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Abstract
Let F : U ⊂ R

n → R
m be a differentiable function and p < m an

integer. If k ≥ 1 is an integer, α ∈ [0, 1] and F ∈ Ck+(α), if we set
Cp(F ) = {x ∈ U | rank(Df(x)) ≤ p} then the Hausdorff measure

of dimension (p + n−p
k+α

) of F (Cp(F )) is zero.

1. Introduction

The Morse-Sard theorem is a fundamental theorem in analysis that
is in the basis of transversality theory and differential topology. The
classical Morse-Sard theorem states that the image of the set of critical
points of a function F : R

n → R
m of class Cn−m+1 has zero Lebesgue

measure in R
m. It was proved by Morse ([M]) in the case m = 1 and by

Sard ([S1]) in the general case.
Due to its theoretical importance, the Morse-Sard theorem was gen-

eralized in many directions. Many of these generalizations are related
with Hausdorff measures and Hausdorff dimensions.

Given a metric space X and a positive real number α, we define the
Hausdorff measure of dimension α associated to a covering U = (Uλ)λ∈L
of X by bounded sets Uλ by mα(U) =

∑
λ∈L(diamUλ)α, where diamUλ

denotes the diameter of Uλ, and, if we define the norm of a covering U
by ||U|| = supU∈U (diamU), then the Hausdorff measure of dimension α
of X is mα(X) = lim inf

U covering of X
||U||→0

mα(U).

It is not difficult to see that there is a unique d ∈ [0,+∞] such that if
α > d then mα(X) = 0 and if α < d then mα(X) = +∞. This number d
is called the Hausdorff dimension of X. It is easy to see that if X ⊂ R

n

then its Hausdorff dimension d =: HD(X) belongs to [0, n].
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Sard himself proved that if Cp(F ) = {x ∈ R
n | rank(DF (x)) ≤ p}

then for any ε > 0 there is k ∈ N such that if F is Ck then F (Cp(F ))
has zero Hausdorff measure of dimension p + ε ([S2]). This result was
made more precise by Federer ([F]), who proved that if k ∈ N then the
Hausdorff measure of dimension p+ n−pk of F (Cp(F )) is zero. We should
also mention the works of Church ([Ch1], [Ch2]), which gave more
results about the structure of the set of critical values of differentiable
maps. Later, Yomdin ([Y]) proved that the Hausdorff dimension of
F (Cp(F )) is at most p + n−p

k+α , provided that F ∈ Ck+α, where k ∈ N

and 0 ≤ α < 1. More recently, Bates ([B2]) proved that if F ∈ Ck+α

with k ∈ N, 0 < α ≤ 1 and p + n−p
k+α = m then F (Cp(F )) has zero

Lebesgue measure in R
m (this in particular improves the hypothesis of

the classical Morse-Sard theorem from F ∈ Cn−m+1 to F ∈ Cn−m+Lips.,
i.e., F ∈ Cn−m and Dn−mF Lipschitz).

The aim of this work is to generalize the mentioned results by prov-
ing a general version of the Morse-Sard Theorem involving Hausdorff
measures. Let k ≥ 1 be an integer and α ∈ [0, 1]. We say that a
function F : U ⊂ R

n → R
m is of class Ck+(α) at a subset A of U if F

is Ck in U and for each x ∈ A there are εx > 0, Kx > 0 such that
|y − x| < εx ⇒ |DkF (y)−DkF (x)| ≤ Kx|y − x|α (this is less restrictive
than supposing F ∈ Ck+α). Our main result is the following

Theorem. Let F : U ⊂ R
n Ck

−→ R
m and let p < m be an integer. If

Cp(F ) := {x ∈ U | rank(DF (x)) ≤ p} and if F is of class Ck+(α) at
Cp(F ) then the Hausdorff (p+ n−p

k+α )-measure of F (Cp(F )) is zero.

In particular, if k + α = n−p
m−p , we recover the result of [B2], with a

weaker hypothesis. We remark that if p+ n−p
k+α < m, the Hausdorff (p+

n−p
k+α )-measure is not the Lebesgue measure or a product measure in R

m,
and so we can not use Fubini’s Theorem. This difficulty is solved in
the present paper by replacing the use of Fubini’s theorem by a careful
decomposition of the critical set, combined with a parametrized strong
version of the main lemma of Morse’s paper ([M, Theorem 2.1]).

We shall also give examples that show that our result is quite sharp,
by giving counterexamples to slight changes of the hypothesis or of the
conclusion.

2. Functions whose zeros include a given set

We shall prove here a version of Theorem 3.6 of [M] and Lemma 3.4.2
of [F], which will be fundamental for the later results.
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Theorem 2.1. Let k ≥ 1, α ∈ [0, 1], n > p and A ⊂ U ⊂ R
n, where

U is an open set. Then there are sets A1, A2 . . . ⊂ A such that A =⋃∞
i=1Ai, where for each i = 1, 2, . . . there is a function ψi : Bi×Vi C

1

−→ U
where Bi is a ball in some R

ri , ri ≥ 0 and Vi is a ball in R
p such that

ψi(x, y) = (ψ̃i(x, y), y), and |ψi(x1, y1)−ψi(x2, y2)| ≥ |(x1, y1)−(x2, y2)|,
∀ (x1, y1), (x2, y2) ∈ Bi × Vi and Ai ⊂ ψi(Bi × Vi), with the following
property: We can write Ai = A′

i ∪A′′
i so that ψ−1

i (A′′
i ) has measure zero

in Bi × Vi, and if f : U → R vanishes in A and f is Ck+(α) at A we
have:

• lim sup
(x,y0)→(x0,y0)

f(ψi(x, y0))
|x− x0|k+α

< +∞, ∀ (x0, y0) ∈ Bi × Vi such that

ψi(x0, y0) ∈ Ai,

• lim
(x,y0)→(x0,y0)

f(ψi(x, y0))
|x− x0|k+α

= 0, ∀ (x0, y0) ∈ Bi × Vi such that

ψi(x0, y0)) ∈ A′
i.

Proof: Let us consider first the case k = 1 and df(x) · v = 0 ∀x ∈ A,
v ∈ R

n−p × {0}. In this case we take A = (A′ ∩ A) ∪ A′′ where A′ is
the set of density points of A in the direction of R

n−p × {0} ((x, y) ∈

A′ ⇒ lim
ε→0

m((Bε(x) × {y}) ∩A)
m(Bε(x))

= 1, where m is the (n−p)-dimensional

measure). The measure of A′′ = A − A′ is zero, since it is zero in each
plane R

n−p × {y}.
For (x0, y0) ∈ A take B((x0, y0), ε(x0, y0)) a ball contained in U and

ψ = Id |B((x0,y0),ε(x0,y0)). We have lim sup
(x,y0)→(x0,y0)

f(x, y0)
|x− x0|1+α

< +∞,

since f(x, y0) = f(x, y0) − f(x0, y0) = df(tx0 + (1 − t)x)(x − x0), t ∈
(0, 1) ⇒ |f(x, y0)| ≤ Kx0 |x− x0|1+α. For (x0, y0) ∈ A′,

lim
δ→0

1
vol(Sn−p−1)

∫
Sn−p−1

(
1
δ

∫ δ
0

χA(x0 + tv, y0)dt

)
dv = 1,

so ∀ ε > 0 ∃ δ0 > 0 s.t. |x− x0| < δ0 ⇒ ∃ v ∈ Sn−p−1 with∣∣∣∣v − x− x0

|x− x0|

∣∣∣∣ < ε

and ∣∣∣∣∣ 1
|x− x0|

∫ |x−x0|

0

χA(x0 + tv, y0)dt− 1

∣∣∣∣∣ < ε,
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so, if x̃ = x0 + |x− x0|v,

|f(x, y0) − f(x0, y0)| ≤ |f(x, y0) − f(x̃, y0)| + |f(x̃, y0) − f(x0, y0)|,

but

f(x, y0) − f(x̃, y0) = df(θt+ (1 − θ)x̃, y0) · (x− x̃), θ ∈ (0, 1)

⇒ |f(x, y0) − f(x̃, y0)| ≤ Kx0 |x− x0|α · ε|x− x0| = εKx0 |x− x0|1+α

and

f(x̃, y0) − f(x0, y0)

=
∫ |x̃−x0|

0

df(x0 + tv, y0) · v dt

≤ Kx0 |x− x0|α ·m
{
t ∈ [0, |x̃− x0|] |

∂f

∂x
(x0 + tv, y0) �= 0

}
≤ Kx0 |x− x0|α · ε|x− x0| = εKx0 |x− x0|1+α.

So

|f(x, y0)| = |f(x, y0) − f(x0, y0)| ≤ 2εKx0 |x− x0|1+α

⇒ lim
(x,y0)→(x0,y0)

f(x, y0)
|x− x0|1+α

= 0.

We can take a countable subcovering of A by the B((x0, y0), ε(x0, y0))
to finish the proof in this case.

Consider now the case k ≥ 1, n arbitrary. We have A = A∗ ∪ A∗∗

where A∗ = {x ∈ A | ∃ g : U Ck

−→ R, g|A ≡ 0, ∃ v ∈ R
n−p × {0},

dg(x) · v �= 0}. A∗∗ = A\A∗. If (x0, y0) ∈ A∗ there is g as above, so
there is ε > 0 such that g−1(0) ∩ Bε(x0, y0) is contained in the image

of ψ : B × V
Ck

−→ U where B is a ball in R
n−p−1, as in the statement,

and A ⊂ g−1(0). Taking a countable subcovering of A∗ by these balls
we reduce the proof in this case to a case with smaller n. If k = 1, the
result was yet proved for A∗∗. If k > 1 , and assuming by induction the
result for k − 1, we have

A∗∗ =
∞⋃
i=1

A∗∗
i , A

∗∗
i = (A∗∗

i )′ ∪ (A∗∗
i )′′, A∗∗

i ⊂ ψi(Bi × Vi), ψi ∈ C1,
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ψi(x0, y0) ∈ A∗∗
i ⇒ lim sup

x→x0

||df(ψi(x, y0))|Rn−p×{0}||
|x− x0|k−1+α

< +∞

⇒ lim sup
x→x0

|f(ψi(x, y0))|
|x− x0|k+α

< +∞

and

ψi(x0, y0) ∈ (A∗∗
i ) ⇒ lim

x→x0

||df(ψi(x, y0))|Rn−p×{0}||
|x− x0|k−1+α

= 0

⇒ lim
x→x0

f(ψi(x, y0))
|x− x0|k+α

= 0,

both by the mean value theorem, and the proof is finished by induc-
tion.

Corollary 2.2. Let k ≥ 1, α ∈ [0, 1], n > p and A ⊂ U ⊂ R
n, where

U is an open set. Then there are sets A1, A2 . . . ⊂ A such that A =⋃∞
i=1Ai, where for each i = 1, 2, . . . there is a function ψi : Bi×Vi C

1

−→ U
where Bi is a ball in some R

ri , ri ≥ 0 and Vi is a ball in R
p such that

ψi(x, y) = (ψ̃i(x, y), y), and |ψi(x1, y1)−ψi(x2, y2)| ≥ |(x1, y1)−(x2, y2)|,
∀ (x1, y1), (x2, y2) ∈ Bi × Vi and Ai ⊂ ψi(Bi × Vi), with the following
property: We can write Ai = A′

i ∪A′′
i so that ψ−1

i (A′′
i ) has measure zero

in Bi× Vi, and if f : U → R is Ck+(α) at A and Dxf ≡ 0 in A we have:

• lim sup
(x,y0)→(x0,y0)

|f(ψi(x, y0)) − f(ψi(x0, y0))|
|x− x0|k+α

< +∞, ∀ (x0, y0) ∈ Bi×

Vi such that ψi(x0, y0) ∈ Ai,

• lim
(x,y0)→(x0,y0)

|f(ψi(x, y0)) − f(ψi(x0, y0))|
|x− x0|k+α

= 0, ∀ (x0, y0) ∈ Bi×Vi
such that ψi(x0, y0)) ∈ A′

i.

Proof: If k ≥ 2 this is an immediate consequence of Theorem 2.1 applied
to Dxf and of the mean value theorem. If k = 1 this can be proved
exactly as the case k = 1 of the Theorem 2.1.

Corollary 2.3. In the statements of Theorem 2.1 and Corollary 2.2,
for any x ∈ Bi s.t. ψi(x) ∈ Ai there are εx > 0, Kx > 0 such that
|y− x| < εx ⇒ |f(ψi(y))− f(ψi(x))| ≤ Kx|y− x|k+α, and for any ε > 0

there is a δ > 0 so that λ(ψ
−1
i

(Ai)∩Br(x))

λ(Br(x)) > 1−δ ⇒ |f(ψi(y))−f(ψi(x))| ≤
εKxr

k+α, if r ≤ εx and |y − x| ≤ r (δ depends only on ε and n, but not
on f or on x).
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Proof: This is only a more precise formulation of the results proved in
the demonstration of the theorem.

Remark 2.1. For k = 0 we have the same results, except the state-
ment lim

y→x
f(ψi(y))
|y−x|k+α = 0, for each x ∈ Bi such that ψi(x) ∈ A′

i.

3. The main results

Lemma 3.1. Let A ⊂ R
m with λ(A) < ∞ and let U be a family of

balls Br(x), x ∈ A such that for each x ∈ A there is an εx > 0 such that
r ≤ εx ⇒ Br(x) ∈ U . Then for each ε > 0 there are xn ∈ A, rn > 0
with Brn(xn) ∈ U and A ⊂ ⋃∞

n=1Brn(xn) such that
∑∞
n=1 λ(Brn(xn)) <

λ(A) + ε.

Proof: This lemma is essentially the Vitali covering theorem from mea-
sure theory. Take U ⊃ A an open set with λ(U) < λ(A) + ε

2 . If we
choosed Br̃1(x1), . . . , Br̃n(xn), define sn = sup{r > 0 | ∃x ∈ A s.t. r <
εx
5 , Br(x) ⊂ U and Br(x) ∩ (Br̃1(x1) ∪ · · · ∪ Br̃n(xn)) = ∅}. Choose
Br̃n+1(xn+1) such that r̃n+1 >

sn
2 , r̃n+1 <

εxn+1
5 , Br̃n+1(xn+1) ⊂ U and

Br̃n+1(xn+1)∩(Br̃1(x1)∪· · ·∪Br̃n(xn)) = ∅. Since the Br̃i(xi) are disjoint
and contained in U we have

∑∞
i=1 λ(Br̃i(xi)) < λ(A)+ ε2 , and so there is

a n0 ∈ N such that
∑∞
i=n0

λ(B5r̃i(xi)) <
ε
2 . We take Bri(xi) = Br̃i(xi),

i < n0 and Bri(xi) = B5r̃i(xi), i ≥ n0.
Clearly we have

∑∞
i=1 λ(Bri(xi)) < λ(A) + ε. To prove that A ⊂⋃∞

n=1Brn(xn), take x∈A and r=min{r̃n0 , εx/5, d(x, U
c∪⋃

i<n0
Bri(xi))}.

If r > 0, take n ≥ n0 such that sn < r ≤ sn−1 (we have r ≤ r̃n0 ≤ sn0−1),
and note that sn < r ⇒ Br(x)∩ (Br̃1(x1)∪ · · ·∪Br̃n(xn)) �= ∅ ⇒ ∃ i ≤ n
such that Br(x) ∩Br̃i(xi) �= ∅. We have n ≥ n0 since r ≤ d(x,Br̃i(xi)),
and r̃i >

sn−1
2 ≥ r

2 , since i ≤ n. Therefore, we have x ∈ B5r̃i(xi). If r = 0
then x ∈ Bri(xi) for some i < n0. This proves that A ⊂ ⋃∞

n=1Brn(xn).
Taking r̃n = ( λ(A)+ε∑∞

i=1
λ(Bri

(xi))
)1/2m ·rn, we have A ⊂ ⋃∞

n=1 Br̃n(xn), with∑∞
n=1 λ(Br̃n(xn)) = (λ(A) + ε)1/2(

∑∞
i=1 λ(Bri(xi)))

1/2 < λ(A) + ε.

Remark 3.1. In the Lemma 3.1 we can replace a family of balls Br(x) by
a family of cubes Cr(x) =

∏m
i=1[xi − r, xi + r], where x = (x1, . . . , xm),

using the same proof.

Lemma 3.2. Let F : U ⊂ R
n → R

m be a function, A ⊂ U and d > 0
such that for any x ∈ A there are εx > 0, Kx > 0 such that md(F (Bε(x)∩
A)) ≤ Kx.λ(Bε(x)), ∀ ε < εx, where md is the Hausdorff measure
of dimension d, and there is A′ ⊂ A such that λ(A\A′) = 0 and
lim
ε→0

md(F (Bε(x)∩A))
λ(Bε(x)) = 0, ∀x ∈ A′. Then md(F (A)) = 0.
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Remark 3.2. The same result is true if we replace Bε(x) by Cε(x).

Remark 3.3. We can replace the condition

“md(F (Bε(x) ∩A)) ≤ Kx λ(Bε(x)), ∀ ε < εx”

by

“F (Bε(x) ∩A) can be covered by balls Bδi(yi), i ∈ N,

with
∞∑
i=1

δdi ≤ Kx λ(Bε(x)), ∀ ε < εx”,

and the condition

“ lim
ε→0

md(F (Bε(x) ∩A)
λ(Bε(x))

= 0, ∀x ∈ A′”

by

“F (Bε(x) ∩A) can be covered by balls B
δ
(ε)
i

(yi), i ∈ N

with lim
ε→0

∑∞
i=1(δ

(ε)
i )d

λ(Bε(x))
= 0, ∀x ∈ A′”.

The proof remains essentially the same, and Remark 3.2 is still valid.

Remark 3.4. If we replace the conditions of this lemma by “F (Bε(x)∩A)
can be covered by balls Bδi(yi), i ∈ N, with

∑∞
i=1 δ

d
i ≤ k λ(Bε(x)),

∀ ε < εx (note that here k does not depend on x), and λ(A) <∞”, then
we can conclude, using the same proof, that md(F (A)) ≤ k λ(A).

Proof: We may suppose that A has finite Lebesgue measure, since A is a
countable union of sets with finite measure, and a countable union of sets
with Hausdorff d-measure zero has Hausdorff d-measure zero. Moreover,
since A =

⋃∞
k=1Ak, where Ak = {x ∈ A | Kx ≤ k}, we may suppose

Kx ≤ K, ∀x ∈ A. Let C be the Lebesgue measure of A.
Let ε > 0. For each x ∈ A′ take δx > 0 such that Bδx(x) ⊂ U and

r ≤ δx ⇒ md(F (Br(x)∩A))
λ(Br(x)) ≤ ε

2(C+1) . By the Lemma 3.1 we can cover A′

by
⋃∞
n=1Brn(xn) with

∞∑
n=1

λ(Brn(xn)) < C + 1
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and

rn ≤ δxn ⇒
∞∑
n=1

md(F (Brn(xn) ∩A))

≤ ε

2(C + 1)
· (C + 1) =

ε

2
⇒ md(F (A′)) ≤ ε

2
.

By Lemma 3.1 we can cover A\A′ by
⋃∞
n=1Br̃n(x̃n) such that Br̃n(x̃n) ⊂

U and r̃n < ε
x̃n

, ∀n ∈ N, with
∞∑
n=1

λ(Br̃n(x̃n)) <
ε

2K
⇒

∞∑
n=1

md(F (Br̃n(x̃n)))

≤ ε

2K
·K =

ε

2
⇒ md(F (A\A′))

≤ ε

2
⇒ md(F (A)) ≤ ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary we have md(F (A)) = 0.

We first use Lemma 3.2 to prove the following strong version of Con-
stantin’s result ([Co]), that does not suppose continuity of the deriva-
tives. Here we do not suppose differentiability in every point, but only
in the set of critical points under consideration.

Theorem 3.3. Let F : X ⊂ R
n → R

n be a function, and let A = {x ∈
X | DF (x) exists and is not surjective}. Then λ(F (A)) = 0.

Proof: It is a simple consequence of Lemma 3.2, since if x ∈ A then
lim
r→0

λ(F (Br(x)))
λ(Br(x)) = 0. Indeed, x ∈ A ⇒ F (x + h) = F (x) + DF (x).h +

r(h), where lim
h→0

r(h)
|h| = 0. Let K = ||DF (x)||, and let ε ∈ (0, 1). Let

δ > 0 such that |h| ≤ δ ⇒ |r(h)|
|h| < ε

2(K+1)n−1 . Then, if |h| ≤ δ,

F (x + h) − F (x) belongs to an ε.|h|
2(K+1)n−1 neighbourhood of a ball of

radius K|h| in a subspace of R
n of dimension n − 1 (a fixed subspace

of R
n of dimension n − 1 which contains the image of DF ), and thus

belongs to the orthogonal product of a ball of radius (K + 1)|h| in this
subspace by an interval of radius ε|h|

2(K+1)n−1 . Therefore, λ(F (Br(x)) ≤
ε.r.rn−1(K+1)n−1

(K+1)n−1 vn−1 = εrnvn−1, where vn−1 is the volume of the unitary

ball in R
n−1, and, since ε > 0 is arbitrary, lim

r→0

λ(F (Br(x)))
λ(Br(x)) = 0.

Theorem 3.4. Let F : U ⊂ R
n C

k

−→R
m be a function of class Ck+(α)(α ∈

(0, 1]) at Cp(F ) := {x ∈ U | rank(DF (x)) ≤ p}. Then the Hausdorff
measure of dimension d = p+ n−pk+α of F (Cp(F )) is zero, ∀ p < min{m,n}.
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Proof: Since Cp(F ) =
⋃p
r=0{x ∈ U | rank(DF (x)) = r}, and r + n−r

k+α ≤
p + n−p

k+α for 0 ≤ r ≤ p, we may restrict our attention to C̃p(F ) = {x ∈
U | rank(DF (x)) = p}. If x0 ∈ Cp(F ), we have, after a change of
coordinates of class Ck, F (z, y) = (z,G(z, y)), with (z, y) ∈ R

p × R
n−p

and G(z, y) ∈ R
m−p, in a neighbourhood V of x0 = (z0, y0). We shall

restrict our attention to this neighbourhood. We have x = (z, y) ∈
Cp(F ) ⇔ Dy G(z, y) = 0. We can apply the results of the Section 2
(Theorem 2.1, Corollary 2.3 and Remark 2.1) to the function Dy G,
and obtain the decomposition A =

⋃∞
i=1Ai, Ai ⊂ ψi(Vi × Bi), where

A = {(z, y) ∈ V | DyG(z, y) = 0}. Let us fix such an Ai.
Since ψ−1

i (Ai) =
⋃
m∈N

{x ∈ ψ−1
i (Ai) | εx ≥ 1

m , Kx ≤ m}, we may
suppose εx ≥ 1

M , Kx ≤ M , ∀x ∈ ψ−1
i (Ai), for some fixed M and also

that V has finite Lebesgue measure λ(V ).
With these assumptions, we shall prove that there is a constant K0

such that for any X ⊂ V , ν > 0, we can cover F (Ai∩X) by balls Bδi(pi)
so that

∑∞
i=1 δ

d
i ≤ K0(λ(X) + ν). For this, given a point x ∈ Ai ∩ X

and an ε < 1
2
√
nM

, we can divide the cube Cε(x) = Cε(z) × Cε(y)

into ([ε1−(k+α)] + 1)p boxes Cδ(z̃i) × Cε(y), δ < εk+α. If there is some
point (zi, yi) in (Cδ(z̃i)×Cε(y))∩ (Ai ∩X), then for any point (z′i, y

′
i) in

(Cδ(z̃1)×Cε(y))∩ (Ai ∩X), we have |F (z′i, y
′)−F (zi, yi)| ≤ |F (z′i, y

′)−
F (zi, y′)|+ |F (zi, y′)−F (zi, yi)| ≤ K ′δ+ |F (zi, y′i)−F (zi, yi)| (where K ′

is
√
p times a Lipschitz constant of F |V which we may suppose to exist)

≤ K ′δ + |G(zi, y′i) −G(zi, yi)|.
Observe now that (zi, yi) = (zi, ψ̃i(p1)) and (z′i, y

′
i) = (zi, ψ̃i(p2)), for

some p1, p2 in {zi}×Bi with |p1−p2| ≤ |yi−y′i| ≤ 2ε
√
n. Let γ : [0, 1] →

Vi×Bi be a straight path joining p1 and p2. Then G(zi, y′i)−G(zi, yi) =∫ 1

0
∂G
∂y (γ̃(t)) · γ̃′(t) dt, where γ̃ := ψi ◦ γ. We have ∂G∂y (γ̃(0)) = 0, so∥∥∥∥∂G∂y (γ̃(t))

∥∥∥∥ =
∥∥∥∥∂G∂y (γ̃(t)) − ∂G

∂y
(γ̃(0))

∥∥∥∥
≤M |p1 − p2|k+α−1

≤M(2ε
√
n)k+α−1 ⇒

∥∥∥∥∂G∂y (γ̃(t))
∥∥∥∥ |γ′(t)|

≤ K ′′εk+α,

for some constant K ′′. Indeed, |γ̃′(t)| is limited by a constant multiple
of |p1 − p2| ≤ 2

√
nε. So

|G(z1, y′i) −G(zi, yi)| ≤
∫ 1

0

∣∣∣∣∂G∂y (γ̃(t)) ◦ γ̃(t)
∣∣∣∣ dt ≤ K ′′εk+α
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and

|F (z′i, y
′) − F (zi, yi)| ≤ K ′δ +K ′′εk+α ≤ K ′

0 · εk+α,

where K ′
0 = K ′ +K ′′.

Therefore, F (Cδ(z̃i) × Cε(y)) is contained in some ball Bδi(qi), with
δi ≤ K ′

0 · εk+α, so

∑
i

δdi ≤ ([ε1−(k+α)] + 1)p(K ′
0 ε
k+α)d

= (K ′
0)
d([ε1−(k+α)] + 1)p(εk+α)p+

n−p
k+α

≤ K̃0 ε
n

for some constant K̃0. So, F (Cε(x)) can be covered by balls Bδi(qi) with∑
i δ
d
i ≤ K0.λ(Cε(x)), and by the Lemma 3.2, Remarks 3.2 and 3.4, we

can conclude that md(F (Ai ∩X)) ≤ K0λ(X) where K0 = 2nK̃0, and so
we can cover F (Ai∩X) by balls Bδi(pi) so that

∑∞
i=1 δ

d
i ≤ K0(λ(X)+ν),

as we stated.
We shall prove now that there is an A′

i ⊂ Ai ⊂ V with λ(Ai\A′
i) =

0 such that F (Cε(x) ∩ Ai) can be covered by balls B
δ
(ε)
i

(Wi), i ∈ N

with lim
ε→0

∑
i
(δ

(ε)
i

)d

λ(Cε(x)) = 0, ∀x ∈ A′
i. This will imply our theorem, by

the Lemma 3.2, Remarks 3.2 and 3.3, since we have proved above that
md(F (Cε(x) ∩ Ai) ≤ K0λ(Cε(x)), ∀ ε < 1

2
√
nM

. For this, since Ai ⊂
ψi(Vi ×Bi), Bi ⊂ R

ri , ri ≤ n− p, we may suppose ri = n− p and ψi =
identity, because ri < n − p ⇒ λ(Ai) = 0 and we can take A′

i = Ai.
Let us take A′

i equal to the set of the density points of Ai. Given a
point x ∈ A′

i, and an η′ > 0, we want to find an ε0 > 0 such that
ε < ε0 ⇒ F (Cε(x) ∩ Ai) can be covered by balls B

δ
(ε)
i

(Wi), i ∈ N

such that
∑
i(δ

(ε)
i )d ≤ η′λ(Cε(x)). Let η, η̃ > 0, ε̃ < 1

2
√
nM

such that
λ(Cε(x)∩Ai)
λ(Cε(x)) > 1 − η̃2, ∀ ε ≤ ε̃. Divide the cube Cε(x) = Cε(z̃) × Cε(ỹ),

ε < ε̃ into N = ([ε1−(K+α)η−1] + 1)p boxes Cδ(z̃i) × Cε(ỹ), δ < η εk+α,
1 ≤ i ≤ N . Then for at least (1 − η̃)N values of i, there is a zi ∈ Cδ(z̃i)
such that λ({y ∈ Cε(ỹ) | (zi, y) ∈ Ai}/λ(Cε(ỹ)) > 1 − η̃ (here λ is the
Lebesgue measure in R

n−p), because λ(Cε(x) ∩Ai) > (1 − η̃2)λ(Cε(x)).
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For such an i, take an yi such that (zi, yi) ∈ Ai. Then, applying The-
orem 2.1, Corollaries 2.2 and 2.3, given η we can choose η̃ so that
|F (zi, y)−F (zi, yi)| < η ·εk+α ⇒ |F (z, y)−F (zi, yi)| ≤ 2K ′√n.ηεK+α+
ηεK+α ≤ K ′′ηεk+α, for some constant K ′′ and for any z ∈ Cε(z̃i), where
K ′ is a Lipschitz constant for F ⇒ F (Cδ(z̃i) × Cε(ỹ)) is contained in a
ball Bδi(Qi), with

∑
i δ
d
i over these values of i less than

([ε1−(K+α)η−1] + 1)p(K ′′ηεk+α)d

= (K ′′)d([ε1−(k+α).η−1] + 1)p(ηεk+α)p+
n−p
k+α ≤ K̃0η

n−p
k+α .εn

for some constant K̃0. The union of the remaining (at most η̃N) boxes
has volume at most η̃εn ⇒ the union of the image of the intersection
of Ai with the union of these boxes by F is contained in a union of
balls Bδi(Qi) with

∑
i δ
d
i ≤ 2K0η̃ε

n, by the statement proved before,
and so F (Cε(x)) can be covered by balls Bδi(Q̃i) with Σδdi ≤ (K̃0η

n−p
k+α +

2K0η̃)εn. Choosing η, η̃ so small that K̃0η
n−p
k+α + 2K0η̃ ≤ η′, we obtain

the desired result with ε0 = ε̃.

Remark 3.5. In the cases of functions of class Ck (Ck+α with α = 0) we
have the same result. If k ≥ 2, it follows from the case of class Ck−1+(1)

of the theorem. If k = 1, p + n−p
k+α = n, and the proof of the Theo-

rem 3.3 shows that if F : R
n → R

m is a function and C(F ) = {x ∈ U |
DF (x) exists and rankDF (x) < n} then mn(F (C(F ))) = 0, where mn
is the Hausdorff measure of dimension n.

4. Examples

In this section we give some examples which show that the previous
results are quite sharp. In all these examples we shall use a certain kind
of functions of the real line that we shall describe below.

Definition 4.1. Let (λn)n∈N be a sequence of real numbers with 0 <
λi <

1
2 , ∀ i ∈ N. The central Cantor set Kλ is the Cantor set constructed

as follows: We remove from the interval [0, 1] the central open inter-
val U1,1 of proportion 1 − 2λ1, then we remove from the two remaining
intervals the central open intervals U2,1 and U2,2 of proportion 1 − 2λ2,
and so on. After the r-th step of the construction there will remain 2r

intervals of length λ1λ2 . . . λr. The intersection of all these sets is the
central Cantor set Kλ. The open intervals removed in the r-th step of
the construction have length λ1λ2 . . . λr−1(1 − 2λr).
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Let ψ : R
C∞
−→ R be a fixed function such that ψ(R) ⊂ [0, 1], ψ(x) = 0,

∀x ≤ 0, ψ(x) = 1, ∀x ≥ 1. Given two central Cantor sets Kλ and
Kµ, we construct the function fλ,µ : R → R as follows: fλ,µ(x) = 0,
∀x ≤ 0, fλ,µ(x) = 1, ∀x ≥ 1, and if Ui,j = (a, b) and vi,j = (c, d)
are corresponding removed intervals in the constructions of Kλ and Kµ,
respectively, we define fλ,µ(x) = c + (d − c)ψ(x−ab−a ), ∀x ∈ (a, b). We
extend fλ,µ to Kλ by continuity, obtaining fλ,µ(Kλ) = Kµ. It is easy to
check that if gr := λ1λ2 . . . λr−1(1−2λr) and g̃r := µ1µ2 . . . µr−1(1−2µr)
satisfy lim

r→∞
g̃r
gk

r
= 0 then fλ,µ is Ck (if k ≥ 1 is an integer). Moreover, if

q > 1, and sup
r

→ g̃r
gq

r
< ∞ then fλ,µ is Cq−1,1 if q is integer and is Cq

(i.e., it is C [q]+{q}, where {q} = q− [q] ∈ (0, 1)) otherwise. See [BMPV]
for more details.

Example 4.1. Let λn = 1
2 − 1

2n , µn ≡ a. Then lim
n→∞

g̃n
gq

n
= 0, ∀ q <

− log a
log 2 , and so fλ,µ is Cq, ∀ q < − log a

log 2 . On the other hand, md(Kµ) = 1
where d = − log 2

log a (see [PT]). Moreover, since a ∈
(
0, 1

2

)
, lim
n→∞

g̃n
gn

= 0,

and so f ′
λ,µ(x) = 0, ∀x ∈ Kλ. If F : R

n+p → R
n+p is given by

F (x1, x2, . . . , xn, xn+1, . . . , xn+p)

= (fλ,µ(x1), fλ,µ(x2) . . . , fλ,µ(xn), xn+1 . . . , xn+p),

then

F (Cp(F )) = F (Kλ ×Kλ × · · · ×Kλ × R
p) = Kµ ×Kµ × · · · ×Kµ × R

p

that is a set with positive (nd+p)-measure. This shows that given q > 1,
p > 0 and n > p there is a map F : R

n → R
n such that md(F (Cp(F ))) >

0, where d = p+ n−p
q , and F is of class Cq

′
for each q′ < q.

Remark 4.1. If a = 1
2n , F (x1, x2, . . . , xn) = fλ,µ(x1) + 2fλ,µ(x2) + · · ·+

2n−1fλ,µ(xn) gives an example of a function F : R
n → R which is of

class Cq, ∀ q < n (q ∈ R) such that F (Rn) contains an open set, since
Kµ+2Kµ+ · · ·+2n−1Kµ = [0, 2n−1], which can be proved easily using
representation in basis 2n.

Example 4.2. Let λn = 1
2 − 1

3n2 , µn = a − a
3n , a ∈ (0, 1/2]. Then

lim
n→∞

g̃n
gq

n
= 0, where q = − log a

log 2 , and so fλ,µ is Cq. On the other hand

we have HD(Kµ) ≥ − log 2
log a . Indeed, if b < a and θn ≡ b, fµ,θ is clearly

C1, and fµ,θ(Kµ) = Kθ ⇒ HD(Kµ) ≥ HD(Kθ) = − log 2
log b , ∀ b < a. If
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F : R
n+p → R

n+p is given by

F (x1, x2, . . . , xn, xn+1, . . . , xn+p)

= (fλ,µ(x1), . . . , fλ,µ(xn), xn+1, . . . , xn+p)

then

F (Cp(F )) = Kµ × · · · ×Kµ × R
p,

that is a set with Hausdorff dimension nd + p, where d = − log 2
log a . This

shows that given q ≥ 1, p > 0 and n > p there is a map F : R
n → R

n

such that HD(F (Cp(F ))) = p+ n−p
q , and F is of class Cq.
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