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HAUSDORFF MEASURES AND THE MORSE-SARD
THEOREM

CARLOS GusTtavo T. DE A. MOREIRA

Abstract

Let F': U C R™ — R™ be a differentiable function and p < m an
integer. If k > 1 is an integer, « € [0,1] and F € CFk+(@) if we set
Cp(F) = {xz € U | rank(Df(z)) < p} then the Hausdorff measure

of dimension (p + %) of F(Cp(F)) is zero.

1. Introduction

The Morse-Sard theorem is a fundamental theorem in analysis that
is in the basis of transversality theory and differential topology. The
classical Morse-Sard theorem states that the image of the set of critical
points of a function F': R® — R™ of class C"~™%! has zero Lebesgue
measure in R™. It was proved by Morse ([M]) in the case m = 1 and by
Sard ([S1]) in the general case.

Due to its theoretical importance, the Morse-Sard theorem was gen-
eralized in many directions. Many of these generalizations are related
with Hausdorff measures and Hausdorff dimensions.

Given a metric space X and a positive real number «, we define the
Hausdorff measure of dimension « associated to a covering U = (Ux)rer
of X by bounded sets Uy by mq(U) =, (diam Uy)*, where diam Uy
denotes the diameter of Uy, and, if we define the norm of a covering U
by ||U|| = supy ey (diam U), then the Hausdorff measure of dimension «
of X is mq(X) = liminf _ m,(U).

U covering of X
[lt]]—0

It is not difficult to see that there is a unique d € [0, +00] such that if
a > dthen my(X) =0 and if a < d then my(X) = +o00. This number d
is called the Hausdorff dimension of X. It is easy to see that if X C R™
then its Hausdorff dimension d =: HD(X) belongs to [0, n].
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Sard himself proved that if C,,(F) = {x € R™ | rank(DF(x)) < p}
then for any € > 0 there is k& € N such that if F is C* then F(C,(F))
has zero Hausdorff measure of dimension p + & ([S2]). This result was
made more precise by Federer ([F]), who proved that if & € N then the
Hausdorff measure of dimension p+ "2 of F(Cy(F)) is zero. We should
also mention the works of Church ([Chl], [Ch2]), which gave more
results about the structure of the set of critical values of differentiable
maps. Later, Yomdin ([Y]) proved that the Hausdorff dimension of
F(Cy(F)) is at most p + 772, provided that F € C**o where k € N
and 0 < a < 1. More recently, Bates ([B2]) proved that if F € C*+e
with k € N, 0 < o < 1 and p+ 772 = m then F(C,(F)) has zero
Lebesgue measure in R™ (this in particular improves the hypothesis of
the classical Morse-Sard theorem from F € C*~ ™+ to F € Cn—m+Lips.
ie., F € C" ™ and D" ™F Lipschitz).

The aim of this work is to generalize the mentioned results by prov-
ing a general version of the Morse-Sard Theorem involving Hausdorff
measures. Let k& > 1 be an integer and « € [0,1]. We say that a
function F: U C R™ — R™ is of class C**(®) at a subset A of U if F
is C* in U and for each € A there are e, > 0, K, > 0 such that
ly —z| < e, = |DFF(y) — DFF(z)| < K, |y — x| (this is less restrictive
than supposing F' € C*¥+). Our main result is the following

Theorem. Let F: U C R" ik} R™ and let p < m be an integer. If
Cyp(F) := {z € U | rank(DF(x)) < p} and if F is of class CFT(®) qt
Cy(F) then the Hausdorff (p + 775)-measure of F(Cp(F)) is zero.

In particular, if k + o = :1;_7;, we recover the result of [B2], with a

weaker hypothesis. We remark that if p + 772 < m, the Hausdorff (p +
%)—measure is not the Lebesgue measure or a product measure in R™,
and so we can not use Fubini’s Theorem. This difficulty is solved in
the present paper by replacing the use of Fubini’s theorem by a careful
decomposition of the critical set, combined with a parametrized strong
version of the main lemma of Morse’s paper ([M, Theorem 2.1]).

We shall also give examples that show that our result is quite sharp,
by giving counterexamples to slight changes of the hypothesis or of the

conclusion.

2. Functions whose zeros include a given set

We shall prove here a version of Theorem 3.6 of [M] and Lemma 3.4.2
of [F], which will be fundamental for the later results.
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Theorem 2.1. Let k > 1, a € [0,1], n > p and A C U C R"™, where
U is an open set. Then there are sets Ay, As... C A such that A =
1
U;=, Ai, where for eachi=1,2,... thereis a function 1;: B;xV; U
where B; is~a ball in some R™, r; > 0 and V; is a ball in RP such that
Yi(z,y) = (Wi(z,y),y), and [Pi(z1, y1) —Yi(2,y2)| > (21, 91) = (T2, Y2)],
Y (z1,y1), (x2,y2) € B x V; and A; C ;(B; x V;), with the following
property: We can write A; = AL U A so that ¢; ' (AY) has measure zero
in B; x Vi, and if f: U — R vanishes in A and f is C**(®) at A we
have:
[0
(2,90)—(z0,Y0) |z — 0]
7/’i($07y0) € Ai7

. f(i(z,90))
° lim It = 0, V(xo, € B; x V; such that
(z,90)—(z0,y0) \x _$O|k+a (%o, %0)

Yi(zo,y0)) € AQ-

Proof: Let us consider first the case k¥ = 1 and df(z) -v =0V € A,
v € R"P x {0}. In this case we take A = (A’ N A) U A” where A’ is
the set of density points of A in the direction of R"? x {0} ((x,y) €
4o (B@) < () N )
e—0 m(Be(x))
measure). The measure of A” = A — A’ is zero, since it is zero in each
plane R"7P x {y}.
For (zo,y0) € A take B((x0,%0),(x0,y0)) a ball contained in U and
. :I:)
¥ = 1d]B(@o.yo)c(wo o). We have (xz}lggpy)%
since f(z,y0) = f(x,90) — f(zo,y0) = df (two + (1 — t)z)(z — 0), t €
(0,1) = | f(z,y0)| < Kol — 20| 7. For (x0,y0) € A,

. 1 1 /0
%13% vol(§n—p-1) /sn% (6/0 Xa(@o + w’yO)dt> =1

soVe>038 >0st. |[v—a0| <= Ive S P! with

< 400, V(xo,y0) € B; X V; such that

= 1, where m is the (n—p)-dimensional

< +00,

r — X
’ 0l <e

v —
‘.’E—ZL'()|

and

<e,

1 |z—xo]
Tz — o] / Xz(To + tv, yo)dt — 1
0
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so, if T = xg + |z — xo|v,

(@, 90) = f (0, 90)| < [f (2, 90) — f(& yo)| + £ (Z,90) = f (0, 90);

but

f(@,y0) = f(Z,90) = df (0t + (1 = 0)Z,90) - (x — %), €€ (0,1)
= |f(z,90) — F(Z,90)| < Kyylz — 30|* - €|z — 20| = €Ky |z — 20| T

and

f(Z,90) — f(z0,%0)

|£—=o|
:/ df (xo + tv,yo) - vdt
0

a - of
< Kyolx — o] -m{te[O,m—xOH | %(xo—ktv,yo);éO}
< Kyolx — xo|® - €lx — xo| = e Kyl — x0|1+o‘.

So

|f(@,90)| = £ (@, 90) — f (@0, 90)| < 26Ky, |z — x|

BRSNS AV
(z,90)—(z0,y0) |T — To|[1 T

We can take a countable subcovering of A by the B((zo, o), &(x0,¥0))
to finish the proof in this case.
Consider now the case k > 1, n arbitrary. We have A = A* U A**

,
where A* = {x € A | 3g: U <L R, gla = 0, Jv € R* P x {0},
dg(z) -v # 0} A** = A\A*. If (zo,y0) € A* there is g as above, so
there is € > 0 such that ¢g=1(0) N B<(zo, o) is contained in the image

of p: BxV C—k> U where B is a ball in R*™P~1 as in the statement,
and A C g~%(0). Taking a countable subcovering of A* by these balls
we reduce the proof in this case to a case with smaller n. If £ = 1, the
result was yet proved for A**. If k > 1 , and assuming by induction the
result for k — 1, we have

A = JAT AT = (A7) UAT) AP C (B x Vi), e O

i=1
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||df("/}i(xvyO))|R"—P><{O}||<
|z — @1+

- manp M)
T—T0 |x - 370| to

Yi(T0,y0) € A;" = limsup

T—TQ

+00

< +00

and

" -l (i, o)) [rr—r x 03]
%(l‘oayo) € (Az ) = IILHQ}O ‘LU _ :L.O|k71+a =

= lm f(i(z,90))

z—wo |z — xo|FT

0

:O7

both by the mean value theorem, and the proof is finished by induc-
tion. O

Corollary 2.2. Let k > 1, a € [0,1], n > p and A C U C R", where
U is an open set. Then there are sets Ay, As... C A such that A =
1

Ui2, Ai, where for eachi=1,2,... there is a function 1;: B; X V; U
where B; i5~a ball in some R™, r; > 0 and V; is a ball in RP such that
Yi(z,y) = (Wi(z,y),y), and [Pi(1, y1) —Yi(T2,y2)| > [(21,91) — (T2, Y2)I,
Y (z1,y1), (x2,y2) € B; x V; and A; C ;(B; x V;), with the following
property: We can write A; = AL U AY so that 1; *(A) has measure zero
in B; x Vi, and if f: U — R is C*T(®) at A and D, f =0 in A we have:

o limsup |f(Wi(z,y0)) — féﬁ(fﬂo,yom

(@,50)—(z0,0) |z — o

Vi such that 1;(xo,y0) € As,
. lim |f(i(x,90)) — f(Wilz0,90))]

(@y0)—(z0.30) |z — @[kt
such that ¥;(xo,y0)) € AL

< 400, V (0, y0) € B;i X

:O;V(x07y0) EBiX‘/i

Proof: If k > 2 this is an immediate consequence of Theorem 2.1 applied
to D, f and of the mean value theorem. If k& = 1 this can be proved
exactly as the case k = 1 of the Theorem 2.1. O

Corollary 2.3. In the statements of Theorem 2.1 and Corollary 2.2,
for any x € B; s.t. ¥;(x) € A; there are e, > 0, K, > 0 such that
ly— 2| <ew = |[f(i(y) — fWi(2)| < Kely —z[**, and for any e > 0

there is a d > 0 so that W >1=6 = |f(i(y))—f (Wi(z))] <

eK rF e ifr < e, and |y — x| <r (5 depends only on & and n, but not
on f or on x).
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Proof: This is only a more precise formulation of the results proved in

the demonstration of the theorem. O
Remark 2.1. For k = 0 we have the same results, except the state-
ment ?}13; % =0, for each x € B; such that ¢,;(z) € AL

3. The main results

Lemma 3.1. Let A C R™ with A(A) < oo and let U be a family of
balls By(x), x € A such that for each x € A there is an €, > 0 such that
r < e, = By(x) € U. Then for each ¢ > 0 there are x, € A, r, > 0
with By, (x,) € U and A C \J,—; By, (z,,) such that Y " (B, (x,)) <
AA) +e.

Proof: This lemma is essentially the Vitali covering theorem from mea-
sure theory. Take U D A an open set with A(U) < A(A) + 5. If we
choosed By, (z1),...,Bf, (x,), define s,, = sup{r > 0| Iz € Ast. r <
&, By(x) C U and B,(z) N (B, (x1) U--- U By, (zn)) = 0}. Choose
By, . (€n41) such that 7,y > 5, 7 p < Em’g)“ , B, (tpy1) C U and
By, (n41)N(Bj, (x1)U- - -UB;j, (x,,)) = 0. Since the B, (x;) are disjoint
and contained in U we have Y °, A(Br, (#;)) < A(A)+ 5, and so there is
ang € N such that 3777 N(Bsz (2:)) < 5. We take B, (x;) = By, (),
1 < ng and B,-i (-731) = B57-i (.ﬁl), i > ng.

Clearly we have Y72 A(By,(z;)) < A(A) +e. To prove that A C

Unz1 Br,(2n), take z € A and r =min{7,,, e, /5, d(z, UUU, _,, Br(x:))}.
Ifr > 0, take n > ng such that s, < r < s,_1 (wehaver < 7, < spy—1),
and note that s, <r = B,(z)N(B7, (£1)U---UB; (z,)) #0=3i<n
such that B,.(x) N By, (z;) # 0. We have n > ng since r < d(z, By, (x;)),
and 7; > 5"2’1 > 5, sincei < n. Therefore, we have 2 € Bsg, (7). If r =0
then x € B, (x;) for some i < ng. This proves that A C (J,~ | By, (zn).

Taking 7, = (%)I/Qm Ty, we have A C |J;2 | By, (x,), with

Yone1 MBr, (wn)) = (MA) + )2 (52, MBr, ()2 < AM(A) +e. O

n=1

Remark 3.1. In the Lemma 3.1 we can replace a family of balls B,.(z) by
a family of cubes C,(z) = [[\~,[x; — r,2; + 7], where = (21,... , %),
using the same proof.

Lemma 3.2. Let F: U C R" — R™ be a function, A C U and d > 0
such that for any x € A there aree, > 0, K, > 0 such that mq(F(B:(x)N
A)) < Kz \NB:(z)), Ve < €5, where my is the Hausdorff measure
of dimension d, and there is A’ C A such that AM(A\A") = 0 and

lim % =0,Vz e A. Then mq(F(A)) =0.
e— €



HAUSDORFF MEASURES AND THE MORSE-SARD THEOREM 155
Remark 3.2. The same result is true if we replace B.(x) by C.(x).
Remark 3.3. We can replace the condition

“ma(F(Be(x) N A)) < K, M(Be(2)), Ve<e,”
by
“F(Be(x) N A) can be covered by balls Bs,(y;), €N,

with » 0! < K, M(Be(2)), Ve <e,”,

i=1

and the condition

F
“Jim ( —0, Vzed”
()
by
“F(B:(z) N A) can be covered by balls By (yi), €N

D Dt (a0 ki
with ;1_{% NB- () =0, VeeA”.

The proof remains essentially the same, and Remark 3.2 is still valid.

Remark 3.4. If we replace the conditions of this lemma by “F(B.(x)NA)
can be covered by balls By, (y;), i € N, with > 2 8¢ < kA(B.(z)),

Ve < g, (note that here k does not depend on ), and A\(A4) < c0”, then
we can conclude, using the same proof, that mq(F(A)) < kA(A).

Proof: We may suppose that A has finite Lebesgue measure, since A is a
countable union of sets with finite measure, and a countable union of sets
with Hausdorff d-measure zero has Hausdorff d-measure zero. Moreover,
since A = Jp—, Ak, where Ay, = {z € A | K, < k}, we may suppose
K, <K,Vz € A. Let C be the Lebesgue measure of A.

Let ¢ > 0. For each z € A’ take 6, > 0 such that B, (z) C U and

myg(F(Br(x)NA
r <6, = PRl < s

by U2, By, (z,,) with

By the Lemma 3.1 we can cover A’

i A(B, () < C + 1

n=1
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and
Ty < 0g, = Z ma(F(By, (z,) N A))

n=1

< ﬁ (CH+1) =5 = mg(F(A) <

By Lemma 3.1 we can cover A\A’ by |J,~_ | B, (¥,) such that B;, (Z,) C
Uand 7, <ex ,Vn €N, with

| ™

A
| ™
\
3
=
g
=
A

Since € > 0 is arbitrary we have mg(F(4)) = 0. O

We first use Lemma 3.2 to prove the following strong version of Con-
stantin’s result ([Col), that does not suppose continuity of the deriva-
tives. Here we do not suppose differentiability in every point, but only
in the set of critical points under consideration.

Theorem 3.3. Let F: X C R™ — R" be a function, and let A = {z €
X | DF(z) exists and is not surjective}. Then A(F(A)) = 0.

Proof: Tt is a simple consequence of Lemma 3.2, since if z € A then

li%% = 0. Indeed, z € A = F(x + h) = F(z) + DF(x).h +

r(h), where flli | T\(hh|) = 0. Let K = ||DF(z)||, and let € € (0,1). Let
r(h

§ > 0 such that [h| < 0 = @ < o err Then, if |h| < 4,

F(xz + h) — F(x) belongs to an % neighbourhood of a ball of
radius K |h| in a subspace of R™ of dimension n — 1 (a fixed subspace
of R™ of dimension n — 1 which contains the image of DF'), and thus
belongs to the orthogonal product of a ball of radius (K + 1)|A| in this
subspace by an interval of radius % Therefore, A\(F(B,(z)) <

e (K1) 1
(K+1)7L—1

ball in R”~!, and, since € > 0 is arbitrary, lin%
r—s

Upn_1 = €r™v,_1, where v, _1 is the volume of the unitary

AE(B, () _
AB @) = O O

k
Theorem 3.4. Let F: U ¢ R" Z5R™ pe a function of class C*+(®) (a €
(0,1]) at Cp(F) := {z € U | rank(DF(x)) < p}. Then the Hausdorff

measure of dimension d = p+ 3L of F(Cy(F)) is zero, Vp < min{m, n}.
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Proof: Since Cp,(F) = JP_,{z € U | rank(DF(z)) =

p+ 355 for 0 < r < p, we may restrict our attention to C »(F) ={z €
U | rank(DF( )) = p}. If &y € Cp(F), we have, after a change of
coordinates of class C%, F(z,y) = (z, G(z,y)), with (z,y) € RP x R P
and G(z,y) € R™ P in a neighbourhood V of zy = (29, o). We shall
restrict our attention to this neighbourhood. We have z = (z,y) €
Cy(F) & D, G(z,y) = 0. We can apply the results of the Section 2
(Theorem 2.1, Corollary 2.3 and Remark 2.1) to the function D, G,
and obtain the decomposition A = (J;o; A;, A; C ¥i(V; X B;), where
A={(z,y) € V| D,G(z,y) = 0}. Let us fix such an A,.

Since ¥; '(A;) = Upmeniz € ¥ '(A) | e = L, K, < m}, we may
suppose €; > %7 K, <M,Vz e 1/);1(142»), for some fixed M and also
that V has finite Lebesgue measure A(V).

With these assumptions, we shall prove that there is a constant Ky
such that for any X CV,v >0, we can cover F(A;NX) by balls Bs,(p;)
so that Y .o, 0 < Ko(A(X) + v). For this, given a point z € 4, N X
and an € < 2\/ﬁM7 we can divide the cube C:(z) = C.(z) x C:(y)

into ([e'= )] + 1)? boxes C5(%;) x Ce(y), § < ekt If there is some
point (z;, ;) in (Cs(Z;) x Ce(y)) N (A; N X), then for any point (2}, y!) in
(Cs5(z1) x C:(y)) N (A;N X)), we have |F(zl,y') — F(zi,uy:)| < |F(z,y') —
F(Ziv y/)| + |F(zl> y/) _F(Zi7 yz)| < K'o+ |F(Zw y;) - F(Z“ y2)| (Where K’
is \/p times a Lipschitz constant of F'|;; which we may suppose to exist)
< K'§ + |Gz, 9L) — G(zi,94)|-

Observe now that (2;,9;) = (2, ¥(p1)) and (2}, y)) = (2i, $i(p2)), for
some p1, p2 in {2} x B; with |p1 —pa| < |y; —y;| < 2ey/n. Let y: [0,1] —
V; x B; be a straight path joining p; and po. Then G(z;,y;) — G(zi, y:) =

fol ‘?92 -¥'(t) dt, where 7 := 1); o y. We have %—2(%(0)) =0, so
oG oG
Ha—y< | =[50 -5a0)

< Mlp; — 2\k+a !

k+a—1 oG !
< M(2ev/n) = a—y(v(t)) [V ()
S K’l€k+a,

for some constant K. Indeed, [7/(¢)| is limited by a constant multiple
of [p1 — p2| < 2¢/ne. So

'oG
Ay

|G(21,9;) — G(zi,u:)| <

(3(0) 7300 at < K7k
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and
|F(21,y') = F(zi,9:)] < K'6 + K"e¥T < K- e,

where K|, =K' + K".

Therefore, F(Cs(z;) x Ce(y)) is contained in some ball By, (¢;), with
8 < Kj-eFte so

Yoot < ([ P (KGR

( ) ([ —(k+a) } + 1)P(€k+a),ﬂ+%
< K

for some constant Ko. So, F(C.(z)) can be covered by balls B, (¢;) with
>, 0¢ < Ko.A\(C.(x)), and by the Lemma 3.2, Remarks 3.2 and 3.4, we
can conclude that mg(F(A4; N X)) < KoA(X) where Ko 2" Ky, and so
we can cover F(A;NX) by balls Bs, (p;) so that "> §¢ < Ko(M(X)+v),
as we stated.

We shall prove now that there is an A, C A; C V with A(A4;\4]) =

0 such that F(Ce(x) N A;) can be covered by balls By (W), i € N

zlz

5()yd
with hrr(l) % = 0, Vz € A,. This will imply our theorem, by
the Lemma 3.2, Remarks 3.2 and 3.3, since we have proved above that
ma(F(Ce(x) N Ai) < KoA(C:(x)), Ve < Mﬁ For this, since A; C
¥;(V; X By), B; CR", r; <n —p, we may suppose r; =n — p and 1); =
identity, because r; < n —p = A(A4;) = 0 and we can take A, = A;.
Let us take A} equal to the set of the density points of A4;. Given a
point z € Al, and an ' > 0, we want to find an g9 > 0 such that
e < g9 = F(C.(x) N A4;) can be covered by balls Bé(s>(Wi), 1 € N
such that ) (5(6))d < WA (Ce(x)). Let n,77 >0, € < 2\/15M such that

%>1—n2 Ve < &. Divide the cube C.(z) = C.(2) x C:(y),

e < &into N = ([e=(E+)p=1 L 1) boxes C5(%;) x C-(7), § < nekte,
1 <4< N. Then for at least (1 — 77)N values of i, there is a z; € Cs(2;)
such that A{y € C:(¥) | (z1,y) € A;}/ANC:(y)) > 1 — 7 (here X is the
Lebesgue measure in R"~P), because A\(C.(x) N A;) > (1 — 7?)A\(Ce(z)).




HAUSDORFF MEASURES AND THE MORSE-SARD THEOREM 159

For such an 4, take an y; such that (z;,y;) € A;. Then, applying The-
orem 2.1, Corollaries 2.2 and 2.3, given n we can choose 7 so that
|F(2i,y) = F(zi,yi)| < n-e"7® = |F(2,9) = F(z,y;)| < 2K'\/nnpe*e+
nefte < K'"pekte for some constant K” and for any z € C.(Z;), where
K’ is a Lipschitz constant for F' = F(C5(z;) x C.(¥)) is contained in a
ball Bs, (Q;), with >°, 8¢ over these values of i less than

([517(K+a)7771]+1)p K//n€k+a)d
= (B[R 1P (e eI < Ry e

for some constant Ko. The union of the remaining (at most 7N) boxes
has volume at most 7e™ = the union of the image of the intersection
of A; with the union of these boxes by F' is contained in a union of
balls Bs,(Q;) with Y, 6¢ < 2Kofjie", by the statement proved before,

and so F(C.(z)) can be covered by balls B, (Q;) with ¥l < (Kon*re +

2Kon)e™. Choosing 7, 77 so small that f(o??% + 2Ky7 < 1/, we obtain
the desired result with eg = £. O

Remark 3.5. In the cases of functions of class C* (C*+* with a = 0) we
have the same result. If £ > 2, it follows from the case of class Ck-1+)
of the theorem. If k = 1, p + ZJF;QP = n, and the proof of the Theo-
rem 3.3 shows that if F: R” — R™ is a function and C(F) = {z € U |
DF(x) exists and rank DF(x) < n} then m, (F(C(F))) = 0, where m,,

is the Hausdorff measure of dimension n.

4. Examples

In this section we give some examples which show that the previous
results are quite sharp. In all these examples we shall use a certain kind
of functions of the real line that we shall describe below.

Definition 4.1. Let (A,)nen be a sequence of real numbers with 0 <
A < %, Vi € N. The central Cantor set K is the Cantor set constructed
as follows: We remove from the interval [0, 1] the central open inter-
val Uy 1 of proportion 1 — 2)A;, then we remove from the two remaining
intervals the central open intervals U ; and Us 2 of proportion 1 — 2A,,
and so on. After the r-th step of the construction there will remain 2"
intervals of length A1 As... .. The intersection of all these sets is the
central Cantor set K. The open intervals removed in the 7-th step of
the construction have length Ad; Ao ... A\_1(1 — 2X,).
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Let ¢: R Y~ R be a fixed function such that P(R) C [0,1], ¢(z) =0,
Ve <0, ¢(r) =1, Vz > 1. Given two central Cantor sets K, and

K, we construct the function fy,: R — R as follows: fy ,(z) = 0,
Ve <0, faule) =1, Ve > 1, and if U;; = (a,b) and v;; = (c,d)
are corresponding removed intervals in the constructions of K and K,

respectively, we define fy .(z) = ¢+ (d — )¥(3=3), V& € (a,b). We

extend fy , to K by continuity, obtaining f ,(K)) = K. It is easy to
check that if:qr = AAe.. A1 (1=2)N) and G, := papg . pr—1(1—24,)
satisfy lim % = 0 then fy, is C* (if k > 1 is an integer). Moreover, if

T

g > 1, and sup — g—z < oo then fy, is C97bif ¢ is integer and is CY

(i.e., it is ClHa} where {¢} = ¢ —[q] € (0,1)) otherwise. See [BMPV]
for more details.

Example 4.1. Let A\, = %— L 4, =a. Then lim % =0, V¢ <

20> n—00
71(12%“, and so fy, is C7, Vg < 71(1)‘;%“. On the other hand, md(Kﬂ) =1
where d = *kiggaz (see [PT]). Moreover, since a € (0, 3), nh_)n;@ % =0,

and so f} (¥) =0,V> € K. If F: R""P — R"¥? is given by

F(z1,22,... &0, Tngl, -+, Trgp)
= (fé,gul)vfé’g(xﬁ--- afé,g(xn)»xwrb“ »xnﬂ))a
then
F(Cp(F)) = F(Ky x Ky x - x Ky xRP) = K, x K, X -+ x K;, x R?

that is a set with positive (nd+p)-measure. This shows that given ¢ > 1,
p > 0and n > p there is a map F': R™ — R™ such that mq(F(Cp(F))) >
0, where d = p + % , and F is of class CY for each ¢’ < q.

Remark 4.1. If a = 2%, F(zi,2e,... ,xn) = fau(x1) +2fx ul(@2) +-- - +
27~ f\ () gives an example of a function F:R"™ — R which is of
class C9,¥q < n (¢ € R) such that F(R™) contains an open set, since
K, +2K,+ - +2"'K, = [0,2" — 1], which can be proved easily using
representation in basis 2”.

Example 4.2. Let \, = § — 3%, pn = @ — 5, a € (0,1/2]. Then
lo

lim Z—@; = 0, where q = _ITEZZ(l’ and so fy, is C9. On the other hand
we have HD(K,) > _1;2‘%2 . Indeed, if b < a and 6, = b, fy ¢ is clearly

O, and f,9(K,) = Ky = HD(K,) > HD(K,) = 782 Vb < a. If
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F: R"P — R"*P is given by

F(x1,22,. .. , @0, Tntly--- > Tntp)
= (a@0)s s Fr B0 Tnsts - s Tnty)
then
F(Cp(F)) = Ky x -~ x Ky xR?,

that is a set with Hausdorff dimension nd 4+ p, where d = %. This
shows that given ¢ > 1, p > 0 and n > p there is a map F: R" — R"

such that HD(F(Cy(F))) = p+ =2, and F is of class C?.
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