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DIRECTIONAL OPERATORS AND MIXED NORMS

Javier Duoandikoetxea

Dedicated to the memory of Chicho Guadalupe, a friend of many of us

Abstract
We present a survey of mixed norm inequalities for several direc-
tional operators, namely, directional Hardy-Littlewood maximal
functions and Hilbert transforms (both appearing in the method
of rotations of Calderón and Zygmund), X-ray transforms, and di-
rectional fractional operators related to Riesz type potentials with
variable kernel. In dimensions higher than two several interesting
questions remain unanswered.

1. Introduction

1.1. The method of rotations for singular integrals.

Directional operators in Rn are defined as the action of one-dimension-
al operators on the restriction of functions to lines. The model operators
are the directional Hardy-Littlewood maximal function

Mf(x, u) = sup
h>0

1
h

∫ h

0
|f(x − tu)| dt

and the directional Hilbert transform

Hf(x, u) = p.v.
∫ ∞

−∞

f(x − tu)
t

dt,

defined for x ∈ Rn and u ∈ Sn−1. Fubini’s theorem implies that

‖Mf(·, u)‖p, ‖Hf(·, u)‖p ≤ C(p)‖f‖p(1.1)

where C(p) is a bound for the Lp norm of the one-dimensional Hardy-
Littlewood maximal operator and the Hilbert transform.
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Herriko Unibertsitatea.



40 J. Duoandikoetxea

Both operators together with the directional maximal Hilbert trans-
form (whose definition will be easily guessed by the reader) appear in
the method of rotations introduced by Calderón and Zygmund [CZ1] to
study singular integral operators with variable kernel, namely,

TΩf(x) = p.v.
∫

Rn

Ω(x, y′)
|y|n f(x − y) dy

where y′ = y/|y|. Suppose that Ω is odd in its second variable, then the
singular integral can be represented as

TΩf(x) =
1
2

∫

Sn−1
Ω(x, u)Hf(x, u) dσ(u).(1.2)

Consider first the case when Ω is independent of x which is quite
well-known. From the representation (1.2) it is clear that

‖TΩf‖p ≤ 1
2
C(p)‖Ω‖1‖f‖p,

where ‖Ω‖1 is the norm on the unit sphere. Since (1.2) is valid only for
odd Ω, the case when Ω is even needs a different approach which already
appeared in [CZ1]; the conclusion is that the Lp-boundedness of TΩ

holds when Ω has mean value zero (which is a necessary condition) and
the condition Ω ∈ L1 is replaced by Ω ∈ L log L (in particular, Ω ∈ Lr

for some r > 1 suffices).
If Ω depends on x, the situation is more complicated. Define

Nr =
(∫

Sn−1
|Ω(x, u)|r

′
dσ(u)

)1/r′

(1.3)

and apply Hölder’s inequality to majorize (1.2) by

|TΩf(x)| ≤ 1
2
Nr

(∫

Sn−1
|Hf(x, u)|r dσ(u)

)1/r

.

Then, if Nr is finite, TΩ is bounded on Lp for odd Ω if the following
inequality holds:

(∫

Rn

(∫

Sn−1
|Hf(x, u)|r dσ(u)

)p/r

dx

)1/p

≤ Cp,r‖f‖p.(1.4)

As a consequence of (1.1), if 1 < r < ∞, (1.4) holds for p ≥ r. We are
interested in values p < r for which (1.4) holds.
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For a function F defined on Rn × Sn−1 and 1 ≤ p, r ≤ ∞ we define
the mixed norm of F in Lp(Lr) as

‖F‖Lp(Lr) =
(∫

Rn

‖F (x, ·)‖p
Lr(Sn−1) dx

)1/p

,

with the usual modification when p = ∞. With this notation Inequal-
ity (1.4) and its counterpart for the maximal function are written as

‖Hf‖Lp(Lr), ‖Mf‖Lp(Lr) ≤ Cp,r‖f‖p.(1.5)

The study of these inequalities will be considered in Section 2.

1.2. The X-ray transform.

Given a smooth function f in Rn we define its X-ray transform as

Xf(x, u) =
∫ ∞

−∞
f(x − tu) dt

for x ∈ Rn and u ∈ Sn−1. Although we define the operator on Rn ×
Sn−1, it is constant on lines, so that actually we can consider only those x
which are orthogonal to u. The interesting mixed norm inequalities in
this setting are

(∫

Sn−1

(∫

u⊥
|Xf(x, u)|q dλu⊥(x)

)r/q

dσ(u)

)1/r

≤ Cp,q,r‖f‖p,(1.6)

where dλu⊥ is the (n − 1)-dimensional Lebesgue measure on u⊥. Sec-
tion 3 is devoted to the study of this kind of mixed norm inequalities
which apart from their own interest will be useful for the other operators
studied in this paper.

1.3. The method of rotations for potential type operators.

Given Ω as before, we can define operators associated to Ω with the
homogeneity of the Riesz potentials, that is,

Iα,Ωf(x) =
∫

Rn

Ω(x, y′)
|y|n−α

f(x − y) dy, 0 < α < n.(1.7)

Using polar coordinates we have a representation similar to the right-
hand side of (1.2),

Iα,Ωf(x) =
∫

Sn−1
Ω(x, u)

∫ ∞

0
f(x − tu)tα−1 dt dσ(u).(1.8)
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We define directional Riesz potentials for 0 < α < n as

Iαf(x, u) =
∫ ∞

−∞
f(x − tu)|t|α−1 dt.(1.9)

For α = 1 this operator coincides with the X-ray transform. When Nr

(defined as in (1.3)) is finite, the boundedness properties of Iα,Ω from
Lp to Lq are deduced from the following mixed norm inequalities

‖Iαf‖Lq(Lr) ≤ Cp,q,r‖f‖p(1.10)

which we will study in Section 4. Given p there is just one value of q for
which (1.10) is possible, so that actually there are only two free indexes
in this inequality.

1.4. Some variants.

Appropriate counterexamples show that there are values of p, q and
r for which (1.5), (1.6) and (1.10) are not possible. In general, only
in the two dimensional case full answers are known, and the problems
remain open for n ≥ 3 in part of the expected range of boundedness. In
Section 5 we study all the operators when they act on radial functions;
although the range of values of p, q and r for which boundedness holds
is larger than for general functions, we are able to prove sharp results.

Finally, in Section 6 we review some results on maximal operators as-
sociated to an arbitrary set of directions. Several situations are possible
depending on the set of parameters and again many questions remain
open.

2. The maximal operator and the Hilbert transform

2.1. The conjecture and the theorem.

Taking as f the characteristic function of a ball, the size of Mf(x, u)
and Hf(x, u) for big x is of the order of |x|−1 when u is in a ball of Sn−1

of radius |x|−1/2; then the left-hand side of (1.5) is finite only if
n

p
− n − 1

r
< 1.

On the other hand, the characteristic function of a Besicovitch type
set excludes the case r = ∞ (see [S2, Chapter X]). We formulate the
following conjecture.

Conjecture 2.1. Inequality (1.5) holds for M and H if and only if
n

p
− n − 1

r
< 1 and 1 ≤ r < ∞.
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Theorem 2.2.

(i) The conjecture holds true for n = 2.
(ii) The conjecture holds true for n ≥ 3 if 1 < p ≤ (n + 1)/2.

By interpolation the boundedness of M and H for (n+1)/2 < p < ∞
and r < 2p is deduced from (ii).

As mentioned in the introduction the result for r ≤ p is immediate,
so that we only need to consider the case r > p.

2.2. The L2 estimate.

The first nontrivial result was proved by Calderón and Zygmund
in [CZ2]. They showed that the conjecture holds true for the Hilbert
transform when n = 2 and also for n ≥ 3 if 1 < p ≤ 2. Actually they
proved the best possible results for p = 2 in all dimensions and Riesz-
Thorin interpolation provides the rest. Their proof was based on the
use of spherical harmonics. An alternative proof is due to M. Christ and
consists in proving that H is bounded from L2 to L2(L2

β) for β < 1/2
(here L2

β is the Sobolev space defined on Sn−1, see [S1, Chapter IV]).
Since we are in a Hilbert space setting, the norm in L2(L2

β) of Hf coin-
cides with the norm of Ĥf where the Fourier transform is taken in the x
variable. But

Ĥf(ξ, u) = −πi sgn(ξ · u)f̂(ξ)

and sgn(ξ · u) as a function of u is in L2
β(Sn−1) if and only if β < 1/2

(the norm is clearly independent of ξ). Using the Sobolev embedding
theorem, L2

β is continuously included in Lr for 1/r = 1/2 − β/(n − 1)
and this proves the result.

For the maximal operator the first nontrivial result is due to R. Fef-
ferman [F2] who proved the best results for r = 2 in all dimensions
(that is, for 1 < p ≤ 2n/(n + 1)). Interpolation gives some non optimal
results for p > 2n/(n + 1). His result was improved by M. Cowling and
G. Mauceri [CM] who extended it to the same range given by Calderón
and Zygmund for the Hilbert transform, that is, the optimal result was
proved to hold for 1 < p ≤ 2 in all dimensions. By interpolation with the
trivial estimate in L∞ this result implies the full conjecture if n = 2 and
some partial results for n ≥ 3 and p > 2. Next we sketch the alternative
proof given in [CDR].

To work with the maximal operator we consider smooth functions ϕ
(defined on R) and φ (defined on Rn and radial) of compact support,
nonnegative, with integral one, and such that ϕ(0) > 0. Define ϕk(t) =
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2−kϕ(2−kt) and φk(x) = 2−knφ(2−kx), and introduce

Tkf(x, u) =
∫ ∞

−∞
f(x − tu)ϕk(t) dt(2.1)

and

Akf(x, u) =
∫ ∞

−∞
f(x − tu)ϕk(t) dt −

∫

Rn

f(x − y)φk(y) dy.

If f is nonnegative

Mf(x, u) ≤ C sup
k∈Z

Tkf(x, u) ≤ C(sup
k∈Z

|Akf(x, u)| + f∗(x))(2.2)

where f∗ denotes the (n-dimensional) Hardy-Littlewood maximal func-
tion of f .

As in the Hilbert transform case we work with Sobolev spaces in u.
The estimate

‖Akf‖2
L2(L2

β
) ≤ C

∫

Rn

|f̂(ξ)|2 max(2k|ξ|, 2−k|ξ|)−α dξ(2.3)

with α = 1− 2β (see [CDR]) gives the L2-boundedness for β < 1/2 and
using the Sobolev embedding as before we recover the result obtained
by Cowling and Mauceri.

2.3. Lp estimates, p > 2.

Results for p > 2 were improved in the paper by M. Christ, J. Duoan-
dikoetxea and J. L. Rubio de Francia [CDR]. They are contained in the
statement of Theorem 2.2 and have not been improved since then.

An interesting fact proved in [CDR] is that the result for the maximal
operator provides the result for the Hilbert transform. To be precise the
following lemma holds.

Lemma 2.3. If M satisfies (1.5) for some (p0, r0) and R is any one-
dimensional operator which is bounded on Lp(w,R) for all w ∈ Ap(R),
then the directional operator defined through R satisfies a mixed norm
inequality like (1.5) in Lp0(Lr) with r < r0.

Ap refers to the Muckenhoupt class of weights for which the Hardy-
Littlewood maximal operator is bounded on the weighted space Lp(w).
The proof of this lemma is similar to the proof of part of the extrapolation
theorem as presented for instance in [D]. Since the Hilbert transform and
the maximal Hilbert transform satisfy the required weighted inequalities,
proving Theorem 2.2 for the maximal operator gives the result for the
Hilbert transform and the maximal Hilbert transform.
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To improve the results for p0 > 2 it is enough to show that for some C
independent of k and some r0 not covered in the previous result, the
following mixed norm inequality holds

‖Tkf‖Lp0 (Lr0 ) ≤ C‖f‖p0 .(2.4)

To see this define a usual Littlewood-Paley family of operators {Sj} as
(Sjf )̂ (ξ) = ψ(2j |ξ|) f̂(ξ) where ψ is a radial C∞ function supported in
{1/2 < |ξ| < 2} and such that

∑
j ψ(2j |ξ|) = 1 for ξ (= 0; let

Bjf = sup
k

|Ak(Sj+kf)|,

so that

sup
k

|Akf(x, u)| ≤
∑

j

Bjf(x, u).(2.5)

Using (2.3) we get

‖Bjf‖L2(Lr) ≤ C2−α|j|‖f‖2 for r <
2n − 2
n − 2

,

and from (2.4),
‖Bjf‖Lp0 (Lr0 ) ≤ C‖f‖p0

is deduced. Interpolating and using (2.5) and (2.2) we deduce a bound-
edness result for M .

Theorem 2.2 is obtained proving (2.4) for p0 = (n+1)/2 and r0 = n+1.
By a dilation argument we can reduce ourselves to k = 0; for nonnegative
f , T0f is bounded by the X-ray transform and the required inequality is
obtained using Theorem 3.2 below. The details can be seen in [CDR].

2.4. Application to the Kakeya maximal operator.

Directional maximal operators can be used to control averages over
starlike sets. More precisely, let E be a set starlike with respect to the
origin, described as E = {ru : 0 ≤ r ≤ R(u), u ∈ Sn−1}, then

1
|E|

∫

E
|f(x − y)| dy =

1
|E|

∫

Sn−1

∫ R(u)

0
|f(x − ru)|rn−1 dr dσ(u)

≤ 1
|E|

∫

Sn−1
R(u)nMf(x, u) dσ(u)

≤ supu R(u)n/r

|E|1/r

(∫

Sn−1
Mf(x, u)r dσ(u)

)1/r

.
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Defining the eccentricity of a set E as the infimum of the quotients |B|/|E|
for all balls B containing E, the first term in the right-hand side can be
replaced by the eccentricity of E raised to the power 1/r. In particular,
we get an expression which majorizes the maximal function over all the
sets with a fixed eccentricity.

An interesting example is the Kakeya maximal operator MN which
takes the supremum over the averages on all paralellepipeds of sides a×
a× · · ·×a×Na for a fixed N and variable a > 0. The conjecture is that
this operator is bounded on Lp with norm C(N, p) majorized as

C(N, p)≤





C(p)(log N)a(p), for some a(p)>0 if p≥n,

C(p)Nn/p−1(log N)a(p), for some a(p)≥0 if 1<p<n.
(2.6)

Using the preceding pointwise bound and the fact that the eccentricity
of the sets involved in the definition of Kakeya maximal function is Nn−1

we have

MNf(x) ≤ CN (n−1)/r

(∫

Sn−1
Mf(x, u)r dσ(u)

)1/r

.

Then to prove (2.6) for some p < n (with a(p) = 0) it would be enough
to have (1.5) for (n − 1)/r = n/p − 1. But this is exactly the end-
point condition in Conjecture 2.1 and it is false. Nevertheless, since we
accept to loose a power of log N , it suffices to have (1.5) for all r with
(n − 1)/r > n/p − 1 provided that Cp,r grows as a negative power of
r−1 − rn(p)−1, where rn(p) satisfies

n

p
− n − 1

rn(p)
= 1 if p < n and rn(p) = ∞ if p ≥ n.

Using Theorem 2.2 the full conjecture is deduced for n = 2 (a result due
to A. Córdoba [Co1]) and also for the range 1 < p ≤ (n + 1)/2 when
n ≥ 3.

This relation between Theorem 2.2 and the boundedness of the Kakeya
maximal function can be thought as a measure of its difficulty. Still, it is
worth pointing out that (2.6) has been established for p < (n + 2)/2 by
T. Wolff (see [W1] and also the survey [W2]) using a different method.

3. The X-ray transform

3.1. The conjecture and the theorem.

The X-ray transform has been defined in Subsection 1.2 and we look
for inequalities of the type (1.6). Although apparently we have three
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parameters, p, q and r, a dilation argument (replacing f(x) by f(λx))
gives the necessary condition

n

p
− n − 1

q
= 1,

so that it is enough to determine the values of p and r. This condition
does not make sense if p > n, and actually p = n is also excluded (take
f(x) = (1 + |x|)−1(log |x|)−a with 1/n < a < 1). If we consider as f
the characteristic function of a paralellepiped of sides 1× ε× · · ·× ε and
make ε tend to 0, the condition

r ≤ (n − 1)p′(3.1)

appears. Altogether we formulate the following conjecture.

Conjecture 3.1. Inequality (1.6) holds if and only if

1 ≤ p < n,
n

p
− n − 1

q
= 1, and r ≤ (n − 1)p′.

Theorem 3.2. Conjecture 3.1 holds true if n = 2 or if n ≥ 3 and
1 ≤ p ≤ (n + 1)/2.

Partial results were given by A. P. Calderón [C]. The general result in
two dimensions was proved by D. M. Oberlin and E. M. Stein [OS] us-
ing analytic interpolation; actually they proved an n-dimensional result
for the Radon transform which is the analogue of the X-ray transform
defined replacing lines by hyperplanes (so that X-ray and Radon trans-
forms coincide for n = 2). In higher dimensions, S. W. Drury [Dr1]
proved the result for 1 < p < (n + 1)/2 with strict inequality in (3.1)
and M. Christ [Ch] was able to prove the end-point result p = (n+1)/2,
r = n + 1 which gives the theorem; the range (n + 1)/2 < p < n is open
(see a related result for n = 3 in [W3]). [Dr2] is an interesting survey
for the more general k-plane transform (k = 1 is the X-ray transform
and k = n − 1 is the Radon transform).

Notice first that the case p = 1, q = 1, r = ∞ is trivial due to Fubini’s
theorem and that it is enough to prove the estimates for the values of p
and r on the line r = (n − 1)p′.

3.2. The L2 estimate.

The two-dimensional result can be handled via Fourier transform and
Sobolev imbedding as follows. Given f in R2 its X-ray transform is

Xf(s, θ) =
∫ ∞

−∞
f(s sin θ + t cos θ,−s cos θ + t sin θ) dt
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for s ∈ R and θ ∈ [0, 2π). We claim that the X-ray transform is bounded
from L2 to L2(L2

1/2) (since the mixed norm in (1.6) is taken in reverse
order, the Sobolev space is in the x variable). Considering the Fourier
transform of Xf(s, θ) with respect to s,

(Xf )̂ (ρ, θ) =
∫ ∞

−∞
Xf(s, θ)e−2πiρs ds,

the mixed norm in L2(L2
1/2) is given by

∫ 2π

0

∫ ∞

−∞
|(Xf )̂ (ρ, θ)|2|ρ| dρ dθ.

An easy calculation shows that

(Xf )̂ (ρ, θ) = f̂(ρ sin θ,−ρ cos θ),

where f̂ denotes the Fourier transform of f in R2. The claim follows.
Interpolating with the trivial estimate L1 → L∞(L1) we deduce the

boundedness from Lp to Lp′
(Lp

1/p′) for 1 < p < 2. The Sobolev imbed-
ding gives Lp

1/p′ ⊂ Lq for 1/q = 2/p−1, ending the proof. (Actually one
can perform a similar approach for n ≥ 3 but the mixed norm inequality
is far from being sharp.)

3.3. The unmixed estimate.

The best we know in higher dimensions is due to M. Christ who proved
the sharp unmixed estimate (by unmixed we mean the case q = r, which
is not properly a mixed norm). According to Conjecture 3.1 such an
estimate can only hold for 1 ≤ p ≤ (n + 1)/2. Christ’s proof is based on
a multilinear estimate and is presented next.

The key fact is that the multilinear form

A(f0, f1, . . . , fn) =
∫

Sn−1

∫

u⊥

n∏

j=0

(∫ ∞

−∞
fj(x − tu) dt

)
dλu⊥(x) dσ(u)

is bounded from L1 × Ln,1 × · · · × Ln,1 to C. Here Ln,1 is the Lorentz
space whose definition and properties can be found in [BS]. It is enough
to prove that

∫

Sn−1

∫

u⊥

(∫ ∞

−∞
f0(x − t0u) dt0

)(∫ ∞

−∞
f1(x − t1u) dt1

)n

dλu⊥(x) dσ(u)

≤ C‖f0‖1‖f1‖n
n,1.
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Write y = x−t0u gathering the second and third integral of the left-hand
side to get

∫

Sn−1

∫

Rn

f0(y)
(∫ ∞

−∞
f1(y − tu) dt

)n

dy dσ(u)

(after a translation in the inner integral). Then the result follows if we
show that ∫

Sn−1

(∫ ∞

−∞
f(y − tu) dt

)n

dσ(u) ≤ C‖f‖n
n,1.(3.2)

It is enough to prove this result for characteristic functions (see [BS]).
Let E be a measurable set in Rn of finite measure and χE its character-
istic function; assuming without loss of generality that y = 0 and using
polar coordinates,

|E| =
∫

Sn−1

(∫ ∞

0
χE(tu)tn−1 dt

)
dσ(u)

≥ 1
n

∫

Sn−1

(∫ ∞

0
χE(tu) dt

)n

dσ(u),

where the inequality holds because

|J |n ≤ n

∫ ∞

0
χJ(t)tn−1 dt

for any set J contained in (0,∞) (the right-hand side is minimum if
J = (0, |J |) due to the fact that tn−1 is increasing).

Moving the position of L1 we have n + 1 estimates, and applying
multilinear interpolation to them we deduce that the above-mentioned
multilinear form is bounded from Lp1 × Lp2 × · · · × Lpn+1 to C when
1 < pj < n and

∑
j 1/pj = 2. The case pj = (n + 1)/2 for all j gives the

desired estimate and ends the proof of Theorem 3.2.

4. Potential like operators

4.1. The conjecture and the theorem.

The usual dilation argument (replace f(x) with f(λx)) and counterex-
amples (the characteristic functions of a ball and of [−1, 1]× [−δ, δ]n−1)
provide the necessary conditions to formulate our conjecture

Conjecture 4.1. Inequality (1.10) holds true if and only if 1 < p < n/α
and

n

p
− n

q
= α,

n

p
− n − 1

r
< 1 and r ≥ n

α
.

The following theorem was proved in [DO].
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Theorem 4.2. The preceding conjecture holds true if n = 2 or if n ≥ 3
and α ≥ n/(n + 1). If n ≥ 3 and α < n/(n + 1) then Inequality (1.10)
holds if moreover r < 2p.

4.2. The key estimates.

To prove the theorem we use three key estimates:
(1) The result holds for r = 1.
(2) If α = 1, the boundedness from Ln,1 to L∞(Ln) holds.
(3) The unmixed estimate (q = r) holds for 1 < α < n/(n+1) if α/n ≤

1/r < 1−α (this is the maximum range allowed in Conjecture 4.1
for q = r).

We observe first that the case r = 1 corresponds to the usual Riesz
potential of order α; indeed,

∫

Rn

f(x − y)
|y|n−α

dy =
1
2

∫

Sn−1

∫ ∞

−∞
f(x − tu)|t|α−1 dt dσ(u).

Then (1) is given by the well-known boundedness of the Riesz potential
from Lp to Lq when 1 < p < n/α and n/p − n/q = α. Observe that
if α = n, we have the integral of f , so that In is bounded from L1 to
L∞(L1).

(2) has been proved in (3.2). To prove (3), use first the boundedness
of the one-dimensional Riesz potential and then the result for the X-ray
transform given in the preceding section. The precise calculation is as
follows:

∫

Sn−1

∫

Rn

(∫ ∞

−∞
f(x − tu)|t|α−1 dt

)r

dx dσ(u)

≤ C

∫

Sn−1

∫

u⊥

(∫ ∞

−∞
f(x − tu)p̃ dt

)r/p̃

dλu⊥(x) dσ(u) ≤ C‖f‖r
p,

where
1
r

=
1
p̃
− α, 1 <

r

p̃
≤ n + 1, and

n

p
− n − 1

r
=

1
p̃
.

(The first condition is required for the first inequality, the others for the
second one.)

Together with the key estimates we need the following inequalities
(for f ≥ 0):

(4) Iαf(x, u) ≤ Iβf(x, u)sIγf(x, u)1−s if α = sβ +(1− s)γ, 0 ≤ s ≤ 1,
and 0 < β, γ ≤ n;

(5) Iαf(x, u) ≤ CsMf(x, u)sIγf(x, u)1−s if α = (1 − s)γ, 0 ≤ s < 1.
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The first one is a simple consequence of Hölder’s inequality; (5) is a
variant of the classical Hedberg’s inequality [AH, p. 54] and can be seen
as a substitute of (4) for β = 0.

4.3. The end of the proof.

To conclude the proof if α ≥ n/(n+1), let r = n/α and p in the conjec-
tured range, define β in such a way that the line in the plane (1/p, 1/r)
passing through (1, 1) and (1/p, α/n) cuts the line p = 2r at a point
whose second coordinate is β/n. Use (4) with γ = n and (3) to obtain a
restricted estimate (that is, for characteristic functions), and interpolate.

If α < n/(n + 1) using (1), (2) and (3) plus interpolation we get a
range for p and r. This range can be improved to cover all the points
such that 2/r ≥ 1/p. Indeed, we only need to consider some γ > α for
which the result has been proved for the same couple (p, r), the estimate
for M given in Section 2 and (5).

The proof for the case n = 2 follows from Theorem 2.4 and (5) with
γ = n; the result is obtained for r < n/α. Some end-point results (that
is, for r = n/α) can be given using the preceding method.

5. Radial functions

The mixed norm inequalities become easier when we restrict to radial
functions, even if the range of positive results is larger.

5.1. Two key estimates.

The first result of this type we mention is due to A. Carbery, E. Her-
nández and F. Soria [CHS], and says the following.

Theorem 5.1. The operator f +→ supu Mf(x, u) is bounded from Ln,1

to Ln and from Lp to Lp if p > n, when restricted to radial functions.

An alternative proof appears in [DNO], where we proved the following
pointwise inequality:

MχE(x, u) ≤ C(n)(χE)∗(x)1/n,

valid when E is a radially symmetric measurable set in Rn ((χE)∗ de-
notes the n-dimensional Hardy-Littlewood maximal operator acting on
the characteristic function of E). From this inequality the case p = n of
the theorem follows at once, and p > n is deduced by interpolation.

This theorem gives the case r = ∞ of Conjecture 2.1 for M act-
ing on radial functions (remember that the counterexample for general
functions is given by the characteristic function of a Besicovitch set).
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To improve the results in Sections 3 and 4 we need another end-point
result which is the substitute of Inequality (3.2) and was proved in [DO].

Theorem 5.2. Let E be a measurable, radially symmetric set of finite
measure in Rn, then

sup
u

XχE(x, u) ≤ C|E|1/n.

5.2. Sharp results for radial functions.

Theorem 5.3. (a) Conjecture 2.1 holds for M and H when f is ra-
dial, and for M the case r = ∞ is also valid.

(b) The X-ray transform satisfies Inequality (1.6) for radial functions
if and only if 1 ≤ p < n and 1 ≤ r ≤ ∞.

(c) Iα satisfies Inequality (1.10) for radial functions if and only if

1 < p <
n

α
,

n

p
− n

q
= α, and

n

p
− n − 1

r
< 1.

(a) is deduced for M from Theorem 5.1 and interpolation, and Lem-
ma 3.3 can be used to extend the results to H.

Theorem 5.2 implies that the X-ray transform is bounded from Ln,1

restricted to radial functions to L∞(L∞) and (b) is immediate.
Finally, to prove (c) we use (1), (4), and (5) as in the Section 4, and

replace (2) by the result mentioned in the preceding paragraph which
holds for I1.

P. Sjögren and F. Soria proved in [SjSo] that M restricted to radial
functions satisfies a weak-type inequality for p = 1 and r = 1. For
general functions this result was proved to be false by R. Fefferman [F1].
Together with Theorem 5.1 we deduce that a restricted weak-type result
holds on radial functions for M when p and r are on the end-point
line n/p − (n − 1)/r = 1.

6. Other results on directional operators

6.1. Finite set of directions.

Given a subset E of Sn−1 define the operator

MEf(x) = sup
u∈E

Mf(x, u).

When E is a finite set, the boundedness of ME in Lp for 1 < p ≤
∞ is immediate, but the interesting question is to determine which is
the behaviour of the norm of the operator with respect to the number
of directions in E. The conjecture is that if Nn−1 is the cardinality
of E, then the Lp norm of ME satisfies the Inequalities (2.6). This
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result is known only for n = 2. The proof for an equidistributed set
of directions is due to A. Córdoba [Co2] (see also [St]); much later,
N. H. Katz [K1] proved the general case, for which an alternative proof
is due to Alfonseca, Soria and Vargas [ASV].

In higher dimensions only the result for 1 < p ≤ 2 seems to be known
for the equidistributed case (using the estimate for p = 2) and the general
case is open. An answer to this conjecture (even for the equidistributed
case) implies the Kakeya maximal function conjecture of Subsection 4.2,
which has been proved up to (n + 2)/2 (when n ≥ 3).

6.2. Some results on infinite sets.

When E is infinite, the boundedness of ME might hold or not. Only
extremal situations are known currently: either ME is bounded on Lp

for 1 < p ≤ ∞ or ME is unbounded for finite p. If E is a lacunary set
of directions in the plane the first situation holds [NSW] and the same
thing is true if the set of directions is lacunary of finite order [SjSj];
those are essentially the only sets of directions for which boundedness
has been proved.

If E = Sn−1 the operator is unbounded, but one can construct many
discrete sets E for which ME is unbounded based on the following obser-
vation: if there are Nk (almost) equidistributed directions on the set E,
the norm is bigger than a power of log Nk (the conjecture in the preced-
ing subsection gives a necessary condition); as a consequence, if the set E
contains such subsets of directions for a sequence Nk tending to infinity
the operator ME must be unbounded. For instance, if E is a sequence of
directions of slope {n−α : n = 1, 2, . . . }, then ME is unbounded (there
are C2k/α directions between 2−k and 2−k+1, and the distance between
two consecutive directions among them is almost constant).

Let E be a Cantor set of zero measure. It is not lacunary, but it
does not satisfy the unboundedness criterion proposed in the preceding
paragraph, either. N. H. Katz [K2] showed that the operator associ-
ated to the ternary Cantor set is unbounded if p = 2 (hence if p < 2).
This negative result has been extended to central Cantor sets of positive
Hausdorff measure by K. E. Hare [H], but the general situation is largely
open.

6.3. Radial functions.

In the plane the situation is much clearer when we restrict to ra-
dial functions. Let E ⊂ S1 and denote by d(E) the upper Minkowski
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dimension of E, which is defined as

d(E) = lim sup
δ→0+

logN (δ)
− log δ

where N (δ) is the minimum number of closed intervals of length δ needed
to cover E. If E has positive Lebesgue measure, d(E) = 1. If E has zero
Lebesgue measure, writing S1 \ E as the union of a sequence of disjoint
open intervals, {Ij}, we have an alternative definition of d(E),

d(E) = inf
{

α ≥ 0 :
∑

j

|Ij |α < ∞
}

.

The following theorem is proved in [DV].

Theorem 6.1. When restricted to radial functions ME is bounded on
Lp if p > 1 + d(E) and unbounded if p < 1 + d(E).

If the dichotomy presented above for the general case (either bound-
edness for all p > 1 or unboundedness for all finite p) holds true, all
operators associated to sets with d(E) > 0 will be unbounded. On the
other hand, one can construct E such that d(E) = 0 and ME is un-
bounded for all finite p on general functions while it is bounded for all
p > 1 on radial functions (take the lacunary sequence of directions of
dyadic slope 2−j and insert j equidistributed directions between 2−j and
2−j−1, for all j).
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Universidad del Páıs Vasco
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