BOUNDEDNESS OF THE WEYL FRACTIONAL INTEGRAL ON ONE-SIDED WEIGHTED LEBESGUE AND LIPSCHITZ SPACES

S. Ombrosi and L. de Rosa

Abstract ____

In this paper we introduce the one-sided weighted spaces $\mathcal{L}^-_w(\beta)$, $-1 < \beta < 1$. The purpose of this definition is to obtain an extension of the Weyl fractional integral operator I^+_α from L^p_w into a suitable weighted space.

Under certain condition on the weight w, we have that $\mathcal{L}_w^-(0)$ coincides with the dual of the Hardy space $H_-^1(w)$. We prove for $0 < \beta < 1$, that $\mathcal{L}_w^-(\beta)$ consists of all functions satisfying a weighted Lipschitz condition. In order to give another characterization of $\mathcal{L}_w^-(\beta)$, $0 \le \beta < 1$, we also prove a one-sided version of John-Nirenberg Inequality.

Finally, we obtain necessary and sufficient conditions on the weight w for the boundedness of an extension of I_{α}^{+} from L_{w}^{p} into $\mathcal{L}_{w}^{-}(\beta)$, $-1 < \beta < 1$, and its extension to a bounded operator from $\mathcal{L}_{w}^{-}(0)$ into $\mathcal{L}_{w}^{-}(\alpha)$.

1. Notations, definitions and prerequisites

Let $E \subseteq \mathbb{R}$ be a Lebesgue measurable set. We shall denote its Lebesgue measure by |E| and the characteristic function of E by χ_E .

As usual, a weight w is a measurable, non-negative and locally integrable function defined on \mathbb{R} .

Let w be a weight. Given a Lebesgue measurable set $E \subseteq \mathbb{R}$, its w-measure will be denote by $w(E) = \int_E w(t) dt$.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 26A33; Secondary: 42B25. Key words. Weyl fractional integral, weights, weighted Lebesgue and Lipschitz spaces, weighted BMO.

This research has been partially supported by UBACYT 2000-2002 and CONICET.

Let 1 . The weight <math>w belongs to the class A_p^- if there exists a constant C such that

$$\sup_{h>0} \left[\frac{1}{h^p} \int_a^{a+h} w(x) \, dx \left(\int_{a-h}^a w(x)^{-\frac{1}{p-1}} \, dx \right)^{p-1} \right] \le C,$$

for all real number a. In a similar way, w belongs to A_p^+ if

$$\sup_{h>0} \left[\frac{1}{h^p} \int_{a-h}^a w(x) \, dx \left(\int_a^{a+h} w(x)^{-\frac{1}{p-1}} \, dx \right)^{p-1} \right] \le C,$$

for all real number a. The class A_1^- is defined by the condition

$$\sup_{h>0} \left[\frac{1}{h} \int_{a}^{a+h} w(x) \, dx \right] \le Cw(a),$$

for almost every real number a. The weight w belongs to A_1^+ if

$$\sup_{h>0} \left[\frac{1}{h} \int_{a-h}^{a} w(x) \, dx \right] \le Cw(a),$$

for almost every a. These classes A_p^- and A_p^+ were introduced by E. Sawyer in [12]. We recall three basic results on these weights.

- (i) For 1 , a weight <math>w belongs to A_p^- if and only if $w^{1-p'}$ belongs to $A_{p'}^+$, where $\frac{1}{p} + \frac{1}{p'} = 1$.
- (ii) If $1 \le p < q < \infty$, then $A_p^- \subset A_q^-$.
- (iii) If 1 and <math>w belongs to A_p^- , then w belongs to $A_{p-\epsilon}^-$ for some $\epsilon > 0$.

The proof of (i) and (ii) are very simple and (iii) can be found in Proposition 3 in [3].

In the sequel, for each bounded interval I = [a, b] we shall denote $I^- = [a - |I|, a]$ and $I^+ = [b, b + |I|]$.

Let $1 \leq q < \infty$. A weight w satisfies the condition $RH^-(q)$ if there exists a constant C such that for every bounded interval I.

$$\left[\frac{1}{|I|} \int_{I} w(x)^{q} dx \right]^{1/q} \le C \frac{1}{|I|} \int_{I^{-}} w(x) dx.$$

We shall say that a weight w belongs to D^- if there exists a constant C such that for every bounded interval I,

$$w(I \cup I^+) \le Cw(I)$$
.

It is well known that if $w \in A_p^-$, $1 \le p < \infty$, then $w \in D^-$.

Let w be a weight, $1 \le p < \infty$ and f a measurable function. We shall say that f belongs to L^p_w if

$$||f||_{p,w}^p = \int_{-\infty}^{\infty} \left[\frac{|f(x)|}{w(x)} \right]^p dx$$

is finite. The function f belongs to L_w^p if

$$[f]_{p,w}^p = \sup_{t>0} t^p \left| \left\{ x \in \mathbb{R} : \frac{|f(x)|}{w(x)} > t \right\} \right|$$

is finite.

Let $0 < \alpha < 1$. Given f a measurable function on \mathbb{R} , its Weyl fractional integral is defined by

$$I_{\alpha}^{+}f(x) = \int_{x}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} \, dy,$$

whenever this integral is finite.

In the sequel, the letter C will denote a positive finite constant not necessarily the same at each occurrence. If $1 \le p \le \infty$ then p' will be its conjugate exponent, that is, 1/p + 1/p' = 1.

Let w be a weight and $-1 < \beta < 1$.

Definition 1.1. We say that a locally integrable function f defined on \mathbb{R} belongs to $\mathcal{L}_w(\beta)$, if there exists a constant C such that

$$\frac{1}{w(I)|I|^{\beta}} \int_{I} |f(y) - f_I| \, dy \le C,$$

for every bounded interval I, where $f_I = \frac{1}{|I|} \int_I f$. The least constant C will be denoted $||f||_{\mathcal{L}_w(\beta)}$.

The spaces $\mathcal{L}_w(\beta)$ were introduced by E. Harboure, O. Salinas and B. Viviani in [1]. They are a weighted version of the spaces $\mathcal{L}_{\lambda,p}$, for p=1, defined by J. Peetre in [8]. If w belongs to A_q^- , $1 \leq q < 2$, then $\mathcal{L}_w(0)$ is the dual space of the one-sided weighted Hardy space $H_-^1(w)$, see [10] and [11].

Definition 1.2. We say that a locally integrable function f defined on \mathbb{R} belongs to $\mathcal{L}_{w}^{-}(\beta)$, if there exists a constant C such that

$$\frac{1}{w(I^{-})|I|^{\beta}} \int_{I} |f(y) - f_{I}| \, dy \le C,$$

for every bounded interval I. The least constant C satisfying this inequality will be denoted $||f||_{L^{\infty}(\beta)}$.

In the following definition, we consider a one-sided version of the classes $H(\alpha, p)$ defined in [1].

Definition 1.3. Let $0 < \alpha < 1$ and 1 . We say that a weight <math>w belongs to $H^-(\alpha, p)$ if there exists a constant C such that for every bounded interval I = [a, b], the inequality

$$|I|^{\frac{1}{p}-\alpha+1} \left[\int_b^\infty \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} \, dy \right]^{1/p'} \le C \frac{w(I)}{|I|},$$

holds.

2. Statement of the main results

Lemma 4.1(iii) shows that if w belongs to $H^-(\alpha, p)$, 1 , then <math>w belongs to D^- and therefore $\mathcal{L}_w(\beta) \subseteq \mathcal{L}_w^-(\beta)$ for every β : $-1 < \beta < 1$. The next theorem states that w belonging to D^- is a sufficient condition for the equality of these spaces, whenever $0 \le \beta < 1$.

Theorem 2.1. Let $0 \le \beta < 1$ and let w belong to D^- . Then, the spaces $\mathcal{L}_w(\beta)$ and $\mathcal{L}_w^-(\beta)$ are equal, and their norms are equivalent.

The next theorem gives us a characterization of the spaces $\mathcal{L}_w(\beta)$, $0 \leq \beta < 1$, whenever w belongs to A_p^- . In the case $\beta = 0$, we shall prove this result using Proposition 3.6, which states a one-sided weighted version of John-Nirenberg Inequality.

Theorem 2.2. Let $0 \le \beta < 1$ and $1 \le p < \infty$. Let w be a weight such that w belongs to A_p^- . Then, $f \in \mathcal{L}_w(\beta)$ if and only if there exists a constant C such that

(2.1)
$$\int_{I^{-}} |f(x) - f_{I^{+}}|^{q} w(x)^{1-q} dx \le Cw(I^{-})|I|^{\beta q},$$

for all bounded interval I and every $q: 1 \le q \le p', \ q < \infty$.

The following two theorems state a sufficient and necessary condition on the weight w to obtain extensions of I_{α}^{+} defined on certain spaces.

Theorem 2.3. Let $0 < \alpha < 1$, $1 and <math>\beta = \alpha - 1/p$. The following statements are equivalent.

- (i) The weight w belongs to $H^{-}(\alpha, p)$.
- (ii) The operator I_{α}^+ can be extended to a linear bounded operator I_{α}^+ from $\widetilde{L_w^p}$ into $\mathcal{L}_w^-(\beta)$ by means of

$$(2.2) \quad \widetilde{I}_{\alpha}^{+}(f)(x) = -\int_{x_0}^{x} \frac{f(y) \, dy}{|y - x|^{1 - \alpha}} + \int_{x_0}^{\infty} \left[\frac{1}{|y - x|^{1 - \alpha}} - \frac{1 - \chi_{[x_0, x_0 + 1]}(y)}{(y - x_0)^{1 - \alpha}} \right] f(y) \, dy,$$

for any $x_0 \in \mathbb{R}$.

(iii) The operator I_{α}^+ can be extended to a linear bounded operator $\widetilde{I_{\alpha}^+}$ from L_w^p into $\mathcal{L}_w^-(\beta)$, where $\widetilde{I_{\alpha}^+}$ is defined as in (2.2).

Theorem 2.4. Let w a weight and $0 < \alpha < 1$. The following statements are equivalent.

- (i) The weight w belongs to $H^{-}(\alpha, \infty)$.
- (ii) The operator I_{α}^+ can be extended to a linear bounded operator $\widetilde{I_{\alpha}^+}: \mathcal{L}_w(0) \to \mathcal{L}_w(\alpha)$ by means of

$$\widetilde{I_{\alpha}^{+}}(f)(x) = \int_{-\infty}^{\infty} \left[\frac{\chi_{[x_0,\infty)}(y)}{|y-x_0|^{1-\alpha}} - \frac{\chi_{[x,\infty)}(y)}{|y-x|^{1-\alpha}} \right] f(y) \, dy,$$

for an appropriate choice of $x_0 \in \mathbb{R}$.

Remark 2.5. Let $1 and <math>\beta = \alpha - 1/p < 0$.

- (i) It is easy to see that if w belongs to $RH^{-}(\frac{1}{1+\beta})$, then $L_w^{-1/\beta} \subseteq \mathcal{L}_w^{-}(\beta)$.
- (ii) By Lemma 4.4 in [9], if $w^{p'}$ belongs to $A^-_{-\beta p'+1}$ then w satisfies the condition $RH^-(p')$, and taking into account that $\frac{1}{1+\beta} < p'$, it follows that w belongs to $RH^-(\frac{1}{1+\beta})$.
- (iii) Theorem 6 in [4] states the fact that $w^{p'}$ belongs to $A^-_{-\beta p'+1}$ is a necessary and sufficient condition for the boundedness of I^+_{α} from L^p_w into $L^{-1/\beta}_w \subseteq \mathcal{L}^-_w(\beta)$.
- (iv) If $w^{p'}$ belongs to $A^-_{-\beta p'+1}$, since $w^{p'} \in A^-_{p'+1}$, we have that w belongs to $H^-(\alpha, p)$. However, there exist weights w belonging to $H^-(\alpha, p)$ such that $w^{p'}$ does not belong to $A^-_{p'+1}$, for example, $w(x) = |x|^{\gamma}$ for $-\beta \leq \gamma < 1 \beta$, see Remark 4.3.

In consequence, if $-1 < \beta < 0$ and $w^{p'}$ belongs to $A^-_{-\beta p'+1}$, the extension of I^+_{α} in Theorem 2.3 can be obtained from Theorem 6 in [4]. But, (iv) shows that Theorem 2.3 can be applied to a larger class of weights.

Remark 2.6. Let w be a weight. We shall say that a locally integrable function f defined on \mathbb{R} , belongs to $MW^-(w)$ if there exists a constant C such that

$$\frac{1}{|I|} \frac{1}{\operatorname{ess inf}_{I^{-}} w} \int_{I} |f(y) - f_{I}| \, dy \le C,$$

for every bounded interval I.

- (i) By Definition 1.2, it follows that $MW^-(w) \subseteq \mathcal{L}_w^-(0)$. Moreover, if w belongs to A_1^- then $\mathcal{L}_w(0) \subseteq MW^-(w)$, and as a consequence of Theorem 2.1, $\mathcal{L}_w^-(0) = MW^-(w)$.
- (ii) Following the same lines of Theorem 7 in [7], it can be seen that, in the case $\alpha = 1/p$, the weight $w^{p'}$ belongs to A_1^- if and only if the operator I_{α}^+ is bounded from L_w^p into $MW^-(w)$. Also see [2].
- (iii) If $w^{p'}$ belongs to A_1^- then, by Remark 4.3, w belongs to $H^-(\alpha, p)$.

In consequence, the fact that $w^{p'}$ belongs to A_1^- implies the boundedness of I_{α}^+ from L_w^p into $MW^-(w)$, is contained in Theorem 2.3.

3. The spaces $\mathcal{L}_w(\beta)$ and $\mathcal{L}_w^-(\beta)$

The next lemma will be used in the proof of Theorem 2.1.

Lemma 3.1. Let $-1 < \beta < 1$, f a locally integrable function defined on \mathbb{R} , and $w \in D^-$. The following statements are equivalent.

- (i) $f \in \mathcal{L}_w^-(\beta)$.
- (ii) There exists a constant C such that for every $a \in \mathbb{R}$ and h > 0,

$$\frac{1}{w([a-h/2,a])h^{\beta}} \int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| \, dy \le C.$$

(iii) There exists a constant C such that for every $a \in \mathbb{R}$ and h > 0,

$$\frac{1}{w([a-h/2,a])h^{\beta}} \int_{a}^{a+h} |f(y) - f_{[a+h,a+3h]}| \, dy \le C.$$

The constants C in (ii) and (iii) are equivalent to $||f||_{\mathcal{L}_{\infty}^{-}(\beta)}$.

Proof: (i) \Rightarrow (ii). Using (i) and taking into account that $w \in D^-$, we have

$$\begin{split} & \int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| \, dy \\ & \leq \int_{a}^{a+h/2} |f(y) - f_{[a+h/4,a+h/2]}| \, dy + 2 \int_{a+h/4}^{a+h} |f(y) - f_{[a+h/2,a+h]}| \, dy \\ & \leq 3 \int_{a}^{a+h/2} |f(y) - f_{[a,a+h/2]}| \, dy + 5 \int_{a+h/4}^{a+h} |f(y) - f_{[a+h/4,a+h]}| \, dy \\ & \leq C \|f\|_{\mathcal{L}^{-}_{w}(\beta)} w([a-h/2,a]) h^{\beta} + C \|f\|_{\mathcal{L}^{-}_{w}(\beta)} w([a-h/2,a+h/4]) h^{\beta} \\ & \leq C \|f\|_{\mathcal{L}^{-}_{w}(\beta)} w([a-h/2,a]) h^{\beta}. \end{split}$$

From these inequalities and using (i) again, we have the estimate

$$\begin{split} & \int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| \, dy \\ & = \int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| \, dy + \int_{a+h/2}^{a+h} |f(y) - f_{[a+h/2,a+h]}| \, dy \\ & \leq C \|f\|_{\mathcal{L}_{w}^{-}(\beta)} w([a-h/2,a]) h^{\beta} + C \|f\|_{\mathcal{L}_{w}^{-}(\beta)} w([a,a+h/2]) h^{\beta} \\ & \leq C \|f\|_{\mathcal{L}_{w}^{-}(\beta)} w([a-h/2,a]) h^{\beta}, \end{split}$$

which shows that (ii) holds. In a similar way it can be proved that (ii) \Rightarrow (iii) and (iii) \Rightarrow (i).

As we have already mencioned if w belongs to D^- then, for every $-1 < \beta < 1$ we have the inclusion $\mathcal{L}_w(\beta) \subseteq \mathcal{L}_w^-(\beta)$. In order to prove Theorem 2.1, it will be sufficient to show that $\mathcal{L}_w^-(\beta) \subseteq \mathcal{L}_w(\beta)$.

Proof of Theorem 2.1: We suppose that $f \in \mathcal{L}_w^-(\beta)$. Let $a \in \mathbb{R}$ and h > 0. For each $j \geq 0$ we define $a_j = a + h/2^j$. Then,

$$\int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$= \sum_{j=1}^{\infty} \int_{a_{j+1}}^{a_{j}} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$\leq \sum_{j=1}^{\infty} \int_{a_{j+1}}^{a_{j}} |f(y) - f_{[a_{j},a_{j-1}]}| dy + \sum_{j=2}^{\infty} \frac{h}{2^{j+1}} |f_{[a_{j},a_{j-1}]} - f_{[a_{1},a_{0}]}|$$

$$= I + II.$$

Taking into account that for each $j \geq 2$,

$$|f_{[a_j,a_{j-1}]} - f_{[a_1,a_0]}| \le \frac{2^j}{h} \int_{a_j}^{a_{j-1}} |f - f_{[a+h/2,a+h]}|$$

it follows that,

$$II \le \sum_{j=2}^{\infty} \frac{1}{2} \int_{a_j}^{a_{j-1}} |f - f_{[a+h/2,a+h]}| = \frac{1}{2} \int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| \, dy.$$

Then, by (3.1)

(3.2)
$$\int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| \, dy \le 2I.$$

Now, using (iii) of Lemma 3.1 and keeping in mind that $\beta \geq 0$ we have that,

(3.3)
$$I \le C \sum_{j=1}^{\infty} \left(\frac{h}{2^{j}}\right)^{\beta} w([a_{j+2}, a_{j+1}]) \le C h^{\beta} w([a, a + h/4]).$$

From (3.2) and (3.3), and taking into account that $f \in \mathcal{L}_w^-(\beta)$, we get

$$\int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$= \int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy + \int_{a+h/2}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$\leq Ch^{\beta} w([a, a+h/4]) + Ch^{\beta} w([a, a+h/2])$$

$$\leq Ch^{\beta} w([a, a+h]).$$

Therefore,

$$\int_{a}^{a+h} |f(y) - f_{[a,a+h]}| \, dy$$

$$\leq 3 \int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| \, dy \leq Ch^{\beta} w([a,a+h]),$$

which shows that $f \in \mathcal{L}_w(\beta)$.

Remark 3.2. Let $-1 < \beta < 0$ and $w(t) = e^{-t}$. The weight w belongs to A_1^- however, we only have the strict inclusion $\mathcal{L}_w(\beta) \subset \mathcal{L}_w^-(\beta)$. For example, given a > 1 we consider the function

$$f(t) = \begin{cases} e^{-at}, & t \ge 0\\ 1, & t < 0. \end{cases}$$

We observe, using Remark 2.5(i), that $f \in \mathcal{L}_w^-(\beta)$. On the other hand,

$$\begin{split} \frac{1}{h^{\beta}w([0,h])} \int_{0}^{h} |f - f_{[h,2h]}| &= \frac{1}{h^{\beta}(1 - e^{-h})} \left[\frac{1 - e^{-ah}}{a} - \frac{e^{-ah}}{a} (1 - e^{-ah}) \right] \\ &= \frac{(1 - e^{-ah})^{2}}{h^{\beta}(1 - e^{-h})a}, \end{split}$$

which tends to infinite whenever h tends to infinite. This implies that $f \notin \mathcal{L}_w(\beta)$.

The next proposition will be used in the proof of Theorem 2.2.

Proposition 3.3. Let $0 < \beta < 1$ and let w belong to D^- . Then, $f \in \mathcal{L}_w(\beta)$ if and only if, there exists a constant C such that

$$(3.4)$$
 $|f(x) - f(y)|$

$$\leq C \left[\int_{x}^{x+\frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} \, dz + \int_{y}^{y+\frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} \, dz \right],$$

for almost every real numbers x and y.

Proof: We suppose that $f \in \mathcal{L}_w(\beta)$. We shall show that for every h > 0 and almost every x,

$$(3.5) |f(x) - f_{[x+h/2,x+h]}| \le C \int_x^{x+h/2} \frac{w(z)}{(z-x)^{1-\beta}} dz.$$

For each $i \ge 0$ let $x_i = x + h/2^i$. If x is a Lebesgue point of f we have that,

$$|f(x) - f_{[x+h/2,x+h]}| \leq |f(x) - f_{[x_{i+1},x_i]}| + |f_{[x_{i+1},x_i]} - f_{[x_1,x_0]}|$$

$$\leq |f(x) - f_{[x_{i+1},x_i]}| + \sum_{j=1}^{i} |f_{[x_{j+1},x_j]} - f_{[x_j,x_{j-1}]}|$$

$$\leq \sum_{j=1}^{\infty} |f_{[x_{j+1},x_j]} - f_{[x_j,x_{j-1}]}|.$$

For each $j \geq 1$, since $f \in \mathcal{L}_w(\beta)$ we obtain

$$|f_{[x_{j+1},x_j]} - f_{[x_j,x_{j-1}]}| \le C \frac{1}{(x_{j+1} - x_{j-1})^{1-\beta}} w([x_{j+1},x_{j-1}]).$$

From this inequality, (3.6) and taking into account that $w \in D^-$ we get,

$$|f(x) - f_{[x+h/2,x+h]}| \le C \sum_{j=1}^{\infty} \int_{x_{j+1}}^{x_{j-1}} \frac{w(z)}{(z-x)^{1-\beta}} dz$$

$$= C \int_{x}^{x+h} \frac{w(z)}{(z-x)^{1-\beta}} dz$$

$$\le C \int_{x}^{x+h/2} \frac{w(z)}{(z-x)^{1-\beta}} dz,$$

which shows that (3.5) holds. Let x < y two Lebesgue points of f. By (3.5) we have that,

$$|f(x)-f(y)| \leq |f(x) - f_{\left[\frac{x+y}{2},y\right]}| + |f(y) - f_{\left[y+\frac{y-x}{2},y+(y-x)\right]}| + |f_{\left[\frac{x+y}{2},y\right]} - f_{\left[y+\frac{y-x}{2},y+(y-x)\right]}|$$

$$\leq C \left[\int_{x}^{x+\frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz + \int_{y}^{y+\frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz \right]$$

$$+ |f_{\left[\frac{x+y}{2},y\right]} - f_{\left[y+\frac{y-x}{2},y+(y-x)\right]}|.$$

From the hypotheses $f \in \mathcal{L}_w(\beta)$ and $w \in D^-$, it follows that the third term on the right hand is bounded by

$$\frac{C}{y-x} \int_{x+\frac{y-x}{2}}^{y+(y-x)} |f(t) - f_{[x+\frac{y-x}{2},y+(y-x)]}| dt$$

$$\leq \frac{C}{(y-x)^{1-\beta}} w([x,y+\frac{y-x}{2}]) \leq C \int_{x}^{(x+y)/2} \frac{w(z)}{(z-x)^{1-\beta}} dz.$$

Therefore, by (3.7) we have that (3.4) holds.

Conversely, given a real number a and h > 0, by (3.4)

$$(3.8) \int_{a}^{a+h} |f(x) - f_{[a,a+h]}| dx$$

$$\leq C \left[\int_{a}^{a+h} \int_{x}^{x+\frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz dx + \int_{a}^{a+h} \int_{y}^{y+\frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz dy \right].$$

Changing the order of integration and taking into account that $w \in D^-$, it follows that (3.8) is bounded by $Ch^{\beta}w([a,a+h])$. This completes the proof of the proposition.

The next two lemmas will be needed in the proof of Proposition 3.6.

Lemma 3.4. Let $w \in D^-$ and $f \in \mathcal{L}_w(0)$. Given two intervals $I \subseteq J$ the inequality

$$\frac{1}{w(J)} \int_{I} |f(y) - f_{I^{+}}| \chi_{I^{-} \cup I}(y) \, dy \le C \|f\|_{\mathcal{L}_{w}(0)},$$

holds with a constant C only depending on w.

Proof: Let I = (a, b) and J = (c, d). We consider $\alpha = \max\{a - |I|, c\}$ and $\beta = b + |I|$. Since $J \cap (I^- \cup I) \subseteq (\alpha, \beta)$ we have that,

(3.9)
$$\frac{1}{w(J)} \int_{J} |f(y) - f_{I^{+}}| \chi_{I^{-} \cup I}(y) \, dy \leq \frac{1}{w(J)} \int_{\alpha}^{\beta} |f(y) - f_{I^{+}}| \, dy$$

$$\leq \frac{1}{w(J)} \left[\int_{\alpha}^{\beta} |f(y) - f_{(\alpha,\beta)}| \, dy + \frac{(\beta - \alpha)}{|I^{+}|} \int_{I^{+}} |f(y) - f_{(\alpha,\beta)}| \, dy \right].$$

We observe that $(\beta - \alpha) \leq 3|I|$, which implies

$$(3.9) \le \frac{4}{w(J)} \int_{\alpha}^{\beta} |f(y) - f_{(\alpha,\beta)}| \, dy.$$

From the hypotheses $f \in \mathcal{L}_w(0)$ and $w \in D^-$, and taking into account that $(\alpha, \beta) \subseteq J \cup J^+$, (3.9) is bounded by

$$\frac{4}{w(J)} \|f\|_{\mathcal{L}_w(0)} w((\alpha, \beta)) \le C \|f\|_{\mathcal{L}_w(0)},$$

as we wanted to prove.

Lemma 3.5. Let $1 and <math>w \in A_p^-$. Then, there exists a constant C such that for every $\beta > 0$ the inequality

(3.10)
$$w(\{x \in I^- : w(x) < \beta\}) \le C \left[\beta \frac{|I^+|}{w(I^+)}\right]^{p'} w(I^+),$$

holds.

Proof: This lemma is a simple variant of Lemma 3.1 in [6].

The following result is a one-sided weighted version of John-Nirenberg Inequality. For its proof we shall use the method employed in Theorem 3 in [6] and the techniques of Lemma 1 in [5].

Proposition 3.6. Let f belong to $\mathcal{L}_w(0)$. Then,

(i) If $w \in A_1^-$ there exist positive constants C_1 and C_2 such that for every $\lambda > 0$,

$$w(\{x \in I^- : |f(x) - f_{I^+}|w(x)^{-1} > \lambda\}) \le C_1 e^{-C_2 \lambda/\|f\|_{\mathcal{L}_w(0)}} w(I^-)$$

holds for every bounded interval I .

(ii) If $w \in A_p^-$, $1 there exists a positive constant <math>C_3$ such that for every $\lambda > 0$.

$$w(\{x \in I^- : |f(x) - f_{I^+}|w(x)^{-1} > \lambda\}) \le C_3 (1 + \lambda/\|f\|_{\mathcal{L}_w(0)})^{-p'} w(I^-)$$

holds for every bounded interval I .

Proof: Without loss of generality we can suppose that $||f||_{\mathcal{L}_w(0)} = 1$. For each $\lambda > 0$ and each bounded interval I, let

$$A(\lambda, I) = w(\{x \in I^- : |f(x) - f_{I^+}|w(x)^{-1} > \lambda\}),$$

and

(3.11)
$$\mathcal{A}(\lambda) = \sup \frac{A(\lambda, I)}{w(I^{-})},$$

where the supremum is taken over all $f: ||f||_{\mathcal{L}_w(0)} = 1$, and all bounded interval I. Thus, for every $\lambda > 0$, we have that $\mathcal{A}(\lambda) \leq 1$.

By Lemma 3.4 there exists a constant μ satisfying

(3.12)
$$\frac{1}{w(J)} \int_{J} |f(y) - f_{I^{+}}| \chi_{I^{-} \cup I}(y) \, dy \le \mu,$$

for every bounded intervals $I \subseteq J$ and every $f: ||f||_{\mathcal{L}_w(0)} = 1$.

Fixed I = [a, b], let $s > \mu$ and

$$\Omega_s = \{ x \in \mathbb{R} : M_w^-(|f - f_{I^+}| \chi_{I^- \cup I} w^{-1})(x) > s \},$$

where M_w^- is the left sided maximal function with respect to the measure w defined as

$$M_w^{-}(g)(x) = \sup_{h>0} \frac{\int_{x-h}^{x} |g(y)| w(y) \, dy}{w([x-h,x])}.$$

Since Ω_s is an open set, we can write $\Omega_s = \bigcup_{i \geq 1} J_i$, where the J_i 's are its connected components.

We observe that if $J_i \cap I^- \neq \emptyset$ then $J_i \cap I^+ = \emptyset$. In fact, suppose that $J_i \cap I^- \neq \emptyset$ and let $J_i = (\alpha, \beta)$. If $\beta \geq b$ a simple variant of Lemma 2.1 in [12], shows that

$$\mu < s \le \frac{1}{w((\alpha, b))} \int_{\alpha}^{b} |f(y) - f_{I+}| \chi_{I-\cup I}(y) \, dy.$$

However, using (3.12) we have that

$$\frac{1}{w((\alpha,b))} \int_{\alpha}^{b} |f(y) - f_{I^+}| \chi_{I^- \cup I}(y) \, dy \le \mu.$$

In consequence, $\beta < b$ and $J_i \cap I^+ = \emptyset$.

Let $\{J_i: J_i \cap I^- \neq \emptyset\} = \{H_i\}_{i \geq 1}$, where $H_i = (a_i, b_i)$. For each i, since $M_w^-(|f - f_{I^+}|\chi_{I^- \cup I} w^{-1})(b_i) \leq s$ we have that,

(3.13)
$$H_i \subseteq I^- \cup I \text{ and } \frac{1}{w(H_i)} \int_{H_i} |f(y) - f_{I^+}| \, dy = s.$$

By Lebesgue's Differentiation Theorem with respect to w for almost every $x \in I^- \setminus \bigcup_{i>1} H_i$,

$$|f(x) - f_{I^+}|w(x)^{-1} \le s.$$

Using (3.13), (3.12) and keeping in mind that $w \in D^-$, we obtained that

$$(3.14) \quad \sum_{i\geq 1} w(H_i) = \frac{1}{s} \sum_{i\geq 1} \int_{H_i} |f(y) - f_{I^+}| \, dy$$

$$\leq \frac{1}{s} \int_{I^- \cup I} |f(y) - f_{I^+}| \, dy \leq \frac{1}{s} \mu w(I^- \cup I) \leq \frac{1}{s} \mu C_w w(I^-).$$

Fixed $H_i = (a_i, b_i)$ we define the sequences $(x_k)_{k \ge 1}$ and $(y_k)_{k \ge 1}$ by $b_i - x_k = 2(b_i - y_k) = (2/3)^k |H_i|$, and the intervals $H_{i,k} = (x_k, y_k)$. Therefore,

(3.15)
$$H_{i} = \bigcup_{k>1} H_{i,k}^{-}, \quad \frac{1}{w(H_{i,k}^{+})} \int_{H_{i,k}^{+}} |f(y) - f_{I^{+}}| \, dy \le s,$$

and

$$|f(x) - f_{I^+}|w(x)^{-1} \le \lambda$$
 a.e. $x \in I^- \setminus \bigcup_{k \mid i} H_{i,k}^-$.

Then,

$$A(\lambda, I) \le \sum_{i,k} w(\{x \in H_{i,k}^- : |f(x) - f_{I^+}|w(x)^{-1} > \lambda\}).$$

If $\mu < s \le \lambda$ and $0 < \gamma < \lambda$, we have that

$$(3.16) \quad A(\lambda, I) \leq \sum_{i,k} w(\{x \in H_{i,k}^- : |f(x) - f_{H_{i,k}^+}|w(x)^{-1} > \lambda - \gamma\})$$
$$+ \sum_{i,l} w(\{x \in H_{i,k}^- : |f_{H_{i,k}^+} - f_{I^+}|w(x)^{-1} > \gamma\}) = I + II.$$

From (3.11), (3.15) and (3.14) we obtain the estimate

(3.17)
$$I \leq \sum_{i,k} \mathcal{A}(\lambda - \gamma) w(H_{i,k}^{-}) = \mathcal{A}(\lambda - \gamma) \sum_{i} w(H_{i})$$
$$\leq \frac{C_{w} \mu}{s} \mathcal{A}(\lambda - \gamma) w(I^{-}).$$

On the other hand, (3.15) implies that

$$(3.18) |f_{H_{i,k}^+} - f_{I^+}| \le \frac{1}{|H_{i,k}^+|} \int_{H_{i,k}^+} |f(y) - f_{I^+}| \, dy \le s \frac{w(H_{i,k}^+)}{|H_{i,k}^+|}.$$

If $w \in A_1^-$ there exists $\rho > 1$ such that for every i, k and almost every $x \in H_{i,k}^-$,

$$\frac{w(H_{i,k}^+)}{|H_{i,k}^+|} \le \rho w(x).$$

Then, using (3.18) we have

$$|f_{H_{i,k}^+} - f_{I^+}| \le \rho s \operatorname{ess inf}_{x \in H_{i,k}^-} w(x).$$

In consequence,

$$w(\{x \in H_{i,k}^- : |f_{H_{i,k}^+} - f_{I^+}|w(x)^{-1} > \gamma\})$$

$$\leq w\left(\left\{x \in H_{i,k}^- : w(x) < \frac{\rho s}{\gamma} \operatorname{ess\,inf}_{x \in H_{i,k}^-} w(x)\right\}\right).$$

Choosing $s = 2\mu C_w$ and $\gamma = \rho s$, if $\lambda > \gamma$ we have $\mu < s < \lambda$ and II = 0. Then, from (3.16) and (3.17) we obtain that

$$A(\lambda,I) \leq \frac{1}{2} \mathcal{A}(\lambda - \gamma) w(I^-),$$

that is, if $\lambda > \gamma$,

$$A(\lambda) \le \frac{1}{2}A(\lambda - \gamma).$$

Now, proceeding as in Theorem 3 of [6], it can be obtained (i) of this proposition.

In order to prove (ii), we suppose that $w \in A_p^-$, $1 . Using (3.18), Lemma 3.5 and taking into account that <math>w \in D^-$

$$w(\{x \in H_{i,k}^{-}: |f_{H_{i,k}^{+}} - f_{I^{+}}|w(x)^{-1} > \gamma\})$$

$$\leq w\left(\left\{x \in H_{i,k}^{-}: w(x) < \frac{s}{\gamma} \frac{w(H_{i,k}^{+})}{|H_{i,k}^{+}|}\right\}\right)$$

$$\leq C\left[\frac{s}{\gamma} \frac{w(H_{i,k}^{+})}{|H_{i,k}^{+}|} \frac{|H_{i,k}|}{w(H_{i,k})}\right]^{p'} w(H_{i,k})$$

$$\leq C\left(\frac{s}{\gamma}\right)^{p'} w(H_{i,k}^{-}).$$

By (3.15) and (3.14), we have

$$II \le C \left(\frac{s}{\gamma}\right)^{p'} \sum_{i,k} w(H_{i,k}^-) = C \left(\frac{s}{\gamma}\right)^{p'} \sum_i w(H_i) \le C \mu \frac{s^{p'-1}}{\gamma^{p'}} w(I^-).$$

Then, (3.16) and (3.17) imply that

$$A(\lambda,I) \leq C \mu \left\lceil \frac{A(\lambda-\gamma)}{s} + \frac{s^{p'-1}}{\gamma^{p'}} \right\rceil w(I^-).$$

From this inequality, (ii) follows as in Theorem 3 of [6].

Proposition 3.7. Let $0 < \beta < 1$ and 1 . Let <math>w be a weight such that $w^{1+\frac{\beta}{1-\beta}p}$ belongs to A_p^- . Then, $f \in \mathcal{L}_w(\beta)$ if and only if there exists a constant C such that (2.1) holds for all bounded interval I and every $q: 1 \le q \le p'/(1-\beta)$.

Proof: Suppose that (2.1) holds for every $q: 1 \le q \le p'/(1-\beta)$. Taking q=1 it is easy to show that $f \in \mathcal{L}_w(\beta)$. Conversely, let f belong to $\mathcal{L}_w(\beta)$. We observe that it will be sufficient to consider $q=p'/(1-\beta)$, because from this case and applying Hölder's inequality we obtain (2.1) for every $1 \le q < p'/(1-\beta)$. Given a bounded interval I and using Proposition 3.3, we have that

$$\int_{I^{-}} |f(x) - f_{I^{+}}|^{q} w(x)^{1-q} dx
\leq \int_{I^{-}} \left[\frac{1}{|I^{+}|} \int_{I^{+}} |f(x) - f(y)| dy \right]^{q} w(x)^{1-q} dx
\leq C \int_{I^{-}} w(x)^{1-q} \left[\frac{1}{|I^{+}|} \int_{I^{+}} \left(\int_{x}^{x + \frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz \right) dy \right]^{q} dx
(3.19)
$$+ \int_{y}^{y + \frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz \right) dy dx
\leq C \int_{I^{-}} w(x)^{1-q} \left(\int_{x}^{x + \frac{3|I|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz \right)^{q} dx
+ \frac{C}{|I^{+}|^{q}} \int_{I^{-}} w(x)^{1-q} \left(\int_{I^{+}} \int_{y}^{y + \frac{3|I|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz dy \right)^{q} dx
A + B$$$$

=A+B.

If we denote $J = I^- \cup I \cup I^+$ then we have the estimate

$$A \le C \int_{I^{-}} w(x)^{1-q} I_{\beta}^{+}(w\chi_{J})(x)^{q} dx.$$

Our hypothesis $w^{1+\frac{\beta}{1-\beta}p}\in A_p^-$ is equivalent to

$$(3.20) w^{1 - \frac{p'}{1 - \beta}} \in A_{p'}^+,$$

where $p' = 1 + \frac{q}{s'}$ and $\frac{1}{s} = \frac{1}{q} + \beta$. Then, by Theorem 6 in [4] it follows that

$$A \le C \left(\int_{-\infty}^{\infty} w(x)^{-\frac{s}{q'}} |w\chi_J(x)|^s dx \right)^{q/s} = C \left(\int_J w(x)^{s/q} dx \right)^{q/s}.$$

Since $q/s = q\beta + 1 > 1$, applying Hölder's inequality and taking into account that $w \in D^-$ we obtain

(3.21)
$$A \le C \int_{I} w(x) \, dx \, |J|^{\frac{q}{s}-1} \le Cw(I^{-})|I|^{\beta q}.$$

Let us estimate B. If we set $J' = I^+ \cup I^{++} \cup I^{+++}$, then

$$B \le \frac{C}{|I^+|^q} \int_{I^-} w(x)^{1-q} \left(\int_{I^+} I^+_{\beta}(w\chi_{J'})(y) \, dy \right)^q \, dx.$$

Applying Hölder's inequality,

$$B \le \frac{C}{|I^{+}|^{q}} \left(\int_{I^{-}} w(x)^{1-q} dx \right) \left(\int_{I^{+}} w(y) dy \right)^{q/q'} \int_{I^{+}} w(y)^{1-q} I_{\beta}^{+}(w\chi_{J'})(y)^{q} dx.$$

From (3.20), it follows that $w^{1-q} \in A_q^+$ then, we have that

$$B \le C \int_{I^+} w(y)^{1-q} I_{\beta}^+(w\chi_{J'})(y)^q dx.$$

Proceeding as in the estimation of A and taking into account that $w \in D^-$ we obtain

(3.22)
$$B < Cw(I^{-})|I|^{\beta q}$$
.

As consequence of (3.19), (3.21) and (3.22) we get (2.1) and the proof of this proposition is complete.

Proof of Theorem 2.2: We shall prove that f belonging to $\mathcal{L}_w(\beta)$ is a sufficient condition for (2.1) holds. The fact that (2.1) is a necessary condition follows as in the previous proposition. For that, we shall consider different cases.

First of all, we assume that $\beta = 0$ and $f \in \mathcal{L}_w(0)$. If $w \in A_1^-$ we have that (2.1) is an immediate consequence of Proposition 3.6(i). If

 $w \in A_p^-$, $1 , we have that <math>w \in A_{p-\epsilon}^-$ for some $\epsilon > 0$. Then, by Proposition 3.6(ii), and proceeding as in Theorem 4 of [6], we obtain that f satisfies (2.1).

Let $0 < \beta < 1$ and 1 . Since the weight <math>w belongs to A_p^- there exists $0 < \alpha < \beta$ such that $w^{1+\frac{\alpha}{1-\alpha}p}$ belongs to A_p^- . Proceeding as in (3.19), we have that

Substituting in the proof of the previous proposition α for β in the estimation of A and B we obtain this case.

Finally, we suppose that $0 < \beta < 1$ and p = 1. Since the weight w belongs to A_1^- it follows that w belongs to A_s^- for every $1 < s < \infty$. Then, by the previous case we obtain that (2.1) holds for every $1 \le q < \infty$.

4. The classes $H^-(\alpha, p)$

The next lemma states necessary conditions for that a weight w belongs to $H^{-}(\alpha, p)$.

Lemma 4.1. Let $1 . If <math>w \in H^-(\alpha, p)$ then,

- (i) $w^{p'}$ belongs $to \in D^-$,
- (ii) w belongs $to \in RH^-(p')$,
- (iii) w belongs $to \in D^-$.

Proof: The proof of (i) and (ii) are similar to ones of Lemma 3.7 and Lemma 3.8, in [1], respectively. Applying Hölder's inequality and (ii), we obtain (iii). □

Lemma 4.2. Let w be a weight. The following conditions are equivalent.

- (a) $w \in H^-(\alpha, p)$.
- (b) $w \in RH^{-}(p')$ and there exist positive constants C and ϵ such that, $w^{p'}([a, a + \theta t]) < C\theta^{(2-\alpha)p'-\epsilon}w^{p'}([a, a + t]),$

for every $a \in \mathbb{R}$, t > 0 and $\theta \ge 1$.

(c) There exist positive constants C and ϵ such that,

$$\left(\frac{w^{p'}([a, a+\theta t])}{\theta t}\right)^{1/p'} \le C\theta^{\frac{1}{p}+1-\alpha-\frac{\epsilon}{p'}} \frac{w([a-t, a])}{t},$$

for every $a \in \mathbb{R}$, t > 0 and $\theta \ge 1$.

Proof: (a) \Rightarrow (b). By Lemma 4.1(ii) we have that $w \in RH^{-}(p')$.

Let I = [a, a+t]. Applying Hölder's inequality and keeping in mind that $w \in H^-(\alpha, p)$,

$$(4.1) \frac{w^{p'}(I)}{|I|} \ge \left(\frac{w(I)}{|I|}\right)^{p'} \ge C|I|^{\left(\frac{1}{p}-\alpha+1\right)p'} \int_{a+t}^{\infty} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy$$

$$\ge C|I|^{\left(\frac{1}{p}-\alpha+1\right)p'} \sum_{k\ge 0} \frac{1}{(2^{k+1}t)^{(2-\alpha)p'}} \int_{a+2^kt}^{a+2^{k+1}t} w(y)^{p'} dy.$$

Since $\sum_{i\geq k} \left(\frac{1}{2^{(2-\alpha)p'}}\right)^i = C\left(\frac{1}{2^{(2-\alpha)p'}}\right)^k$, by (4.1) and applying Fubini's Theorem,

$$\begin{split} \frac{w^{p'}(I)}{|I|} &\geq C|I|^{(\frac{1}{p}-\alpha+1)p'} \frac{1}{t^{(2-\alpha)p'}} \sum_{k\geq 0} \int_{a+2^k t}^{a+2^{k+1}t} w(y)^{p'} \, dy \sum_{i\geq k} \left(\frac{1}{2^{(2-\alpha)p'}}\right)^i \\ &= C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\geq 0} \frac{1}{(2^i t)^{(2-\alpha)p'}} \sum_{k=0}^i \int_{a+2^k t}^{a+2^{k+1}t} w(y)^{p'} \, dy \\ &= C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\geq 0} \frac{1}{(2^i t)^{(2-\alpha)p'}} \int_{a+t}^{a+2^{i+1}t} w(y)^{p'} \, dy. \end{split}$$

Therefore,

$$\frac{w^{p'}(I)}{|I|} \ge C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\ge 0} \frac{1}{(2^i t)^{(2-\alpha)p'}} \int_a^{a+2^{i+1}t} w(y)^{p'} dy$$

$$\ge C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\ge 0} \int_{2^i t}^{2^{i+1}t} \frac{w^{p'}([a,a+s])}{s^{(2-\alpha)p'}} \frac{ds}{s}$$

$$= C|I|^{(\frac{1}{p}-\alpha+1)p'} \int_a^{\infty} \frac{w^{p'}([a,a+s])}{s^{(2-\alpha)p'}} \frac{ds}{s}.$$

In consequence,

$$\int_{t}^{\infty} \frac{w^{p'}([a, a+s])}{s^{(2-\alpha)p'}} \frac{ds}{s} \le C \frac{w^{p'}([a, a+t])}{t^{(2-\alpha)p'}}.$$

Now, using Lemma 3.3 in [1] with $\varphi(s) = w^{p'}([a, a+s])$ and $r = (2-\alpha)p'$, there exist C and ϵ such that

$$\varphi(\theta t) \le C\theta^{r-\epsilon}\varphi(t),$$

for every t > 0 and $\theta \ge 1$. That is,

$$w^{p'}([a, a+\theta t]) \le C\theta^{(2-\alpha)p'-\epsilon} w^{p'}([a, a+t]),$$

for every t > 0 and $\theta \ge 1$, This completes the proof of (a) \Rightarrow (b).

(b)
$$\Rightarrow$$
 (a). Let $I = [a, a+t]$. If (b) holds, we have that
$$\left(\int_{a+t}^{\infty} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy \right)^{1/p'}$$

$$= \left(\sum_{k=0}^{\infty} \int_{a+2^k t}^{a+2^{k+1}t} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy \right)^{1/p'}$$

$$\leq \left(\sum_{k=0}^{\infty} \frac{1}{(2^k t)^{(2-\alpha)p'}} w^{p'} ([a+t, a+t+2^{k+1}t]) \right)^{1/p'}$$

$$\leq C \left(\sum_{k=0}^{\infty} \frac{(2^{k+1})^{(2-\alpha)p'-\epsilon}}{(2^k t)^{(2-\alpha)p'}} w^{p'} ([a+t, a+2t]) \right)^{1/p'}$$

$$\leq C \left(\frac{1}{t} \int_{a+t}^{a+2t} w(y)^{p'} dy \right)^{1/p'} t^{\frac{1}{p'}-2+\alpha} .$$

Using the hypothesis $w \in RH^{-}(p')$ we obtain that (4.2) is bounded by

$$C\frac{1}{t} \int_{a}^{a+t} w(y) \, dy \, t^{\frac{1}{p'}-2+\alpha} = C \frac{w([a,a+t])}{t^{\frac{1}{p}+2-\alpha}},$$

which shows that $w \in H^-(\alpha, p)$.

The proof of (b) \Rightarrow (c) is very simple and we shall omit it.

(c) \Rightarrow (b). Taking $\theta = 1$ in (c) we have that $w \in RH^-(p')$. Using (c) and Hölder's inequality,

$$\left(\frac{w^{p'}([a-t,a+\theta t])}{\theta t}\right)^{1/p'} = \left(\frac{w^{p'}([a-t,a])}{\theta t} + \frac{w^{p'}([a,a+\theta t])}{\theta t}\right)^{1/p'} \\
\leq \left(\frac{w^{p'}([a-t,a])}{\theta t}\right)^{1/p'} + C\theta^{\frac{1}{p}+1-\alpha-\frac{\epsilon}{p'}}\left(\frac{w^{p'}([a-t,a])}{t}\right)^{1/p'}.$$

We can suppose that $\frac{1}{p}+1-\alpha-\frac{\epsilon}{p'}>0$, then taking into account that $\theta>1$

$$\left(\frac{w^{p'}([a-t,a-t+\theta t])}{\theta t}\right)^{1/p'} \le \left(\frac{w^{p'}([a-t,a+\theta t])}{\theta t}\right)^{1/p'} \\
\le C\theta^{\frac{1}{p}+1-\alpha-\frac{\epsilon}{p'}} \left(\frac{w^{p'}([a-t,a])}{t}\right)^{1/p'}.$$

From these inequalities with a = b + t we obtain that

$$w^{p'}([b, b + \theta t]) < C\theta^{(2-\alpha)p'-\epsilon}w^{p'}([b, b + t]),$$

which completes the proof.

Remark 4.3. It is easy to see that if $w^{p'}$ belongs to A_1^- then, $w \in H^-(\alpha,p)$. On the other hand, applying Lemma 4.2 (b) \Rightarrow (a), it follows that if $w(x) = |x|^{\gamma}$ with $0 < \gamma < 1/p - \alpha + 1$, then w belongs to $H^-(\alpha,p)$, but w does not belong to A_1^- . For $0 < \alpha < 1/p$, as an immediate consequence of Lemma 4.2 (c) \Rightarrow (a) it follows that if $w^{p'}$ belongs to $A_{p'+1}^-$ then, w belongs to $H^-(\alpha,p)$.

The next two lemmas show that if w belongs to $H^-(\alpha, p)$, $1 , then there exists <math>\eta > 0$ such that w belongs to $H^-(\alpha, q)$ for every $q: p - \eta < q < p + \eta$.

Lemma 4.4. Let $1 and <math>w \in H^-(\alpha, p)$. Then, there exists $\delta_0 \in (0, 1)$ such that $w \in H^-(\alpha, (p'\delta)')$ for any $\delta : \delta_0 < \delta \le 1$.

Proof: It is a simple variant of Lemma 3.13 in [1].

Lemma 4.5. Let $1 and <math>w \in H^-(\alpha, p)$. Then, there exists $\tau_0 > 1$ such that $w \in H^-(\alpha, (p'\tau)')$ for any $1 \le \tau \le \tau_0$.

Proof: Since $w \in RH^-(p')$ applying Theorem 5.3 in [9], there exists $\tau_0 > 1$ such that for every $\tau : 1 \le \tau \le \tau_0$ there exists a constant C such that

$$\left(\frac{1}{c-b} \int_{b}^{c} w(y)^{p'\tau} dy\right)^{\frac{1}{p'\tau}} \leq C \left(\frac{1}{b-a} \int_{a}^{b} w(y) dy\right)$$

$$\leq C \left(\frac{1}{b-a} \int_{a}^{b} w(y)^{p'} dy\right)^{\frac{1}{p'}}$$

for every a < b < c with c - b = 2(b - a). Let I = [a, b]. Using (4.3) we have that,

$$\int_{b}^{\infty} \frac{w(y)^{p'\tau}}{(y-a)^{(2-\alpha)p'\tau}} dy$$

$$= \sum_{k\geq 0} \int_{2^{k}|I|\leq y-a\leq 2^{k+1}|I|} \frac{w(y)^{p'\tau}}{(y-a)^{(2-\alpha)p'\tau}} dy$$

$$\leq \sum_{k\geq 0} \frac{1}{(2^{k}|I|)^{(2-\alpha)p'\tau}} \int_{2^{k}|I|\leq y-a\leq 2^{k+1}|I|} w(y)^{p'\tau} dy$$

$$\leq C \sum_{k\geq 0} \frac{1}{(2^{k}|I|)^{(2-\alpha)p'\tau-1}} \left(\frac{1}{2^{k}|I|} \int_{2^{k-1}|I|\leq y-a\leq 2^{k}|I|} w(y)^{p'} dy\right)^{\tau}.$$

Taking into account that $\tau > 1$, (4.4) is bounded by

$$C \sum_{k\geq 0} 2^{k} |I| \left(\frac{1}{2^{k} |I|} \int_{2^{k-1}|I| \leq y - a \leq 2^{k} |I|} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy \right)^{\tau}$$

$$\leq C|I|^{1-\tau} \left(\int_{\frac{|I|}{2} \leq y - a} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy \right)^{\tau}.$$

Keeping in mind that $w \in H^{-}(\alpha, p)$ we have,

$$\int_{b}^{\infty} \frac{w(y)^{p'\tau}}{(y-a)^{(2-\alpha)p'\tau}} \, dy \le C|I|^{1-\tau} \left(\frac{w([a,a+|I|/2])}{|I|}|I|^{-1/p+\alpha-1}\right)^{p'\tau}$$

$$= C\left(\frac{w(I)}{|I|} \frac{1}{|I|^{\frac{1}{(p'\tau)'}-\alpha+1}}\right)^{p'\tau},$$

which implies that $w \in H^{-}(\alpha, (p'\tau)')$.

Lemma 4.6. Let $1 < p_1 < p_2 < \infty$. Suppose that $w \in H^-(\alpha, p_i)$ for i = 1, 2. Then $w \in H^-(\alpha, p)$ for every $p : p_1 .$

Proof: This is an one-sided version of Lemma 3.15 in [1].

Lemma 4.7. Let $1 and <math>w \in RH^-(p')$. There exists a constant C such that for every $f \in \widetilde{L_w^p}$ and every bounded interval I = [a, b], if we denote $\widetilde{I}^- = [a - \frac{|I|}{2}, a]$ then,

$$\int_{I} |f(x)| \, dx \le C \frac{w(\widetilde{I}^{-})}{|I|^{1/p}} [f]_{p,w}.$$

Proof: Since $w \in RH^-(p')$ by Theorem 5.3 in [9], there exists s > p' such that $w \in RH^-(s)$, that is, there exists a constant C such that for every bounded interval I,

$$\left(\frac{1}{|I|}\int_I w(x)^s\,dx\right)^{1/s} \leq C\frac{w(\widetilde{I}^-)}{|I|}.$$

From this fact, the proof follows as in Lemma 4.1 of [1].

Lemma 4.8. Let $1 and <math>w \in H^-(\alpha, p)$. Then there exists a constant C such that for every $f \in \widetilde{L_w^p}$ and every bounded interval I = [a, b],

$$\int_{b}^{\infty} \frac{|f(y)|}{(y-a)^{2-\alpha}} \, dy \le C \frac{w(I)}{|I|^{2+\frac{1}{p}-\alpha}} [f]_{p,w}.$$

Proof: Taking into account Lemma 4.4 and Lemma 4.5, the proof of this lemma is similar to one in Lemma 4.4 of [1].

Lemma 4.9. Let $\alpha > 0$ and $\delta \geq 0$ such that $0 < \alpha + \delta < 1$. Let $w \in D^-$. For a < b, we denote $c = \frac{a+b}{2}$ and I = [c, b]. Then, for every $f \in \mathcal{L}_w(\delta)$, there exists a constant C such that,

(i)
$$\int_{b}^{\infty} \frac{|f(y) - f_I|}{(y - a)^{2 - \alpha}} dy \le C \|f\|_{\mathcal{L}_w(\delta)} \int_{c}^{\infty} \frac{w(y)}{(y - a)^{2 - \alpha - \delta}} dy.$$

(ii)
$$\int_a^b \frac{|f(y) - f_I|}{(y - a)^{1 - \alpha}} \, dy \le C \|f\|_{\mathcal{L}_w(\delta)} \int_a^c \frac{w(y)}{(y - a)^{1 - \alpha - \delta}} \, dy.$$

Proof: The proof of (i) and (ii) are similar, then we only prove (i).

For every $j \geq 0$, let $I_j = [a + 2^j | I|, a + 2^{j+1} | I|]$. We observe that $I_0 = [a + |I|, a + 2|I|] = [c, b] = I$. Since $f \in \mathcal{L}_w(\delta)$ we have that,

$$\int_{b}^{\infty} \frac{|f(y) - f_{I}|}{(y - a)^{2 - \alpha}} dy = \sum_{j=1}^{\infty} \int_{a+2^{j+1}|I|}^{a+2^{j+1}|I|} \frac{|f(y) - f_{I}|}{(y - a)^{2 - \alpha}} dy$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{2 - \alpha}} \int_{a+2^{j}|I|}^{a+2^{j+1}|I|} |f(y) - f_{I_{0}}| dy$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{2 - \alpha}} \left[\int_{a+2^{j}|I|}^{a+2^{j+1}|I|} |f(y) - f_{I_{j}}| dy$$

$$+2^{j}|I| \sum_{k=1}^{j} |f_{I_{k}} - f_{I_{k-1}}| \right]$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{1 - \alpha}} \left[C ||f||_{\mathcal{L}_{w}(\delta)} w(I_{j})(2^{j}|I|)^{\delta - 1} + \sum_{k=1}^{j} \frac{1}{|I_{k-1}|} \int_{I_{k-1}} |f(y) - f_{I_{k}}| dy \right].$$

Using that $f \in \mathcal{L}_w(\delta)$ and $w \in D^-$ we obtain the estimate,

$$\frac{1}{|I_{k-1}|} \int_{I_{k-1}} |f(y) - f_{I_k}| \, dy \le C \|f\|_{\mathcal{L}_w(\delta)} w(I_{k-1}) (2^{k-1} |I|)^{\delta - 1}.$$

Then applying Fubini's Theorem, (4.5) is bounded by

$$C\|f\|_{\mathcal{L}_{w}(\delta)} \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{1-\alpha}} \sum_{k=0}^{j} w(I_{k}) (2^{k}|I|)^{\delta-1}$$

$$= C\|f\|_{\mathcal{L}_{w}(\delta)} \sum_{k=0}^{\infty} w(I_{k}) (2^{k}|I|)^{\delta-1} \sum_{j=k}^{\infty} \frac{1}{(2^{j}|I|)^{1-\alpha}}$$

$$= C\|f\|_{\mathcal{L}_{w}(\delta)} \sum_{k=0}^{\infty} \frac{1}{(2^{k}|I|)^{2-\alpha-\delta}} \int_{a+2^{k}|I|}^{a+2^{k+1}|I|} w(y) \, dy$$

$$\leq C\|f\|_{\mathcal{L}_{w}(\delta)} \int_{c}^{\infty} \frac{w(y)}{(y-a)^{2-\alpha-\delta}} \, dy,$$

as we wanted to prove.

5. Proof of Theorems 2.3 and 2.4

Proof of Theorem 2.3: (i) \Rightarrow (ii). Let $w \in H^-(\alpha, p)$ and $x_0 \in \mathbb{R}$. Given $f \in \widetilde{L_w^p}$ let $\widetilde{I_\alpha^+}(f)$ define as in (2.2). Choose a bounded interval I = [a, a+h]. We consider $I_0 = [a+2h, x_0]$ if $a+2h \leq x_0$ and $I_0 = \emptyset$ if $x_0 < a+2h$, and we also define $I_1 = [x_0, a+2h]$ if $x_0 < a+2h$ and $I_1 = \emptyset$ in the other case. We set

$$a_I = \int_{I_0} \frac{f(y)}{(y-a)^{1-\alpha}} \, dy + \int_{x_0}^{\infty} \left[\frac{1-\chi_{I_1}(y)}{(y-a)^{1-\alpha}} - \frac{1-\chi_{[x_0,x_0+1]}(y)}{(y-x_0)^{1-\alpha}} \right] f(y) \, dy.$$

We shall show that a_I is a finite constant.

Suppose that $x_0 < a + 2h$. Let n be a positive integer such that $a + 2^n h > x_0 + 1$ and $|a - x_0| \le 2^{n-1} h$. Then,

$$a_I = \left(\int_{x_0}^{a+2^n h} + \int_{a+2^n h}^{\infty} \right) \left[\frac{1 - \chi_{[x_0, a+2h]}(y)}{(y-a)^{1-\alpha}} - \frac{1 - \chi_{[x_0, x_0+1]}(y)}{(y-x_0)^{1-\alpha}} \right] f(y) \, dy$$
$$= J_1 + J_2.$$

For each $y \ge a + 2^n h$, by Mean Value Theorem, there exists $\theta : 0 < \theta < 1$ such that,

$$\left| \frac{1}{(y-a)^{1-\alpha}} - \frac{1}{(y-x_0)^{1-\alpha}} \right| \le C \frac{|x_0 - a|}{|y - \theta a - (1-\theta)x_0|^{2-\alpha}} \le C \frac{|x_0 - a|}{|y - a|^{2-\alpha}}.$$

Then, applying Lemma 4.8, we have that

$$|J_2| \le C|x_0 - a| \int_{a+2^n h}^{\infty} \frac{|f(y)|}{|y - a|^{2-\alpha}} dy \le C|x_0 - a| \frac{w([a, a+2^n h])}{(2^n h)^{2+\frac{1}{p}-\alpha}} [f]_{p,w} < \infty.$$

On the other hand, since $f \in \widetilde{L_w^p}$ and using Lemma 4.7, we get

$$|J_1| \le \int_{a+2h}^{a+2^n h} \frac{|f(y)|}{(y-a)^{1-\alpha}} \, dy + \int_{x_0+1}^{a+2^n h} \frac{|f(y)|}{(y-x_0)^{1-\alpha}} \, dy$$

$$\le \frac{1}{(2h)^{1-\alpha}} \int_{a+2h}^{a+2^n h} |f(y)| \, dy + \int_{x_0+1}^{a+2^n h} |f(y)| \, dy < \infty.$$

The case $x_0 \ge a + 2h$ can be proved in a similar way.

Now, let

(5.1)
$$A(x) = \int_{x}^{a+2h} \frac{f(y)}{(y-x)^{1-\alpha}} dy$$
$$+ \int_{a+2h}^{\infty} \left[\frac{1}{(y-x)^{1-\alpha}} - \frac{1}{(y-a)^{1-\alpha}} \right] f(y) dy$$
$$= A_{1}(x) + A_{2}(x).$$

It follows that,

(5.2)
$$\widetilde{I_{\alpha}^{+}}(f)(x) = A(x) + a_{I}.$$

We shall show that,

$$\int_{I} |\widetilde{I_{\alpha}^{+}}(f)(x) - a_{I}| dx \le C|I|^{\alpha - 1/p} w(I^{-})[f]_{p,w}.$$

We observe that taking into account (5.2) and (5.1) it is sufficient to prove that

$$\int_{I} |A_{j}(x)| dx \le C|I|^{\alpha - 1/p} w(I^{-})[f]_{p,w},$$

for j=1,2. Applying Mean Value Theorem, Lemma 4.8 and Lemma 4.1(iii) for every $x \in I = [a, a+h]$ we have that,

$$|A_{2}(x)| \leq \int_{a+2h}^{\infty} \left| \frac{1}{(y-x)^{1-\alpha}} - \frac{1}{(y-a)^{1-\alpha}} \right| |f(y)| \, dy$$

$$\leq Ch \int_{a+2h}^{\infty} \frac{|f(y)|}{|y-a|^{2-\alpha}} \, dy \leq Ch \frac{w([a,a+2h])}{(2h)^{2+\frac{1}{p}-\alpha}} [f]_{p,w}$$

$$\leq C \frac{w([a-h,a])}{h^{1+\frac{1}{p}-\alpha}} [f]_{p,w}.$$

Therefore,

$$\int_{I} |A_2(x)| \, dx \le C|I|^{\alpha - 1/p} w(I^-)[f]_{p,w}.$$

With respect to $A_1(x)$, changing the order of integration and applying Lemma 4.7,

$$\int_{a}^{a+h} |A_{1}(x)| dx \leq \int_{a}^{a+h} \int_{x}^{a+2h} \frac{|f(y)|}{(y-x)^{1-\alpha}} dy dx$$

$$\leq \int_{a}^{a+2h} |f(y)| \int_{a}^{y} \frac{dx}{(y-x)^{1-\alpha}} dy$$

$$\leq Ch^{\alpha} \int_{a}^{a+2h} |f(y)| dy$$

$$\leq Ch^{\alpha-1/p} w([a-h,a])[f]_{p,w},$$

which completes the proof of (i) \Rightarrow (ii).

The implication (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i). Let $a \in \mathbb{R}$ and h > 0. We consider $f \geq 0$ such that $sop(f) \subseteq [a+4h,\infty)$. For each $x \in [a,a+h]$ we have that,

$$|I_{\alpha}^{+}(f)(x) - I_{\alpha}^{+}(f)_{[a+2h,a+3h]}|$$

$$= \frac{1}{h} \int_{a+2h}^{a+3h} \int_{a+4h}^{\infty} f(y) \left[\frac{1}{(y-t)^{1-\alpha}} - \frac{1}{(y-x)^{1-\alpha}} \right] dy dt.$$

Applying Mean Value Theorem, for each $y \ge a + 4h$ we obtain,

$$\frac{1}{(y-t)^{1-\alpha}} - \frac{1}{(y-x)^{1-\alpha}} \ge C \frac{|x-t|}{(y-a)^{2-\alpha}} \ge C \frac{h}{(y-a)^{2-\alpha}}.$$

In consequence,

$$|I_{\alpha}^{+}(f)(x) - I_{\alpha}^{+}(f)_{[a+2h,a+3h]}| \ge Ch \int_{a+4h}^{\infty} \frac{f(y)}{(y-a)^{2-\alpha}} dy.$$

Then, if $f \in L^p_w$, using (iii) we have that,

$$Ch^{2} \int_{a+4h}^{\infty} \frac{f(y)}{(y-a)^{2-\alpha}} dy \leq 2 \int_{a}^{a+3h} |I_{\alpha}^{+}(f)(x) - I_{\alpha}^{+}(f)_{[a,a+3h]}| dx$$

$$\leq C(3h)^{\beta} w([a-3h,a]) \left[\int \left(\frac{f(y)}{w(y)} \right)^{p} dy \right]^{1/p}.$$

Now, taking into account that $\beta = \alpha - 1/p$ it follows that,

$$(5.3) \quad h^{1/p-\alpha+1} \int_{a+4h}^{\infty} \frac{f(y)}{(y-a+3h)^{2-\alpha}} \, dy$$

$$\leq C \frac{w([a-3h,a+4h])}{h} \left[\int_{a+4h}^{\infty} \left(\frac{f(y)}{w(y)} \right)^p \, dy \right]^{1/p}.$$

For each m > 2 we put,

$$f_m(y) = \frac{w(y)^{p'}}{(y - a + 3h)^{\frac{2-\alpha}{p-1}}} \chi_{[a+4h,a+2^m h]}(y) \chi_{\{0 \le w \le m\}}(y).$$

It is easy to check that $f_m \in L_w^p$. Using (5.3) with f_m and taking the limit, we obtain that

$$h^{1/p-\alpha+1} \left(\int_{a+4h}^{\infty} \frac{w(y)^{p'}}{(y-a+3h)^{(2-\alpha)p'}} \, dy \right)^{1/p'} \le C \frac{w([a-3h,a+4h])}{h},$$

which shows that $w \in H^-(\alpha, p)$.

Remark 5.1. By Theorem 2.1, if $0 \le \beta < 1$, we can substitute in Theorem 2.3, $\mathcal{L}_w(\beta)$ for $\mathcal{L}_w^-(\beta)$. That is not possible for $-1 < \beta < 0$. In fact, if w and f are defined as in Remark 3.2(ii), then

$$I_{\alpha}^{+}(f)(x) = \begin{cases} \frac{\Gamma(\alpha)}{a^{\alpha}} e^{-ax}, & x \ge 0\\ \frac{|x|^{\alpha}}{\alpha} + \frac{e^{-ax}}{a^{\alpha}} \int_{a|x|}^{\infty} e^{-u} u^{\alpha - 1} du, & x < 0. \end{cases}$$

Therefore, the same arguments used in Remark 3.2 imply that $I_{\alpha}^{+}(f)$ does not belong to $\mathcal{L}_{w}(\beta)$.

Proof of Theorem 2.4: (i) \Rightarrow (ii). Let N be a positive integer. For any integer a applying Fubini's Theorem and taking into account that w is a locally integrable function, we have that

$$\int_{a}^{a+1} \int_{x}^{x+N} \frac{w(y)}{(y-x)^{1-\alpha}} \, dy \, dx < \infty.$$

In consequence, for almost every x and every positive integer N

(5.4)
$$\int_{x}^{x+N} \frac{w(y)}{(y-x)^{1-\alpha}} dy < \infty.$$

Let x_0 satisfying (5.4). We consider

(5.5)
$$\widetilde{I_{\alpha}^{+}}(f)(x) = \int_{-\infty}^{\infty} \left[\frac{\chi_{[x_{0},\infty)}(y)}{|y - x_{0}|^{1-\alpha}} - \frac{\chi_{[x,\infty)}(y)}{|y - x|^{1-\alpha}} \right] f(y) \, dy.$$

We shall show that if $f \in \mathcal{L}_w(0)$ then $I_{\alpha}^+(f)$, defined as in (5.5), is finite for every x satisfying (5.4). Fix x satisfying (5.4). Suppose that $x_0 < x$ and let $R \in \mathbb{Q} : x_0 < x \le x_0 + R/4$. We consider the interval $I = [x_0 + R/2, x_0 + R]$. Taking into account that the function $g(y) = \frac{\chi_{[x_0,\infty)}(y)}{|y-x_0|^{1-\alpha}} - \frac{\chi_{[x_0,\infty)}(y)}{|y-x|^{1-\alpha}}$ is integrable and $\int_{-\infty}^{\infty} g(y) \, dy = 0$ we can write,

$$\widetilde{I_{\alpha}^{+}}(f)(x) = \int_{-\infty}^{\infty} \left[\frac{\chi_{[x_0,\infty)}(y)}{|y - x_0|^{1-\alpha}} - \frac{\chi_{[x,\infty)}(y)}{|y - x|^{1-\alpha}} \right] [f(y) - f_I] dy$$
$$= I_1(x) + I_2(x),$$

where,

$$I_1(x) = \int_{x_0}^{x_0+R}$$
 and $I_2(x) = \int_{x_0+R}^{\infty}$.

We shall prove that

$$(5.6) \quad |\widetilde{I_{\alpha}^{+}}(f)(x)|$$

$$\leq C \|f\|_{\mathcal{L}_w(0)} \left[\int_{x_0}^{x_0 + 5R/4} \frac{w(y)}{(y - x_0)^{1 - \alpha}} \, dy + \int_x^{x + 5R/4} \frac{w(y)}{(y - x)^{1 - \alpha}} \, dy \right].$$

We observe that,

$$|I_1(x)| \le \int_{x_0}^{x_0+R} \frac{|f(y) - f_I|}{|y - x_0|^{1-\alpha}} \, dy + \int_x^{x_0+R} \frac{|f(y) - f_I|}{|y - x|^{1-\alpha}} \, dy.$$

Let J = [x + R/2, x + R]. Applying Lemma 4.9(ii) we have that

$$|I_{1}(x)| \leq \int_{x_{0}}^{x_{0}+R} \frac{|f(y) - f_{I}|}{|y - x_{0}|^{1 - \alpha}} dy$$

$$+ \int_{x}^{x+R} \frac{|f(y) - f_{J}|}{|y - x|^{1 - \alpha}} + |f_{I} - f_{J}| \int_{x}^{x+R} \frac{dy}{|y - x|^{1 - \alpha}}$$

$$\leq C ||f||_{\mathcal{L}_{w}(0)} \int_{x_{0}}^{x_{0}+R/2} \frac{w(y)}{(y - x_{0})^{1 - \alpha}} dy$$

$$+ C ||f||_{\mathcal{L}_{w}(0)} \int_{x}^{x+R/2} \frac{w(y)}{(y - x)^{1 - \alpha}} dy$$

$$+ \frac{R^{\alpha}}{\alpha} |f_{I} - f_{J}|.$$

Since $x_0 < x < x_0 + R/4$ and $f \in \mathcal{L}_w(0)$ we have,

$$R^{\alpha}|f_I - f_J| \le C||f||_{\mathcal{L}_w(0)} \int_{x_0}^{x_0 + 5/4R} \frac{w(y)}{(y - x_0)^{1-\alpha}} dy.$$

Then, by (5.7)

$$|I_1(x)| \leq C \|f\|_{\mathcal{L}_w(0)} \left[\int_{x_0}^{x_0 + 5R/4} \frac{w(y)}{(y - x_0)^{1 - \alpha}} \, dy + \int_x^{x + 5R/4} \frac{w(y)}{(y - x)^{1 - \alpha}} \, dy \right].$$

Now, let us estimate I_2 . Applying Mean Value Theorem,

$$|I_2(x)| \le \int_{x_0+R}^{\infty} \left| \frac{1}{|y-x_0|^{1-\alpha}} - \frac{1}{|y-x|^{1-\alpha}} \right| |f(y) - f_I| \, dy$$

$$\le C|x_0 - x| \int_{x_0+R}^{\infty} \frac{|f(y) - f_{[x_0+R/2, x_0+R]}|}{(y-x_0)^{2-\alpha}} \, dy.$$

Using Lemma 4.9(i) and taking into account that $w \in H^{-}(\alpha, \infty)$ we get,

$$|I_{2}(x)| \leq CR ||f||_{\mathcal{L}_{w}(0)} \int_{x_{0}+R/2}^{\infty} \frac{w(y)}{(y-x_{0})^{2-\alpha}} dy$$

$$\leq CR ||f||_{\mathcal{L}_{w}(0)} \frac{w([x_{0}, x_{0}+R/2])}{R^{2-\alpha}}$$

$$\leq C ||f||_{\mathcal{L}_{w}(0)} \int_{x_{0}}^{x_{0}+R/2} \frac{w(y)}{(y-x_{0})^{1-\alpha}} dy.$$

Then, if $x_0 < x < x_0 + R/4$ or in the case $x_0 - R/4 < x < x_0$, we have that (5.6) holds. Since $\mathbb{R} = \bigcup_{R \in \mathbb{Q} > 0} [x_0 - R/4, x_0 + R/4]$, it follows that $\widetilde{I_{\alpha}^+}(f)(x)$ is finite for almost every x.

Let us show that $I_{\alpha}^{+}(f) \in \mathcal{L}_{w}(\alpha)$. For almost every $x_1 < x_2$, if we define $R = 4|x_1 - x_2|$, we have that $x_1 < x_2 \le x_1 + R/4$ and using (5.6)

we get

$$\begin{split} |\widetilde{I_{\alpha}^{+}}(f)(x_{1}) - \widetilde{I_{\alpha}^{+}}(f)(x_{2})| \\ & \leq \int_{-\infty}^{\infty} \left| \frac{\chi_{[x_{1},\infty)}(y)}{(y-x_{1})^{1-\alpha}} - \frac{\chi_{[x_{2},\infty)}(y)}{(y-x_{2})^{1-\alpha}} \right| |f(y) - f_{[x_{1}+R/2,x_{1}+R]}| \, dy \\ & \leq C \|f\|_{\mathcal{L}_{w}(0)} \left[\int_{x_{1}}^{x_{1}+5|x_{1}-x_{2}|} \frac{w(y)}{(y-x_{1})^{1-\alpha}} \, dy \right. \\ & \left. + \int_{x_{2}}^{x_{2}+5|x_{1}-x_{2}|} \frac{w(y)}{(y-x_{2})^{1-\alpha}} \, dy \right]. \end{split}$$

Taking into account that $w \in D^-$ and using Proposition 3.3 it follows that $I_{\alpha}^+(f) \in \mathcal{L}_w(\alpha)$.

(ii) \Rightarrow (i). This implication is similar to (iii) \Rightarrow (i) in Theorem 2.3. \square

Corollary 5.2. Let $\alpha, \delta \in \mathbb{R}^+$ such that $0 < \alpha + \delta < 1$. The following statements are equivalent.

- (a) $w \in H^{-}(\delta, \infty)$ and the operator I_{α} can be extended to a linear bounded operator $\widetilde{I_{\alpha}^{+}}: \mathcal{L}_{w}(\delta) \to \mathcal{L}_{w}(\alpha + \delta)$.
- (b) $w \in H^-(\alpha + \delta, \infty)$.

Proof: The proof is a simple variant of Corollary 2.12 in [1].

References

- [1] E. HARBOURE, O. SALINAS AND B. VIVIANI, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, *Trans. Amer. Math. Soc.* **349(1)** (1997), 235–255.
- [2] R. A. Macías and M. S. Riveros, One-sided extrapolation at infinity and singular integrals, *Proc. Roy. Soc. Edinburgh Sect. A* 130(5) (2000), 1081–1102.
- [3] F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, *Proc. Amer. Math. Soc.* **117(3)** (1993), 691–698.
- [4] F. J. Martín-Reyes, L. Pick and A. de la Torre, A_{∞}^{+} condition, Canad. J. Math. **45(6)** (1993), 1231–1244.
- [5] F. J. MARTÍN-REYES AND A. DE LA TORRE, One-sided BMO spaces, J. London Math. Soc. (2) 49(3) (1994), 529–542.

- [6] B. MUCKENHOUPT AND R. L. WHEEDEN, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54(3) (1975/76), 221–237.
- [7] B. MUCKENHOUPT AND R. L. WHEEDEN, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.
- [8] J. PEETRE, On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Functional Analysis 4 (1969), 71–87.
- [9] M. S. RIVEROS AND A. DE LA TORRE, On the best ranges for A_p^+ and RH_r^+ , Czechoslovak Math. J. **51(126)**, no. 2 (2001), 285–301.
- [10] L. DE ROSA AND C. SEGOVIA, Weighted H^p spaces for one sided maximal functions, in: "Harmonic analysis and operator theory" (Caracas, 1994), Contemp. Math. 189, Amer. Math. Soc., Providence, RI, 1995, pp. 161–183.
- [11] L. DE ROSA AND C. SEGOVIA, Dual spaces for one-sided weighted Hardy spaces, *Rev. Un. Mat. Argentina* **40(3–4)** (1997), 49–71.
- [12] E. SAWYER, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, *Trans. Amer. Math. Soc.* **297(1)** (1986), 53–61.

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón I 1428 Ciudad de Buenos Aires Argentina

 $E ext{-}mail\ address: aldoc5@dm.uba.ar} \ E ext{-}mail\ address: lderosa@dm.uba.ar}$

Primera versió rebuda el 12 de desembre de 2001, darrera versió rebuda el 8 de juliol de 2002.