oo

5 dy.
zo+R (y - CC()) «

Using Lemma 4.9(i) and taking into account that w € H ™ («, 00) we get,

Loy (0) / ( )27oc dy
x

I CR
B < ORI e | oo

w([zo, xo + R/2])
R27o¢
I()JrR/Q

< CR| fllzw0)

< C’Hf”cw(o)/

xo (y - ‘/L.O)l_a

Then, if xg < < 29 + R/4 or in the case o — R/4 < x < xo, we have
that (5.6) holds. Since R = Ugegso[zo — R/4, o + R/4], it follows that

It (f)(x) is finite for almost every .

Let us show that I (f) € £, (). For almost every z; < zo, if we
define R = 4|1 — x|, we have that 1 < 22 < z1 + R/4 and using (5.6)
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we get

() (1) — 12 (f) (a2)]
oo X[zl,oo)(y) . X[xz,oc)(y)
<KKW@—mww (v — z2)10

z1+5|z1—x2| w
y
gcwum{/ IO

|f(y) — f[rc1+R/2,m1+R] | dy

. (y — 1)t
z2+5]z1 —22| w(y)
+ ——dy]| .
/xz (y —az)i—o ¥

Taking into account that w € D™ and using Proposition 3.3 it follows
that I (f) € Ly (a).

(ii) = (i). This implication is similar to (iii) = (i) in Theorem 2.3. O

Corollary 5.2. Let a,d € RT such that 0 < a4+ & < 1. The following
statements are equivalent.

(a) w € H (d,00) and the operator I, can be extended to a linear
bounded operator I : L, (8) — Ly, (a+6).
(b) we H (a+ 6, 00).

Proof: The proof is a simple variant of Corollary 2.12 in [1]. O
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