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MULTILINEAR SINGULAR INTEGRALS

Christoph M. Thiele

Abstract
We survey the thoery of multilinear singular integral operators
with modulation symmetry. The basic example for this theory
is the bilinear Hilbert transform and its multilinear variants. We
outline a proof of boundedness of Carleson’s operator which shows
the close connection of this operator to multilinear singular inte-
grals. We discuss particular multilinear singular integrals which
historically arose in the study of eigenfunctions of Schrödinger
operators.

This survey article arose from a series of three expository lectures
given at the 6th International Conference on Harmonic Analysis and
Partial Differential Equations at El Escorial 2000. I would like to thank
the organizers for organizing this stimulating and successful conference.

The article is divided into three chapters following the three lectures
at El Escorial. The first section gives an introduction into the subject
of multilinear singular integrals with modulation symmetries as it has
evolved over the past five years. The second section presents a proof
of boundedness of the Carleson operator, the essential ingredient in the
proof of Carleson’s theorem on almost everywhere convergence of Fourier
series. We follow closely the work [29], with additional comments as pre-
sented during the lecture. While Carleson’s operator is not a multilinear
operator itself, it serves as a good model for the type of arguments used
in the theory: thus the theory extends to other objects than multilinear
operators.

The third section is again purely expository and gives an overview of
how the discussed theory of multilinear singular integrals plays a role
in eigenfunction expansions of one dimensional Schrödinger operators.
In fact, some of the most prominent objects in the theory such as the
bilinear Hilbert transform and Carleson’s operator enter directly into
these multilinear expansions.
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1. Theory of multilinear singular integrals

1.1. Littlewood-Paley theory.

We start our discussion of multilinear singular integrals with an out-
line of an essential ingredient: Littlewood-Paley theory. While Little-
wood-Paley theory appears as an essential tool for singular integrals in
the linear and multilinear setting, it has its natural limitations in dealing
with modulation invariant operators, which are our focus in the multi-
linear theory. In the modulation invariant setting one has to add further
machinery to Littlewood-Paley theory, which will be one of the main
points in these lectures.

We describe the most basic concepts of Littlewood-Paley theory using
the example of the Hilbert transform. This central object of harmonic
analysis is a linear operator acting on functions on the real line defined
by

Hf(x) := p.v.
∫

R
f(x − t)

1
t

dt.

Alternatively one can write

H := −F−1MsignF ,(1)

where F is the Fourier transform defined by

Ff(x) :=
∫

R
f(x)e−iξx dx,

and

Msignf(x) := −iπ sign(x)f(x).(2)

The Hilbert transform is the prototype in one dimension of what is called
a singular integral. For general reference see [37] and its predecessors. In
this survey, we shall only be concerned with the one-dimensional theory,
although eventually Rn will come in as n-fold tensor product of the one-
dimensional R1 when we discuss multilinear operators.

As written down, the Hilbert transform is defined on the space of
Schwartz functions and has values in the space of tempered distributions.
However, it satisfies the regularity estimate

‖Hf‖p ≤ Cp‖f‖p
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for all 1 < p < ∞, where Cp is a universal constant and

‖f‖p :=
(∫

R
|f(x)|p dx

) 1
p

.(3)

This result is due to Kolmogorov [22] and Riesz [36]. Hence the Hilbert
transform extends to a bounded operator from Lp to itself. This result
is most easily seen for p = 2 from the formula (2), since F is an isometry
of the Hilbert space L2, and multiplication by the function sign is also
an isometry of L2.

We shall look at the Lp theory in the framework of Littlewood Paley
theory. Consider the closely related multiplier operator P+ defined as
in (1) where M is defined by the characteristic function 1R+ instead of
the function iπ sign in (2).

! ξ
0

The main idea of Littlewood-Paley theory is to decompose the positive
half line dyadically (powers of 2):

! ξ

0

and then write the characteristic function of the half line as a sum of
smooth functions adapted to these dyadic intervals:

! ξ

0

E.g., these summands can be chosen as dilates of each other:

1R+(ξ) =
∑

k∈Z

φ̂(2kξ).(4)

The multiplier operator P+ can then be written as

P+f =
∑

k∈Z
φk ∗ f, φk(x) = 2kφ(2kx).
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The basic inequality of Littlewood-Paley theory says that
∥∥∥∥∥∥

(
∑

k∈Z
|φk ∗ f |2

) 1
2
∥∥∥∥∥∥

p

≤ Cp‖f‖p

for all 1 < p < ∞. Using this, one can easily prove the Kolmogorov-
Riesz theorem for 1 < p < ∞. With p′ = p/(p − 1) the dual exponent
of p, we have to prove

〈P+f, g〉 ≤ Cp‖f‖p‖g‖p′

for arbitrary f and g. By Plancherel we have

〈P+f, g〉 =
〈
1R+ f̂ , 1R+ ĝ

〉
=

∑

k,k′

〈
f̂ φ̂k, ĝφ̂k′

〉
.

Considering the supports of φk and φk′ , we may assume that k and k′

differ by at most 1. By splitting into cases we may assume that the
difference is constant, for simplicity we discuss only k = k′. Then we
have by Plancherel, Cauchy Schwarz, and Hölder:

=

∣∣∣∣∣
∑

k

〈f ∗ φk, g ∗ φk〉

∣∣∣∣∣

≤
∫ (

∑

k∈Z
|φk ∗ f |2

) 1
2

(
∑

k∈Z
|φk ∗ g|2

) 1
2

dx

≤

∥∥∥∥∥∥

(
∑

k∈Z
|φk ∗ f |2

) 1
2
∥∥∥∥∥∥

p

∥∥∥∥∥∥

(
∑

k∈Z
|φk ∗ g|2

) 1
2
∥∥∥∥∥∥

p′

.

By the basic Littlewood-Paley inequality this is bounded by ‖f‖p‖g‖p′ .
Generally, the idea of Littlewood-Paley theory is to use dyadic fre-

quency decompositions to simplify operators and obtain estimates such
as the above Littlewood-Paley inequality. We shall see momentarily that
this idea remains important but shall have its limitations in the modu-
lation invariant setting, because it singles out the 0 frequency as special.

1.2. Modulation invariant operators.

Now we shall consider operations with modulation symmetries. Mod-
ulation is defined by multiplication with a complex exponential:

Mξf(x) := f(x)e2πiξx.

This amounts to a translation of the Fourier transform of f .
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The bilinear Hilbert transform Hα with parameter α ∈ R is a bilinear
operator mapping two functions on the real line to one function on the
real line. It is defined by

Hα(f, g)(x) := p.v.
∫

R
f(x − t)g(x − αt)

1
t

dt.(5)

Again, this expression is well defined if f and g are Schwartz functions.
An easy calculation shows the following modulation symmetry:

B(Mαξf, M−ξg) = M(α−1)ξB(f, g).

Another example for a modulation invariant operator is Carleson’s op-
erator:

C(f)(x) = sup
ξ

∣∣∣∣∣

∫ ξ

−∞
f̂(ξ)e2πiξx dξ

∣∣∣∣∣ .

It is a maximal variant of the Hilbert transform and plays a role in almost
everywhere convergence of Fourier series. It satisfies

C(Mξf) = C(f).

We now make the important observation that a Littlewood-Paley de-
composition

f =
∑

k∈Z

f ∗ φk

does not break up these modulation invariant operators into simpler
pieces. As an example consider Carleson’s operator. Assume we could
estimate each single piece of the Littlewood-Paley decomposition. As-
sume w.l.o.g. that f̂ is compactly supported. Then for some large ξ
and k

C(f) = C(Mξf) = C(φk ∗ Mξf).

(Here we assume φ̂k to be constant equal to 1 on some small interval.) In
other words, we can move the function f in frequency until it lies entirely
inside a single block of the Littlewood Paley decomposition. Clearly this
makes the Littlewood-Paley decomposition useless at this point. The in-
dividual pieces of Carleson’s operator with respect to a Littlewood-Paley
decomposition are as hard to estimate as the whole operator. Another
way to look at this has been mentioned before: the Littlewood-Paley
decomposition does single out the zero frequency as special, which can-
not do good in the modulation invariant setting. For the same reason,
spaces like H1 and BMO, which single out the zero frequency as special,
play a less prominent role in the modulation invariant setting.
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While an outright Littlewood-Paley decomposition does not do any-
thing to modulation invariant operators, these operators still have an
Lp theory (which in fact uses portions of Littlewood-Paley theory at the
right places). We shall postpone any further details to the next chapter
and continue here with an outline of the theory.

The first result of interest for our discussion is the Carleson-Hunt
theorem

Theorem 1.1. The Carleson operator is bounded in Lp for 1 < p < ∞,

‖Cf‖p ≤ Cp‖f‖p.

The weak type 2 estimate [6] by L. Carleson was a major break-
through and pioneering work on modulation invariant operators. Later,
R. A. Hunt proved boundedness of C in all Lp [18]. Further proofs of
Carleson’s theorem appeared in [12] and [29]. We will present a proof
of Carleson’s theorem in the second chapter. This will also serve as our
main description of the type of techniques used to estimate modulation
invariant singular integral operators.

Estimates for the bilinear Hilbert transform are more recent. In the
series of papers [25], [26], [27], and [28], it has been proved that the
bilinear Hilbert transform satisfies the following regularity estimates:

Theorem 1.2. If α )∈ {0, 1}, then

‖Hα(f1, f2)‖p ≤ Cp1,p2‖f1‖p1‖f2‖p2 ,(6)

provided that

1
p

=
1
p1

+
1
p2

,

2
3

< p < ∞,(7)

1 < p1, p2 ≤ ∞.

A precedent of this work is [23]. In contrast to the situation for the
Hilbert transform H, none of the estimates in this theorem is particularly
easy to prove. For α ∈ {0, 1} we observe

H0(f, g) = H(f) · g,

H1(f, g) = H(f · g).
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In these cases one easily obtains regularity results (but in different re-
gions than described in the theorem) by an application of the theorem
of Kolmogorov and Riesz and by Hölder’s inequality.

The study of the bilinear Hilbert transform can be simplified by taking
into account a symmetry which is not immediately apparent from the
expression (5). To exploit this symmetry, consider the trilinear form

Λ(α)(f1, f2, f3) :=
∫

R
Hα(f1, f2)(x)f3(x) dx.

For each α, this trilinear form is a member of the following family of
forms

Λβ(f1, f2, f3) :=
∫

p.v.
∫ (

3∏

=1

f(x − βt)

)
1
t

dt dx,(8)

where β = (β1, β2, β3) is a vector in R3 which is not collinear with
γ := (1, 1, 1). By a change of variables it is no restriction to assume that
β is a unit vector perpendicular to the vector γ. Hence the family Λβ is
a one parameter family which consists of all forms which are dual in the
sense of (8) to ±Hα with α ∈ R and the forms which are dual to

±H∞(f1, f2) := ±f1 · H(f2).

The group of permutations of {1, 2, 3} is acting in an obvious way on
the family Λβ , which is the symmetry mentioned above. We call β non-
degenerate if βı )= β for ı )= . If β is non-degenerate, then Λβ is dual
to ±Hα for some α /∈ {0, 1,∞}.

Using the Fourier transform, we can rewrite (8) as a constant multiple
of

∫
δ(ξ1 + ξ2 + ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3) sgn(β1ξ1 + β2ξ2 + β3ξ3) dξ1 dξ2 dξ3

where δ is the Dirac δ function and thus the integration is over the
plane ξ1 + ξ2 + ξ3 = 0.
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The estimates of Theorem 1.2 with p ≥ 1 are equivalent (in the
case p = 1 this is only almost true) to certain estimates for the form Λβ

by using the duality of Lp and Lp′
where p′ denotes the conjugate expo-

nent of p,
1
p′

+
1
p

= 1.

The estimates of Theorem 1.2 with p < 1 can not be stated as estimates
for Λβ . Hence we define formally the following notion of type: For each
permutation σ of {1, 2, 3} define the bilinear operator Hσ

β formally by

Hσ
β : S(R) × S(R) → S′(R)

by:
Hσ

β (fσ(1), fσ(2))(fσ(3)) := Λβ(f1, f2, f3).

We say that Λβ is of type (p1, p2, p3) if there is a permutation σ such
that

0 < pσ(1), pσ(2), pσ(3)
′ ≤ ∞(9)

and the operator Hσ
β is bounded from Lpσ(1) × Lpσ(2) to Lpσ(3)

′
. This

notion of type makes sense when (at most) one of the pi is negative: then
the dual p′i is between 0 and 1 and the estimate for the corresponding
dual bilinear operator makes sense. If all pi are betwen 1 and ∞, the
actual choice of the dual bilinear operator plays no role.

Theorem 1.2 states that Λβ is of the type (p1, p2, p3) whenever
(1/p1, 1/p2, 1/p3) is in the region described by the following diagram:
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Observe that p3
′ < 1 means p3 < 0. The region where 1 < pi < ∞

for all i is the convex hull of the indicated points.
By self duality of the family Λβ , more estimates (types) are true
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In fact, it suffices to prove estimates only in the shaded regions, the
estimates in the convex hull then follow by interpolation methods
[5], [19], [33]. The articles [25] and [26] are concerned with the inner
triangle, while [27] and [28] are concerned with the outer
triangles.

Thus a corollary of Theorem 1.2 is that for non-degenerate β the
form Λβ is of type (p1, p2, p3) if

1
p1

+
1
p2

+
1
p3

= 1, −1
2

<
1
p1

,
1
p2

,
1
p3

< 1.(10)

It is not known, whether the lower bound 2
3 on p in Theorem 1.2 can

be relaxed to 1
2 . If this was true, we had estimates in the interior of the

whole triangle shown by the above diagram.

In [13], Gilbert and Nahmod have extended the result of Theorem 1.2
to bilinear operators given by more general multipliers. We shall define
these operators in terms of their dual trilinear forms. These forms are
given by

Λm(f1, f2, f3)

=
∫

δ(ξ1 + ξ2 + ξ3)f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)m(ξ1, ξ2, ξ3) dξ1 dξ2 dξ3,

where m is a function (multiplier) satisfying

|∂αm(ξ1, ξ2, ξ3)| ≤ Cα dist(ξ,Γ′)−|α|

and Γ′ is some (non-degenerate as before) line in the plane ξ1+ξ2+ξ3 = 0.

This condition on m implies that m is essentially constant on the
Whitney-regions
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In fact, the proof of boundedness of these operators starts with a
decomposition of the form Λ into pieces parameterized by the Whitney
regions:

Λm(f1, f2, f3)“ = ”
∫ ∑

c

(f1 ∗ φ1,c)(f2 ∗ φ2,c)(f3, φ3,c) dx.

We have written this identity in quotation marks, since it is missing
some error terms which are inessential for our discussion: in order to
write the multiplier in the indicated form, we would have to write the
characteristic function of the half plane as sum of smooth functions which
are tensor products of functions in the variables ξ1, ξ2, and ξ3, which
requires a series of terms for each Whitney region c.

The similarity with the Littlewood-Paley decomposition of the previ-
ous section is now apparent. However, a simple Cauchy Schwartz argu-
ment does not apply here, for once we have three instead of two terms,
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and also because the functions φi,c not only capture dyadic frequency
bands, but frequency bands of all possible length and location in fre-
quency space. (The frequency interval of φi,c is given by projection of
the Whitney region c onto the ξi-axis; see the previous figure.) We will
discuss how to deal with a similar expression for Carleson’s operator in
the next chapter.

1.3. Uniform estimates.

One of the degenerate cases (α = 1) of the bilinear Hilbert transform
is given by

H1(f1, f2) = H(f1 · f2)

or its dual operators

f2 · H(f3), f1 · H(f3).

Besides the usual homogeneity, the only constraint for these operators
to be bounded is 1 < p3 < ∞, i.e., one has estimates (types) in the
horizontal open strip indicated in the following diagram:
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Thus one expects the constants in the Lp estimates to be uniform as α
approaches 1 in the intersection of the shaded hexagon and the shaded
horizontal strip.

Uniformity of the constants does not come out of the original proofs of
Theorem 1.2. Uniform estimates have been proved in [40], [16], and [30].
The following diagram indicates the known uniform estimates
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In [40], the weak type estimate L2 × L2 → L1,∞ is proved, i.e.,

|{x : |Hα(f1, f2)| > λ}| ≤ C‖f1‖2‖f2‖2

with a constant C uniform in α near α = 1. With an unfortunately
erroneous argument, it is claimed in [40] that one can bootstrap to the
strong type estimate L2×L2 → L1, which together with a dual estimate
would give the types indicated by the two large filled circles in the above
diagram.

Grafakos and Li in [16] refine the arguments of [40] to give uniform
estimates in the interior triangle. Li in [30] gives uniform estimates in the
two indicated exterior triangles. The distinction of interior and exterior
triangles is in analogy to [25] and [27]. By interpolation, one obtains
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the convex hull of the shaded regions, in particular those estimates that
have been erroneously claimed in [40].

Observe that this convex hull still misses some part near (1, 0, 0)
and (0, 1, 0), where according to a the above discussion one might ex-
pect uniform estimates. In these regions the question of uniformity is
still open.

In order to prove uniform bounds, one has to formulate the multiplier
condition so as to give essentially constant multipliers on adapted regions
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:

The excentricity of the ellipses is chosen so that the projections of
the ellipses at a single scale onto any of the three axes ξ1, ξ2, ξ3 form
essentially a disjoint partition of the axis. In the degenerate case, which
in this figure would mean a vertical dividing line, the ellipses become
infinitely long. If one used Whitney circles as before, infinitely many cir-
cles would be projected to the same interval on the ξ1-axis, which would
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make the arguments following the decomposition invalid. Dealing with
ellipses rather than circles requires strong refinements of the arguments
in [25] and [27].

Historically, the interest in the bilinear Hilbert transform arose from
the study of the Cauchy integral and the Hilbert transform on Lipschitz
curves and —as a first step in the study of these— the first commutator
of Calderón. Let

γ(x) = x + iA(x)
be a curve in C, where A′ = a ∈ L∞(R). Then the Hilbert transform
corresponding to the curve γ is given by

Hγf(x) := p.v.
∫

f(y)(1 + ia(y)) dy

x − y + i(A(x) − A(y))
.

It is a celebrated result by Calderón [4] (for small norm of a) and Coif-
man, McIntosh, Meyer [9] (for arbitrary norm of a), that this operator
is bounded from L2(R) to itself.

One approach to this result is to expand the nonlinear dependence
on A into a Taylor series, i.e., to write the series expansion

1
x − y + i(A(x) − A(y))

=
1

x − y

∞∑

k=0

(−i)k

(
A(x) − A(y)

x − y

)k

.

Ignoring the factor 1 + ia(y) in the definition of Hγ , which is irrelevant
for the question of boundedness in L2, we are led to study the operators
(commutators)

Ckf(x) = p.v.
∫

(A(x) − A(y))k

(x − y)k+1
f(y) dy.

Naturally, C0 is the Hilbert transform. For C1, Calderón’s first commu-
tator, we write

p.v.
∫ ∫ 1

0
a(x + α(y − x))

1
x − y

f(y) dα dy

= p.v.
∫ ∫ 1

0
a(x − αy)f(x − y)

1
y

dα dy

=
∫ 1

0
Hα(f, a)(x) dα.

Coming from the original question concerning the Hilbert transform on γ,
one seeks for fixed a ∈ L∞ a bound on C1 as an operator from L2 to
itself. One of the attempts of Calderón was to prove appropriate bounds
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on the bilinear Hilbert transform, but he did not succeed this way and
eventually proved boundedness of C1 by different means [4].

Using boundedness of the bilinear Hilbert transform one tries
∥∥∥∥
∫ 1

0
Hα(f, a)(.) dα

∥∥∥∥
2

≤
∫ 1

0
‖Hα(f, a)‖2 dα ≤

∫ 1

0
Cα‖f‖2‖a‖∞ dα.

The result of Theorem 1.2 does not give boundedness of C1, since it
does not give good control over the constants Cα as α approaches 0 or 1,
indeed the proofs in [25] and [27] yield only polynomial growth of Cα

in α, α−1, and (1 − α)−1.
However, the uniform results do show that in the above application

Cα remains bounded for α near 0 and 1, what is needed are the uniform
estimates at the two large filled circles in the above diagram of uniform
estimates. Thus one can conclude boundedness of the first commutator
along these lines. Indeed, while the results in [40] do not give strong
type estimates, they can be bootstrapped to give strong type estimates
with logarithmic blowup of Cα near α = 0, 1, which still is enough to
give integrability of Cα near 0 and 1.

Closely related to the topic of uniform estimates for the bilinear
Hilbert transform is that of bilinear multiplier estimates for multipli-
ers which are singular along a curve rather than a line. Results in this
direction are by C. Muscalu [32] and Grafakos and Li [17]. Consider
as an example the trilinear form where m(ξ1, ξ2, ξ3) is the characteris-
tic function of a disc. Suppose we have (as proved in [17]) Lp bounds
for this multiplier. By dilation and modulation symmetries we have the
same bound for a multiplier which is the characteristic function of a dif-
ferent disc. Letting the boundary of the disc pass through the origin at a
certain angle and taking a limit as the radius tends to infinity, we obtain
the characteristic function of a half plane, thus reproving boundedness
of the bilinear Hilbert transform at this angle. Since the angle was arbi-
trary, we obtain uniform estimates for all angles. Thus boundedness of
the disc multiplier is stronger than uniform boundedness of the bilinear
Hilbert transform. Grafakos and Li prove in [17] estimates for the disc
multiplier that correspond to the region of exponents which was called
the “inner triangle” above.

1.4. Multilinear operators.

In this section we discuss multilinear generalizations of the theory
outlined above. We shall focus on a certain direction of generalization
here; another direction will be discussed in the chapter on eigenfunction
expansions of Schrödinger operators.
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For better symmetry we shall focus on the theory of multilinear forms.
Consider general multilinear forms

Λ : S(R) × · · ·× S(R) × S(R) → C.

These correspond to multilinear operators T

T : S(R) × · · ·× S(R) → S′(R)

via duality:

Λ(f1, . . . , fn) =
∫

T (f1, . . . , fn−1)(x)fn(x) dx.

Observe that the symmetric group on n elements acts on the space of
n-linear forms.

By the Schwartz kernel theorem, there is a distribution m ∈ S′(Rn)
so that

Λ(f1, . . . , fn) =
∫

m(ξ)
n∏

i=1

f̂i(ξi) dξi.

We shall make the assumption that our multilinear forms are invari-
ant under simultaneous translation of all fi. This is a vary natural
condition: it can be compared to the situation of differential operators
with non-constant coefficients, which still have translation symmetries
if one translates simultaneously the coefficients and the functions these
operators act on.

Define the translation Ty by

Tyf(x) = f(x − y),

then invariance of Λ means

Λ(Tyf1, . . . , Tyfn) = Λ(f1, . . . , fn).

For the distribution m this implies

m(ξ) = m(ξ)e2πiy(ξ1+···+ξn).

Hence m is a distribution on the hyperplane

Γ := {ξ : ξ1 + · · · + ξn = 0}

Λ(f1, . . . , fn) =
∫

δ(ξ1 + · · · + ξn)m(ξ)
n∏

i=1

f̂i(ξi) dξi.
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The dual operator can then formally be written (identifying m as a
function in the variables ξ1, . . . , ξn−1 only)

T (f1, . . . , fn−1)(x)=
∫

m(ξ1, . . . , ξn−1)e2πix(ξ1+···+ξn)
n−1∏

i=1

f̂i(ξi) dξi.(11)

In the case of bilinear forms and linear operators this m is the usual
multiplier.

In order to study modulation symmetries, we choose a subspace

Γ′ ⊂ Γ

and demand m to be invariant under all translations

m = Tηm

with η ∈ Γ′. Since m is a function in frequency space, this means a
modulation symmetry for Λ: it is invariant under certain simultaneous
modulations of the arguments f1, . . . , f2.

More generally, one may demand symbol estimates

|∂αm(ξ)| ≤ Cα dist(ξ,Γ′)−|α|

for all partial derivatives ∂α tangential to Γ. While an individual m
satisfying these estimates may not be translation invariant, certainly
the whole class of such functions m is translation invariant along Γ′.

As is shown in [33], under a non-degeneracy condition on Γ′ and for
dim(Γ′) < n

2 , one has in general Lp estimates for such multilinear forms:

Theorem 1.3. Let k, n be integers with

0 ≤ k < n/2.

Let Γ be the hyperplane in Rn as before and let Γ′ be a k-dimensional
subspace of Γ such that the orthogonal projection of Γ′ onto any k di-
mensional space spanned by k coordinate axes is nondegenerate.

Let m be a function on Γ such that

|∂αm(ξ)| ≤ dist(ξ,Γ′)−|α|

for all partial derivatives tangential to Γ up to some large finite order.
Then the corresponding Λ satisfies

|Λ(f1, . . . , fn)| ≤ C
n∏

i=1

‖fi‖pi

as long as
n∑

i=1

1
pi

= 1, 1 < p1, . . . , pn < ∞.
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Even more is true: with the analogue notion of type as before, the
form Λ is of type (p1, . . . , pn), if

∑
i 1/pi = 1, and 1 < pi ≤ ∞ for all i

with one possible exception, which may satisfy −∞ < pi < 1/(2 − n),
and we have

1
pi1

+ · · · + 1
pir

<
n − 2k + r

2

for all 1 ≤ i1 < · · · < ir ≤ n and 1 ≤ r ≤ n. In case p = ∞, the
claim only stands for the closure of compactly supported functions in
L∞ rather than L∞ itself.

The case k = 0 of this theorem is well known. In fact it is the case of
no modulation symmetries and can be treated in a direct manner with
Littlewood-Paley theory. This theory has been pioneered by Coifman
and Meyer, a nice exposition of this theory of multilinear operators can
be found in [31].

The case n = 3 of trilinear forms (bilinear operators) was proven by
Gilbert and Nahmod [13], it includes the case of the bilinear Hilbert
transform.

Observe that the four-linear form corresponding to what is called the
trilinear Hilbert transform,

Hα,β(f, g, h)(x) := p.v.
∫

R
f(x − y)g(x − αt)h(x − βt)

1
t

dt,

is given by a multiplier which is constant on two half spaces of the three
dimensional space ξ1 + ξ2 + ξ3 + ξ4 = 0, and thus does not fall into the
scope of the above theorem. Namely, its parameters k = 2 and n = 4
violate the condition 2k < n. In fact, it is not known, whether this
trilinear operator satisfies any Lp estimates except in the degenerate
cases α = β or {α, β} ∩ {0, 1,∞} )= ∅.

If the multiplier m in the above theorem is invariant under translations
in direction of Γ′, then we can formally take Fourier transforms and write
the n − 1-linear operator T as

T (f1, . . . , fn−1)(x) =
∫

Γ′′∩Γ
f1(x + γ1) . . . fn−1(x + γn−1)K(γ) dγ,

where Γ′′ is the orthogonal complement of Γ′ in Rn, dγ′ is Lebesgue
measure on Γ′′∩Γ, γi is the i-th coordinate of γ as an element of Rn, and
K is a Calderón-Zygmund kernel on the space Γ′′ ∩ Γ. Thus the above
theorem provides Lp bounds for such operators provided n − 1 ≤ 2d,
where d is the dimension of Γ′′ ∩ Γ. This gives a partial answer to
question (2) raised by Kenig and Stein in [20].
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The non-degeneracy condition in the above theorem suggests —as
in the case of the bilinear Hilbert transform— the question of uniform
bounds as the subspace Γ′ approaches the degenerate case. It turns
out that for certain degenerate Γ′ the form Λ splits and one can use
Hölder’s inequality to obtain bounds in the degenerate case, for other
degenerate Γ′ the question is more subtle and not understood.

The case k = 1 is the most tractable: the following seems true and is
work in progress by Muscalu, Tao, and the author: Let n ≥ 3 and Γ ⊂ Rn

as before. Let Γ′ be a subspace of Γ spanned by (γ1, . . . , γn) ∈ Rn.
Assume γi )= 0 for all i. Define distances

d(x, y) = sup
i

|xi − yi|/|γi|

d(x,Γ′) = inf
y∈Γ′

d(x, y).

Assume all derivatives of m up to some finite order satisfy

|∂αm(ξ)| ≤
n∏

i=1

(|γi|d(x,Γ′))−|αi|

(if, say, m is extended to be constant perpendicular to Γ). Then, uni-
formly in the choice of Γ′,

Λ(f1, . . . , fn) ≤ C
n∏

i=1

‖fi‖pi

as long as (all locally L2 case):
n∑

i=1

1
pi

= 1, 2 < pi < ∞.

One reason that the case k > 1 is not understood is that there is no
obvious analogue of the definition of distance.

We conclude this section with the remark that considering degenerate
spaces Γ′, so that Λ splits into easier objects, one obtains interesting new
phenomena if a multiplier is singular at two different such degenerate
subspaces Γ′. This will be part of the discussion in the chapter on
eigenfunction expansions of Schrödinger operators.

1.5. Further remarks.

1) In [24], M. T. Lacey has shown the deep result that that the
maximal truncations of the bilinear Hilbert transform:

Hmax
α (f, g)(x) := sup

ε>0

∣∣∣∣∣

∫

R\[−ε,ε]
f(x − t)g(x − αt)

1
t

dt

∣∣∣∣∣
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as well as the maximal operator

M(f, g)(x) := sup
ε>0

1
ε

∫ ε

−ε
|f(x − t)g(x − αt)|1

t
dt

satisfy the same bounds as in Theorem 1.2, provided α is not degenerate.
For the maximal operator this is nontrivial only if the exponent p in
that theorem is less than or equal 1. The proof is a combination of the
methods used in the proof of Theorem 1.2 and a lemma by Bourgain [2]
on certain maximal averages.

2) As outlined before, the theory of modulation invariant singular
integrals forces one to look at frequency bands of a function at all possible
sizes and locations in frequency:

f ∗ φk,l

with φ̂k,l(x) = φ̂(2kξ − l) and φ̂ is some smooth approximation of the
characteristic function of [0, 1].

Due to the Heisenberg uncertainty principle, the above convolution
operator acts essentially local on spatial intervals of length 2k. It is thus
natural to consider wave packets of the form

φk,n,l = 2−
k
2 φ(2−kx − n)e2πi2−kxl.

In fact, the n-linear forms considered before can typically be written as
a sum of rank one tensors

∑

P∈P

cP 〈f1, φP,1〉 . . . 〈fn, φP,n〉

which elucidates their intrinsic structure. Here P is simply some index
set and φ1P , . . . , φn,P are wave packets.

Once written in this form, we may replace the wave packets φPi by
Walsh wave packets wP,i.

∑

P∈P

cP 〈f1, wP,1〉 . . . 〈fn, wP,n〉 .

Here a Walsh wave packet is defined as

wk,n,l = 2−
k
2 1[0,1)(2−kx − n)χ2πi2−kx

l

where χl is the l-th character of the Walsh-Fourier transform, which is
the abstract Fourier transform on the interval [0, 1) viewed as a group un-
der bitwise addition of its elements written as binary numbers. See [38],
[39] for details and original references.

While the original Fourier wave packet cannot be compactly sup-
ported if their Fourier transforms are compactly supported, the Walsh
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wave packets are compactly supported as well as their Walsh-Fourier
transform. In fact the two supports are intervals and the product of
their lengths is equal to 1: a sharp Heisenberg principle.

Virtually all results in the theory of modulation invariant operators
have their Walsh-counterparts, which are technically much easier due
to the exact space-frequency localization, but display much of the im-
portant structure of the result. To give an example of the technical
simplifications in the Walsh model, consider a wave packet φk,n,l. Its
spacial support is mostly (in the Walsh case exactly) contained in the
interval [2kn, 2k(n + 1)), whereas its frequency support (support of the
Fourier transform) is contained in [2−kl, 2−k(l + 1)). We may draw the
rectangle of the space-frequency localization:

2−kl
2kn

2−k

2k

An essential tool in all boundedness results of modulation invariant
singular integrals are estimates of the Bessel type

∑
|〈f, φj,p〉|2 ≤ C‖f‖2

2,

provided the sum on the left hand side runs over a set of indices corre-
sponding to pairwise disjoint rectangles:

! x

+ξ
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This Bessel inequality is true in the Walsh case, because the wave
packets are pairwise orthogonal as one can see from either disjointness
of spatial supports or disjointness in frequency supports and the Walsh
Plancherel formula. In the Fourier case, Bessels inequality is not correct
in general, not even with a large constant on the right hand side. Thus
it has to be replaced by more technical inequalities, see for example [1].

2. Boundedness of Carleson’s operator

2.1. Introduction.

As an illustration of the additional machinery needed to turn Little-
wood-Paley theory into a useful tool in the modulation invariant set-
ting, we give a proof of boundedness of Carleson’s operator. We follow
closely [29], with further comments as presented during the lecture at
El Escorial. The Carleson operator C acting on a Schwartz function f
on R is defined by

Cf(x) := sup
N

∣∣∣∣∣

∫ N

−∞
f̂(ξ)e2πiξx dξ

∣∣∣∣∣ ,(12)

where the Fourier transform f̂ is defined by

f̂(ξ) :=
∫

f(x)e−2πiξx dx.

We give a simplified proof of the well known theorem [6], [12]:

Theorem 2.1. The Carleson operator C is of weak type (2, 2), i.e.,

‖Cf‖L2,∞ ≤ C‖f‖2

with a constant C not depending on f .

This theorem is the key ingredient in the proof of Carleson’s celebrated
theorem, which asserts that the Fourier series of a function in L2([0, 1])
converges pointwise almost everywhere.

While the proof of L. Carleson [6] uses a decomposition of the func-
tion f and the proof of C. Fefferman [12] uses a decomposition of the
Carleson operator guided by N (the function which picks the worst N for
each x in the Carleson operator), we emphasize a symmetry between f
and N , as expressed by the duality of Propositions 2.2 and 2.3. These
propositions are the key ingredients which make Littlewood Paley theory
applicable in the modulation invariant setting.
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The similar role of these two proposition becomes even more evident
in the case of the bilinear Hilbert transform (which we do not discuss
here, see [25] and [27]), where instead of f and N one has three Schwartz
functions f1, f2, and f3, and a variant of Proposition 2.3 is applied to
all three of them.

In Section 2.2 we discretize the Carleson operator. In Section 2.3
we prove boundedness of the discretized Carleson operator by taking for
granted Propositions 2.2 and 2.3 and some technical inequality (20) from
standard singular integral theory. These remaining items are proved in
Sections 2.4, 2.5, and 2.6.

2.2. Notation and preliminary reductions.

Define translation, modulation, and dilation operators by

Tyf(x) = f(x − y),

Mηf(x) = f(x)e2πiηx,

Dp
Λf(x) = Λ− 1

p f(Λ−1x).

Let φ be a Schwartz function such that φ̂ is real, non-negative, sup-
ported in [−0.1, 0.1], and equal to 1 on [−0.09, 0.09].

!

−1 0 1

φ̂

For each rectangle P = IP ×ωP of area 1 in the (phase-) plane define

φ1P := Mc(ω1P )Tc(IP )D
2
|IP |φ,

where we have written ω1P for the lower half of ωP and c(I) for the
center of an interval I.

IP

ω1P

ω2P

ωP
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Observe that φ̂1P is supported in 1
2ω1P (the interval of length | 12ω1P |

with the same center as ω1P ) and we have

|φ1P (x)| ≤ C|IP |
1
2 wP (x),

where wP := wIP ,

w(x) := (1 + |x|)−ν , wI(x) := Tc(I)D
1
|I|w.(13)

In this sense, the function φ1P is space-frequency-localized to the
lower half of the rectange IP × ωP .

A dyadic interval is of the form [n2k, (n+1)2k) with integers n and k.
Let P denote the set of rectangles I ×ω with I, ω dyadic and |I||ω| = 1.
Define

Aξf :=
∑

P∈P

1ω2P (ξ) 〈f, φ1P 〉φ1P .

ξ

$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$

This is a non-zero, positive semi-definite operator and Aξf vanishes if
f̂ is supported in [ξ,∞]. The role of each summand P is to capture the
space-frequency localized portion of f that lives in space near IP and in
frequency just underneath ξ; provided ξ itself is contained in the upper
half of ωP :

Observe that the dyadic grid is invariant under dyadic dilations, hence
for every integer k we have

Aξf = D2
2−kA2−kξD

2
2kf.

Averaging over translates and dilates of the involved dyadic structures
we define

Πξf := lim
n→∞

1
|Kn|

∫

Kn×[0,1]

M−ηT−yD2
2−κA2−κ(η+ξ)D

2
2κTyMηf dy dη dκ,

where Kn is any increasing sequence of rectangles In ×ωn filling out R2.
To see the pointwise convergence of the last expression, consider sepa-
rately those rectangles P ∈ P with |IP | fixed, then the integrand becomes
periodic in y and η, and observe that for very large and very small values
of |IP | the integrand becomes small. It is easy to verify that Πξ extends
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to a bounded operator on L2, is non-zero and positive semidefinite, com-
mutes with Ty for all y and with MξD2

λM−ξ for all λ > 0, and satisfies
Πξf = 0 if f̂ is supported in [ξ,∞]. This identifies Πξ as

Πξf(x) = cξ

∫ ξ

−∞
f̂(η)e2πixη dη

for some constant cξ )= 0. By conjugating with Mξ′ one observes that
c = cξ does not depend on ξ. Hence the Carleson operator is equal to
Cf(x) = c−1 supξ |Πξf(x)|. We will prove that

∥∥supξ |Aξf |
∥∥

L2,∞ ≤ C‖f‖2.(14)

By averaging this implies

∥∥supξ |Πξf(x)|
∥∥

2,∞

≤ lim sup
n

1
|Kn|

∫ ∥∥supξ |AξD2κTyMηf |
∥∥

2,∞ dy dη dκ ≤ C‖f‖2,

which is enough to conclude Theorem 2.1.
By duality and the triangle inequality estimate (14) follows from

∑
P∈P

|〈f, φ1P 〉 〈φ1P (1ω2P ◦ N), 1E〉| ≤ C‖f‖2|E| 12(15)

for all Schwartz functions f , measurable functions N , measurable sets E,
and finite subsets P of P. Since this estimate is homogeneous in f and
invariant under appropriate simultaneous dilations of f , N , E, and P,
it suffices to prove the estimate for ‖f‖2 = 1 and |E| ≤ 1.

2.3. The main argument.

A rectangle P = IP ×ωP of P will be called a tile. Each tile has area 1
and is the union of two semitiles P1 = IP × ω1P and P2 = IP × ω2P .
Observe that dyadic intervals such as IP , ωP , ωjP have the property
that any two of them are either disjoint or one is contained in the other.
Moreover, if ω1P is strictly contained in a dyadic interval, then ω2P is
strictly contained in the same interval and vice versa. We will use these
geometric properties without referring to them.
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We define a partial ordering on the set of tiles by P < P ′ if IP ⊂ IP ′

and ωP ′ ⊂ ωP .

P

P ′

If P < P ′ we have two types of intersection: P ′ intersects either the
lower half or the upper half of P .

P

P ′

P

P ′

A set T of tiles is called a tree, if there is a tile PT = IT × ωT , the
top of the tree, such that P < PT for all P ∈ T . Observe that we do not
require the top to be an element of the tree.

PT

A tree is called j-tree if ωjPT ⊂ ωjP for all P ∈ T . The following is a
2-tree:

PT

We will introduce quantities mass and energy which measure the be-
haviour and distribution of the linearizing function N and the function f
respectively.
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Recall that we are given a fixed set E with measure |E| ≤ 1. Define

EP := E ∩ {x : N(x) ∈ ωP }, E2P := E ∩ {x : N(x) ∈ ω2P }.

,
,

,,-
-

--,
,

,,-
-

--,
,

,, -
-

--P

N(x)

EP

For a finite subset P ⊂ P, define

mass(P) := sup
P∈P

sup
P ′∈P:P<P ′

∫

EP ′

wP ′(x) dx,

where wP ′ is the weight function as in (13). The integral in this definition
captures the density of E′

P near IP ′ .
The following proposition is a way of saying that there is only a limited

amount of mass in the phase plane, so only a limited amount of tiles can
carry large mass:

Proposition 2.2. Let P be a finite set of tiles, then P can be decom-
posed as the union of sets Plight and Pheavy with

mass(Plight) ≤ 2−1 mass(P),

and Pheavy is the union of a set T of trees such that
∑

T∈T
|IT | ≤ C mass(P)−1.(16)

Now recall that we are given a function f with ‖f‖2 ≤ 1. For a finite
subset P ⊂ P, define

energy(P) := supT

(
|IT |−1

∑
P∈T

|〈f, φ1P 〉|2
) 1

2
,

where the sup is taken over all 2-trees T ⊂ P.
Observe that the lower half boxes of a 2-tree, which carry the localized

functions φ1P , are pairwise disjoint.

PT

The following proposition says that there is only a limited amount of
energy distributed over the phase-plane.
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Proposition 2.3. Let P be a finite set of tiles, then P can be decom-
posed as the union of Plow and Phigh with

energy(Plow) ≤ 2−1 energy(P),

and Phigh is the union of a set T of trees such that
∑

T∈T
|IT | ≤ C energy(P)−2.(17)

We prove these propositions in Sections 2.4 and 2.5. Assuming these
propositions are correct, and assuming the validity of a technical esti-
mate (20) below, we can now quickly finish the proof of Theorem 2.1.

Namely, given a finite collection P of tiles, we use Propositions 2.2 and
2.3 to obtain a decomposition of P into sets Pn, where n runs through
some finite set of integers, such that for each n we have

mass(Pn) ≤ 22n, energy(Pn) ≤ 2n(18)

and Pn is the union of a set Tn of trees with
∑

T∈Tn

|IT | ≤ C2−2n.(19)

Namely, initially P satisfies estimates as in (18) for some large n. If
the mass of P is greater than 22(n−1), we split it into Plight and Pheavy,
replace P by Plight, and add Pheavy to Pn. Then, if the energy of P is
greater than 2n−1, we split P into Phigh and Plow, replace P by Plow,
and add Phigh to Pn. Then P satisfies (18) with n replaced by n − 1
and we iterate.

In Section 2.6 we prove for each tree T the —unfortunately a bit tech-
nical but otherwise rather standard— inequality in Calderón-Zygmund
theory

∑
P∈T

|〈f, φ1P 〉 〈φ1P , 1E2P 〉| ≤ C energy(T ) mass(T )|IT |.(20)

Hence, with the observation that the mass of any collection of tiles is
bounded by a universal constant, we have the estimate

∑
T∈Tn

∑
P∈T

|〈f, φ1P 〉 〈φ1P , 1E2P 〉| ≤ C2n min(C, 22n)2−2n.

This is summable over n ∈ Z, which proves (15) and therefore Theo-
rem 2.1.

2.4. Proof of Proposition 2.2.

To motivate things, we first prove Proposition 2.2 for a slightly easier
notion of mass, where the weight function w is replaced by a sharp cutoff
function.
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For P a set of tiles define

mass′(P) := max
P∈P, P ′∈P:P<P ′

|IP ′ ∩ EP ′ |/|IP ′ |.

Let P2 be the set of P ∈ P with

mass′({P}) ≥ mass′(P)/2.

Then P1 = P \ P2 is as required in Proposition 2.2.
Let P′ be the set of maximal tiles P ′ in P with respect to the tile

ordering for which:

|IP ′ ∩ EP ′ |/|IP ′ | ≥ mass′(P)/2.

Then, trivially, P2 is a union of trees T with PT ∈ P ′.
The tiles P ′ ∈ P′ are pairwise disjoint because they are pairwise

incomparable w.r.t. the tile ordering. Hence the sets IP ′ ∩ EP ′ , are
pairwise disjoint, as is illustrated by following figure:

,
,

,,-
-

--,
,

,,-
-

-
-

-,
,

,
,

, -
-

-
-

-
--

Hence we have
∑

P ′∈P′

|IP | ≤
∑

P ′∈P′

2|IP ′ ∩ EP ′ |
mass′(P)

≤ 2
mass′(P)

,

which proves Proposition 2.2 for mass′.
Now we pass to the proof of Proposition 2.2 for the original notion of

mass. Since the weight function w allows for a small far field contribution
to the mass of a tile, we have to consider a dyadic sequence of auxiliary
rectangles and apply the old argument to these rectangles:

P ′

Let µ = mass(P). Let P′ be those elements P ′ in P with
∫

EP ′

wP ′ dx > 2−1µ,
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which are maximal with respect to the partial order < of tiles. It suffices
to show that ∑

P ′∈P′
|IP ′ | < Cµ−1,

because the tiles P ∈ Pheavy can be collected into trees with tops in P′.
For κ ∈ N0 define Pκ to be the set of all P ∈ P′ with

|EP ∩ 2κIP | ≥ c22κµ|IP |
for some constant c. If c is small enough, then one can conclude from
the mass estimate that each element P of P′ is contained in one of the
sets Pκ. Hence it suffices to show for every κ

∑
P∈Pκ

|IP | ≤ C2−κµ−1.

Fix κ. For each P ∈ Pκ we have an enlarged rectangle (2κIP ) × ωP .
We select successively elements P ∈ Pκ with maximal |IP | whose en-
larged rectangles are disjoint from the enlarged rectangles of all previ-
ously selected elements. When no further element can be selected, then
each rectangle P ′ ∈ Pκ can be associated to a selected rectangle P such
that |IP ′ | < |IP | and the enlarged rectangles of P and P ′ intersect. Since
the rectangles in Pκ are pairwise disjoint, we see that the intervals IP ′

of the rectangles P ′ associated to a fixed selected P are pairwise disjoint
and contained in 2κ+2IP . Hence

∑
P∈Pκ

|IP | ≤ C2κ
∑

P selected
|IP |

≤ C2−κµ−1
∑

P selected
|EP ∩ 2κIP | .

This is bounded by C2−κµ−1 because the enlarged rectangles of the
selected elements P are pairwise disjoint and therefore the subsets EP ∩
2κIP of E are pairwise disjoint. This finishes the proof of Proposition 2.2.

2.5. Proof of Proposition 2.3.

Let ε = energy(P). For a 2-tree T , let

∆(T )2 = |IT |−1
∑

P∈T
| 〈f, φ1P 〉 |2.

We inductively construct the collection T of trees whose union will be
Phigh.

Pick a 2-tree T ∈ P such that (1) ∆(T ) ≥ 2−1ε and (2) c(ωT ) is
minimal among all 2-trees satisfying the first condition. Then let T 1 be
the maximal (with respect to set inclusion) tree in P with top IT × ωT .

Add T 1 to T, add T to T2, which will be a collection of 2-trees we
will work with in the sequel because it has better disjointness properties
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than the collection T. Remove each element of T 1 from P. Then repeat
the procedure above until there is no tree in P with ∆(T ) ≥ 2−1ε. Then
we can define P to be Plight.

The main disjointness property is the following: Let T, T ′ ∈ T2 and
let P ∈ T and P ′ ∈ T ′. Then we have: if ωP is contained in ω1P ′ , then
IP ′ ∩ IT = ∅. To see this, note that c(ωT ), which is contained in ωP , is
less than c(ωT ′) ∈ ω2P ′ . Therefore T was selected before T ′. But if IP ′

and IT had nonempty intersection, then P ′ would qualify to be in the
tree T 1 and would have been removed from P before T ′ was selected.
This is impossible.

P ′

P
PT

PT ′

In particular if P ∈ T and P ∈ T ′ with T, T ′ ∈ T2, then the semi-
tiles P1 and P ′

1 are disjoint.
To motivate things, assume for a moment that the wave packets φ1P

and φ1P ′ were orthogonal, as is suggested by the above disjointness prop-
erty. Then we had by Bessel’s inequality

∑

T∈T

|IPT | =
∑

T∈T2

|IPT | ≤ 4 ε−2
∑

T∈T2

∑

P∈T

|〈f, φ1P 〉|2 ≤ 4ε−2,

which would prove Proposition 2.3.
However, the functions φ1P and φ1P ′ are not quite orthogonal, so we

need a more refined argument.
We are aiming to show that

ε2
∑

T∈T2

|IT | ≤ C.

Letting P be the union of the 2-trees T in T2, the left hand side is at
most a constant times

∑
P∈P

|〈f, φ1P 〉|2 ≤
∥∥∥
∑

P∈P
〈f, φ1P 〉φ1P

∥∥∥
2

2
.

Here we have used that the L2-norm of f is 1.
Therefore, it is sufficient to prove

∥∥∥
∑

P∈P
〈f, φ1P 〉φ1P

∥∥∥
2

2
≤ Cε2

∑
T∈T2

|IT |.(21)
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We estimate the left hand side of (21) by

∑

P,P ′∈P:ωP =ωP ′

|〈f, φ1P 〉 〈φ1P , φ1P ′〉 〈φ1P ′ , f〉|(22)

+2
∑

P,P ′∈P:ωP ⊂ω1P ′

|〈f, φ1P 〉 〈φ1P , φ1P ′〉 〈φ1P ′ , f〉| .(23)

Here we have used symmetry and the fact that 〈f, φ1P 〉 = 0 unless one
of the intervals ω1P and ω1P ′ is contained in the other.

Observe that for |IP ′ | ≤ |IP | we have

|〈φ1P , φ1P ′〉| ≤ C|IP |
1
2 |IP ′ |− 1

2
∥∥wP 1IP ′

∥∥
1
.

We estimate the smaller one of |〈f, φ1P 〉| and |〈f, φ1P ′〉| by the larger
one and use symmetry to obtain for (22) the upper bound

C
∑

P∈P

| 〈f, φ1P 〉 |2
∑

P ′∈P:ωP =ωP ′

∥∥wP 1IP ′

∥∥
1
.

We can estimate the interior sum by |IP |−1‖wP ‖1 ≤ C, because the
intervals IP ′ with ωP ′ = ωP are pairwise disjoint. This proves the desired
bound for (22).

We can estimate the second summand (23) by

∑

P∈P

|〈f, φ1P 〉|
∑

P ′∈P:ωP ⊂ω1P ′

|〈φ1P , φ1P ′〉 〈φ1P ′ , f〉|

≤
∑

T∈T2

(
∑

P∈T

|〈f, φ1P 〉|2
) 1

2

H(T )
1
2 ≤ Cε

∑

T∈T2

|IT |
1
2 H(T )

1
2 ,

where

H(T ) :=
∑

P∈T




∑

P ′∈P:ωP ⊂ω1P ′

|〈φ1P , φ1P ′〉 〈φ1P ′ , f〉|




2

.
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The following figure shows an example for the tree T and the set of P ′

for which ωP ⊂ ω1P ′ . Observe that the latter requires the intervals IP ′

to be pairwise disjoint.

T

It remains to show that H(T ) ≤ Cε2|IT | for each tree T ∈ T2.
But,

H(T ) ≤ Cε2
∑

P∈T

|IP |




∑

P ′∈P:ωP ⊂ω1P ′

∥∥wP 1IP ′

∥∥
1




2

,

where we have used the upper energy estimate for each individual P ′

(which is a 2-tree by itself), and the estimate on 〈φ1P , φ1P ′〉. Fix P ,
then the intervals IP ′ with ωP ⊂ ω1P ′ are pairwise disjoint and disjoint
from IT by the above mentioned disjointness property. Hence we have

∑

P ′∈P:ωP ⊂ω1P ′

∥∥wP 1IP ′

∥∥
1
≤ C

∥∥wP 1Ic
T

∥∥
1
.

For each x ∈ IT there is at most one P ∈ T of each scale with x ∈ IP .
Hence we have:

∑

P∈T

|IP |
∥∥wP 1Ic

T

∥∥2

1
≤ C

∑

P∈T

|IP |
∥∥wP 1Ic

T

∥∥
1

≤ C
∑

k∈N

∥∥∥(1IT ∗ D1
2−k|IT |w)1Ic

T

∥∥∥
1
≤ C|IT |.

This gives the appropriate bound for H(T ) and thus finishes the proof
of (21).

2.6. Proof of estimate (20).

From the point of view of classical Calderón-Zygmund theory, esti-
mate (20) is a rather standard estimate for maximal Calderón-Zygmund
operators, with a slight twist to obtain the factor µ in front.

Let J be the collection of all maximal dyadic intervals such that 3J
does not contain any IP with P ∈ T . Then J is a partition of R as
shown in the following figure:
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The main idea to obtain the extra factor µ is that the functions in-
volved will live on sparse sets of density µ on each of the intervals in J .

We estimate the left hand side of (20) as below, where the terms εP

are phase factors of modulus 1 which make up for the absolute value
signs in (20).

∥∥∥
∑

P∈T
εP 〈f, φ1P 〉φ1P 1E2P

∥∥∥
1

≤
∑

J∈J

∑
P∈T :|IP |≤|J|

‖〈f, φ1P 〉φ1P 1E2P ‖L1(J)(24)

+
∑

J∈J

∥∥∥∥
∑

P∈T :|IP |>|J|
εP 〈f, φ1P 〉φ1P 1E2P

∥∥∥∥
L1(J)

.(25)

To estimate (24), we calculate for each J ∈ J and P ∈ T with |IP | ≤ |J |:
‖〈f, φ1P 〉φ1P 1E2P ‖L1(J) ≤ Cεµ|IP |(1 + dist(IP , J)|IP |−1)−ν .(26)

Here, we have set as before ε := energy(T ) and µ := mass(T ). Fix an
integer k with 2k ≤ |J |. Consider all P ∈ T with |IP | = 2k, then the
intervals IP are pairwise disjoint, disjoint from J , and contained in IT .
Hence

∑

P∈T :|IP |=2k

|IP |(1+dist(IP , J)|IP |−1)−ν ≤ C2k(1+dist(IT , J)|IT |−1)−ν′
.

These estimates, summed over 2k ≤ |J | and J ∈ J , yield no more than
C|IT |. Together with (26) this gives the desired bound for (24).

We consider (25). We can assume that the summation runs only over
those J ∈ J for which there exists a P ∈ T with |J | < |IP |. Then we
have J ⊂ 3IT and |J | < |IT | for all J occurring in the sum.

Fix an interval J ∈ J and observe that

GJ := J ∩
⋃

P∈T :|IP |>|J|

E2P

has measure at most Cµ|J |. Indeed, let J ′ be the dyadic interval which
contains J and |J ′| = 2|J | ≤ |IT |. By maximality of J , 3J ′ contains an
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interval IP for some P ∈ T . Let P ′ be the tile with |IP ′ | = |J ′| and
P < P ′ < IT ×ωT . Then GJ ⊂ J ∩EP ′ . And since mass({P}) ≤ µ, our
claim follows.

Let T2 be the 2-tree of all P ∈ T such that ω2T ⊂ ω2P , and let
T1 = T \ T2. Define, for j = 1, 2,

FjJ :=
∑

P∈Tj :|IP |>|J|

εP 〈f, φ1P 〉φ1P 1E2P .

If P , P ′ are in the 1-tree T1 and have different scales, then the
sets ω2P , ω2P ′ are disjoint and so are the sets E2P , E2P ′ . Therefore,
by considering single scales separately one can estimate the L∞ norm of
F1J by Cε. Hence

‖F1J‖L1(J) ≤ Cε|GJ | ≤ Cεµ|J |.

Summing over the disjoint intervals J ⊂ 3IT gives the desired estimate
for the T1-part of (25).

Fix x and assume that F2J(x) is not zero. Since the intervals ω2P

with P ∈ T2 are nested, there is a largest (smallest) interval ω+ (ω−)
of the form ωP (ω2P ) with P ∈ T2, x ∈ E2P and |IP | > |J |. In other
words, we have for any P ∈ T that x ∈ E2P and |IP | > |J | if and only
if |ω−| < |ωP | ≤ |ω+|.

Hence we can write F2J(x) as

∑

P∈T2:|ω−|<|ωP |≤|ω+|

εP 〈f, φ1P 〉φ1P (x)

=
∑

P∈T2

εP 〈f, φ1P 〉
(
φ1P ∗

(
Mc(ω+)D

1
0.1|ω+|−1φ−Mc(ω−)D

1
0.09|ω−|−1φ

))
(x).

The last equality is easily seen from the geometry of the supports of the
functions φ̂1P . Therefore we can estimate |F2J(x)| by

C sup
J⊂I

1
|I|

∫

I

∣∣∣∣∣
∑

P∈T2

εP 〈f, φ1P 〉φ1P (z)

∣∣∣∣∣ dz,

which is constant on J .
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But F2J1J is supported on the set GJ of measure ≤ Cµ|J |, hence
∑

J∈J :J⊂3IT

‖F2J‖L1(J)

≤ C
∑

J∈J :J⊂3IT

µ|J | sup
J⊂I

1
|I|

∫

I

∣∣∣∣∣
∑

P∈T2

εP 〈f, φ1P 〉φ1P (z)

∣∣∣∣∣ dz

≤ Cµ
∥∥∥M

(∑
P∈T2

εP 〈f, φ1P 〉φ1P

)∥∥∥
L1(3IT )

≤ Cµ|IT |
1
2

∥∥∥
∑

P∈T2
εP 〈f, φ1P 〉φ1P

∥∥∥
2
.

Here M denotes the Hardy Littlewood maximal function and we have
used the maximal theorem.

We observe that for different scales of P, P ′ ∈ T2 the intervals ω1P

and ω1P ′ are disjoint and therefore the functions φ1P and φ1P ′ are or-
thogonal. Thus, following the arguments to estimate (22), we estimate
the L2 norm in the last displayed expression by

C
(∑

P∈T2
|〈f, φ1P 〉|2

) 1
2 ≤ C|IT |

1
2 ε.

This completes the desired estimate for the T2-part of (25) and thereby
finishes the proof of (20).

3. Eigenfunctions of one dimensional Schrödinger
operators

This chapter is devoted to an outline of an application of the theory
of multilinear singular integrals with modulation symmetries to ordinary
differential equations. Generally, multilinear operators are expected to
appear as indvidual terms in Taylor series of non-linear operators, such
as in the case of the Cauchy integral on Lipshitz curves mentioned in the
discussion of uniform estimates in Chapter 1, or as higher order terms in
iteration processes (which sometimes may coincide with a Taylor series).
Here we shall be concerned with an example of an iteration process
producing multilinear operators.

Consider the one dimensional time independent Schrödinger equation

−f ′′(x) + V (x)f(x) = λ2f(x).(27)

If V is constant equal to 0, we have the constant coefficient ODE

−f ′′(x) = λ2f(x)
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whose general solution is a linear combination of the form

a eiλx + b e−iλx.

In particular, for real λ, all solutions of this ODE are bounded func-
tions.

We are concerned with the question, under which smallness assump-
tion on V do we preserve the property of having —at least for almost
all real λ— only bounded solutions. This question is related to the
spectral theory of the Schrödinger operator involved, in particular this
boundedness property implies the existence of a large absolute continu-
ous spectrum [21].

The conjecture is that V ∈ L2 is sufficient:

Conjecture 3.1. If V is real and V ∈ L2(R), then, for almost all real λ,
all solutions of (27) are in L∞.

The analogue statment for V ∈ Lr(R) and 1 ≤ r < 2 has been proved
recently by Christ and Kiselev [7] (r = 1 has been known for a long
time, see [7] for a history of the subject, while r close to 2 is the difficult
region). The hypothetic corollary, that for V as in the conjecture the
interval [0,∞) is an essential support for the absolute continuous spec-
trum of the Schrödinger operator has been proved by different methods
recently by Deift and Killip [11]; their methods however do not give any
further information as to the truth of the above conjecture.

The approach of Christ and Kiselev, which we would like to reproduce
here, is to expand the solutions of (27) into a formal series (called WKB)
using an appropriate iteration scheme, and then prove good estimates
on each term in the series.

We observe that there is an approximate solution to (27) of the form

φ(x) = e
iλx− i

2λ

∫ x

0
V (y) dy

which can be obtained by inserting

φ(x) = eiλx+θ(x)

into the Schrödinger equation and neglecting the terms θ′′ and (θ′)2 in
the resulting equation for θ. Observe that this is a slowly —varying—
assumption on θ.

Likewise, φ is an approximate solution.
For an exact solution we set

f(x) = a(x)φ(x) + b(x)φ(x)
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with slowly varying a and b. Here slowly varying means we impose
a condition on a and b which makes the second order derivatives of a
and b disappear (in the otherwise underdetermined equation for a and b):

f ′(x) = iλa(x)φ(x) − iλb(x)φ(x).

The Schrödinger equation yields the following first order system of
ODEs: (

a
b

)′
=

i

2λ

(
0 −V φ

2

V φ2 0

) (
a
b

)
.

We shall read this as an iteration scheme as follows:
(

an+1(x)
bn+1(x)

)
=

(
1
0

)
−

∫ ∞

x

i

2λ

(
0 −V φ

2

V φ2 0

) (
an

bn

)
dy.

Here we have imposed the boundary condition (a(∞), b(∞)) = (1, 0).
An appropriate different boundary condition gives a scheme for a linearly
independent solution, but since the structure of the scheme is the same
we shall not discuss other boundary conditions.

The above iteration scheme has the following formal solution

a =
∞∑

n=0

(
1
2λ

)2n

T2n(V, . . . , V )

b = −i
∞∑

n=1

(
1
2λ

)2n−1

T2n−1(V, . . . , V )

where T0 ≡ 1 and

Tn(f1, . . . , fn)(x) =
∫ ∞

x

∫ ∞

t1

· · ·
∫ ∞

tn−1

n∏

j=1

φ2(−1)n−j

(tj)fj(tj) dtj .

These are multilinear operators, and ultimately we are interested in con-
trolling T (f1, . . . , fn) in the sup norm, given L2 control over the func-
tions fi.

Recall that the above lines have an implicit λ dependence. Homo-
geneity considerations suggest the following conjectured bound

∥∥∥∥sup
x

|Tn(f1, . . . , fn)(x, λ)|
∥∥∥∥

L
2
n (λ)

≤ Cn‖f1‖2 . . . ‖fn‖2.(28)

While such a bound does not yet guarantee summability of the iteration
series, we shall solely concentrate on this bound for the rest of this
discussion. Summability requires additional arguments, which use that
in this specific application all the functions fi are the same, see [7].
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To simplify the discussion we shall replace the WKB phase and its
various powers by a simple exponential phase e2πiλ(t1+···+tn). The WKB
phase is an approximation to an exponential and neglecting it is a minor
modification. Neglecting the minus signs in the exponent —as pointed
out by M. Christ— is a more subtle change, it passes form a degenerate
to a nondegenerate stiuation in the sense explained in the first chapter
of this survey article. However, it seems reasonable to study the non-
degenerate situation first. Also, to comply with our setup in Chapter 1,
we shall replace fi by f̂i. We can neglect the Fourier transform on the
right hand side of (28) since it is an isometry in L2.

Thus we are looking at the multi(sub)linear maximal operator

(29) Tmax(f1, . . . , fn)(x)

= sup
ξ

∣∣∣∣
∫

ξ<ξ1<ξ2<···<ξn

e2πix(ξ1+···+ξn)f̂1(ξ1) . . . f̂n(ξn) dξ1 . . . dξn

∣∣∣∣

and, taking ξ = −∞ instead of a supremum over ξ, a linear operator

(30) T (f1, . . . , fn)(x)

=
∫

ξ1<ξ2<···<ξn

e2πix(ξ1+···+ξn)f̂1(ξ1) . . . f̂n(ξn) dξ1 . . . dξn.

This linear operator is a multiplier operator of the type (11) discussed in
Chapter 1, the multiplier being the characteristic function of an infinite
simplex ξ1 < · · · < ξn.

We shall discuss these operators for small values of n.
If n = 1, the linear operator is just the identity operator

T1f(x) =
∫ ∞

−∞
f̂(ξ) e2πiλξ dξ = f(x),

while the associated maximal operator is essentially the Carleson oper-
ator

Tmaxf(x) = sup
x

∣∣∣∣
∫ ∞

x
f̂(ξ) e2πiλξ dξ

∣∣∣∣ .

Both operators are bounded in L2, which is the desired estimate. Already
in this simplest case the modulation invariant theory enters the picture
in the form of Carleson’s theorem. We remark that doing an analogue
discussion of the work of Christ and Kiselev, the estimates needed here
are a bound for Carleson’s operator given that f̂ is in Lp (f is in a
Wiener type space) with p < 2, which is a classical bound known as long
ago as [41], long before the proof of Carleson’s theorem.
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If n = 2, then the linear operator is essentially the bilinear Hilbert
transform

T (f1, f2)(x) =
∫ ∞

−∞

∫ ∞

ξ1

2∏

j=1

f̂(ξj) e2πiλξj dξj ,

while the maximal operator is:

Tmax(f1, f2)(x) = sup
x

∣∣∣∣∣∣

∫ ∞

x

∫ ∞

ξ1

2∏

j=1

f̂(ξj) e2πiλξj dξj

∣∣∣∣∣∣
.

The bilinear Hilbert transform satisfies the desired bound L2×L2 → L1,
for the maximal operator this is as of yet unknown (work in progress).
Since the Carleson operator and the bilinear Hilbert transform have
roughly the same complexity, we may expect that the maximal oper-
ator for n = 2 has the same complexity as the linear operator for n = 3:

T (f1, f2, f3)(x) =
∫ ∞

−∞

∫ ∞

ξ1

∫ ∞

ξ2

3∏

j=1

f̂(ξj) e2πiλξj dξj .

We shall call this trilinear operator the “biest”. (This is german spelling
for “beast”, and it allows for generalizations “triest” and “multiest”.)

The biest is a multiplier operator whose multiplier is given by the
characteristic function of the convex hull of

...........

--
--

--
--

--
--

--

--
--

--
--

--
--

--

,,
,,

,,
,,

,,
,,

,,
,,

,,
.. .. .. .. .. ..

.. .. .. .. .. ..

ξ1 = ξ2

ξ2 = ξ3
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Each of the planes ξ1 = ξ2 and ξ2 = ξ3 by themselves correspond to
operators

B(f1, f2) · f3, f1 · B(f2, f3),

where B is a variant of the bilinear Hilbert transform. Both planes are
degenerate in the sense of Theorem 1.3. Also, in the notation of that
theorem, we have k = 2 and n = 4, so the condition 2k < n is violated.
However, due to the above splitting, we certainly obtain a whole range
of Lp estimates for both operators.

However, no such splitting is available for the biest itself. So no Lp

estimates for the biest are immediately evident. However, we have the
following theorem [34], [35], which is the first progress (beyond what
was discussed in Chapter 1) towards understanding of the L2 theory of
the eigenfunction expansions of Schrödinger operators:

Theorem 3.2. Define Λ(f1, f2, f3, f4) to be
∫

ξ1+ξ2+ξ3+ξ4=0, ξ1<ξ2, ξ2<ξ3

4∏

j=1

f̂j(ξj) dµ.

Then we have the a priori estimates

|Λ(f1, f2, f3, f4)| ≤ Cp1,p2,p3,p4

4∏

j=1

‖fj‖pj

as long as
4∑

j=1

1
pj

= 1, 1 < pj < ∞.

Moreover, we have the following types (p1, p2, p3, p4) provided at most
one of the pi is negative,

(
1
p1

,
1
p2

,
1
p3

,
1
p4

)
∈ D′ ∩ D,

where D′ is the open convex hull of the points
(

1
2
, 1, 1,−3

2

)
,

(
−1

2
, 1,

1
2
, 0

)
,

(
−1

2
,
1
2
, 1, 0

)

and their images under the index permutations 1 → 2 and 3 → 4
(12 points altogether) and D is the image of D′ under the index per-
mutations 1 → 3.

In particular, Λ is of type (2, 2, 2,−2).
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We remark that the multiplier of the biest can be cut by a smooth
cutoff function into two pieces symmetric under the index permuta-
tions ξ1 → ξ2, one of them has the singularities ξ1 = ξ2 and ξ1 =
ξ2 = ξ3 = a4ξ4. These two regions correspond to the regions D′ and D
of estimates in the theorem.

We remark that this theorem has analogues for more general multipli-
ers in the spirit of Gilbert and Nahmod [13], however, a tensor product
constraint as discussed in [15] appears.

The series of multilinear operators and maximal operators discussed
above is currently under active research, and there may be hope that the
Conjecture 3.1 can be solved along these lines.

Addendum. During the process of this article being published, it was
discovered in joint work with Muscalu and Tao that the multilinear op-
erators which actually appear in the series expansion of eigenfunctions
of Schrödinger operators are not bounded in L2. This result will appear
elsewhere.
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