HOMOGENOUS BANACH SPACES ON THE UNIT CIRCLE

THOMAS VILS PEDERSEN*

Abstract _

We prove that a homogeneous Banach space \mathcal{B} on the unit circle \mathbb{T} can be embedded as a closed subspace of a dual space $\Xi_{\mathcal{B}}^*$ contained in the space of bounded Borel measures on \mathbb{T} in such a way that the map $\mathcal{B} \mapsto \Xi_{\mathcal{B}}^*$ defines a bijective correspondence between the class of homogeneous Banach spaces on \mathbb{T} and the class of prehomogeneous Banach spaces on \mathbb{T} .

We apply our results to show that the algebra of all continuous functions on \mathbb{T} is the only homogeneous Banach algebra on \mathbb{T} in which every closed ideal has a bounded approximate identity with a common bound, and that the space of multipliers between two homogeneous Banach spaces is a dual space. Finally, we describe the space $\Xi_{\mathcal{B}}^*$ for some examples of homogeneous Banach spaces \mathcal{B} on \mathbb{T} .

1. Introduction

Every Banach space \mathcal{Z} is a closed subspace of its second dual space \mathcal{Z}^{**} , but the restriction of the weak star (wk^{*}) topology on \mathcal{Z}^{**} to \mathcal{Z} (which is of course just the weak topology on \mathcal{Z}) need not be particularly useful. Loosely speaking, this is because the space \mathcal{Z}^{**} is too large and we are therefore interested in embedding \mathcal{Z} in a smaller dual space. In this paper, we show that a Banach space \mathcal{B} of functions on the unit circle \mathbb{T} satisfying certain conditions can be embedded in a dual space contained in the space \mathcal{M} of bounded Borel measures on \mathbb{T} in such a way, that convergence of a sequence in \mathcal{B} in the wk^{*} topology depends only on certain simple properties of the sequence. For some Banach spaces \mathcal{B} of functions on \mathbb{T} , there is a "natural" dual space in which \mathcal{B} is embedded. Examples of such embeddings are that of L^1 in \mathcal{M} , of \mathcal{C} (the algebra

¹⁹⁹¹ Mathematics Subject Classification. 46E30, 46E15, 46J10.

^{*}Supported by the Danish Natural Science Research Council and by a TMR Marie Curie postdoctoral grant from the European Commission.

T. V. PEDERSEN

of all continuous functions on \mathbb{T}) in L^{∞} and of the little Lipschitz algebra λ_{γ} in the big Lipschitz algebra Λ_{γ} . We shall see that our general approach reproduces these examples. We wish to thank the referee for pointing out a mistake in our original formulation of Theorem 4.3.

Following Shilov ([20], see also [13]), we say that a Banach space \mathcal{B} continuously embedded in L^1 is a homogeneous Banach space on \mathbb{T} if it satisfies the following condition. For $f \in \mathcal{B}$ and $s \in \mathbb{T}$, the translate

$$f_s(t) = f(t-s) \quad (t \in \mathbb{T})$$

belongs to \mathcal{B} with $||f_s||_{\mathcal{B}} = ||f||_{\mathcal{B}}$ and $f_s \to f$ in \mathcal{B} as $s \to 0$. For $s \in \mathbb{T}$, the translation operator $f \mapsto f_s$ $(f \in \mathcal{B})$ is denoted by R_s .

For $f \in L^1$, let $\widehat{f}(n)$ $(n \in \mathbb{Z})$ be the Fourier coefficients of f and, for $N \in \mathbb{N}$, let

$$\sigma_N(f) = \sum_{n=-N}^N \left(1 - \frac{|n|}{N+1}\right) \widehat{f}(n) \alpha^n$$

be the N'th Fejér sum of f (where $\alpha^n(t) = e^{int}$ for $t \in \mathbb{T}$). The following result ([20, pp. 12–13] or [13, Theorem I.2.11]) is essential for our approach.

Theorem 1.1 (Shilov). Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and let $f \in \mathcal{B}$. If $\widehat{f}(n) \neq 0$ for some $n \in \mathbb{Z}$, then $\alpha^n \in \mathcal{B}$. Moreover,

$$\sigma_N(f) \to f$$

in \mathcal{B} as $N \to \infty$ and $\|\sigma_N(f)\|_{\mathcal{B}} \leq \|f\|_{\mathcal{B}}$ for $N \in \mathbb{N}$. In particular, the trigonometric polynomials in \mathcal{B} are dense in \mathcal{B} .

For $n \in \mathbb{Z}$, define $\xi_n \in \mathcal{B}^*$ by

$$\langle f, \xi_n \rangle = \widehat{f}(n) \quad (f \in \mathcal{B}).$$

In passing, we remark that the definition of a homogeneous Banach space \mathcal{B} on \mathbb{T} does not exclude the case where $\widehat{f}(n) = 0$ for every $f \in \mathcal{B}$ (that is $\xi_n = 0$) for some values of n. In particular, certain spaces of analytic functions are homogeneous Banach spaces on \mathbb{T} . (See Section 5 for further details.) For $\varphi \in \mathcal{B}^*$ and $n \in \mathbb{Z}$, let

$$\widehat{\varphi}(n) = \langle \alpha^n, \varphi \rangle.$$

Since the trigonometric polynomials in \mathcal{B} are dense in \mathcal{B} , the map $\varphi \mapsto (\widehat{\varphi}(n))$ is 1-1 on \mathcal{B}^* .

In this paper, the subspace

$$\Xi_{\mathcal{B}} = \overline{\operatorname{span}\{\xi_n : n \in \mathbb{Z}\}}^{\mathcal{B}^*}$$

of \mathcal{B}^* plays an important part. For $\varphi \in \mathcal{B}^*$, define the Fejér sums of φ by

$$\sigma_N(\varphi) = \sum_{n=-N}^N \left(1 - \frac{|n|}{N+1}\right) \widehat{\varphi}(n) \xi_n \quad (N \in \mathbb{N}),$$

and, for $s \in \mathbb{T}$, define the translate $\varphi_s \in \mathcal{B}^*$ by $\langle f, \varphi_s \rangle = \langle f_s, \varphi \rangle$ $(f \in \mathcal{B})$. Since $(\xi_n)_s = e^{-ins}\xi_n$ $(s \in \mathbb{T}, n \in \mathbb{Z})$, it follows that $\Xi_{\mathcal{B}}$ is translation invariant. The previous theorem leads to the following result in the dual space.

Proposition 1.2. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and let $\varphi \in \mathcal{B}^*$. Then $\sigma_N(\varphi) \to \varphi$ wk^{*} in \mathcal{B}^* as $N \to \infty$ and $\|\sigma_N(\varphi)\|_{\mathcal{B}^*} \leq \|\varphi\|_{\mathcal{B}^*}$ for $N \in \mathbb{N}$. In particular, the unit ball of $\Xi_{\mathcal{B}}$ is wk^{*} sequentially dense in the unit ball of \mathcal{B}^* . Moreover, $\varphi_s \to \varphi$ wk^{*} in \mathcal{B}^* as $s \to 0$. For $\varphi \in \Xi_{\mathcal{B}}$, we have $\sigma_N(\varphi) \to \varphi$ in $\Xi_{\mathcal{B}}$ as $N \to \infty$ and $\varphi_s \to \varphi$ in $\Xi_{\mathcal{B}}$ as $s \to 0$.

Proof: For $f \in \mathcal{B}$ and $N \in \mathbb{N}$, we have

$$\langle f, \sigma_N(\varphi) \rangle = \sum_{n=-N}^N \left(1 - \frac{|n|}{N+1} \right) \widehat{f}(n) \widehat{\varphi}(n) = \langle \sigma_N(f), \varphi \rangle,$$

so the first two conclusions follows from the previous theorem. Also, the maps $\varphi \mapsto \sigma_N(\varphi)$ define a bounded sequence of operators on $\Xi_{\mathcal{B}}$, and since $\sigma_N(\xi_m) \to \xi_m$ in $\Xi_{\mathcal{B}}$ as $N \to \infty$ for $m \in \mathbb{Z}$, it follows that $\sigma_N(\varphi) \to \varphi$ in $\Xi_{\mathcal{B}}$ for $\varphi \in \Xi_{\mathcal{B}}$. The results about φ_s follow in the same way.

2. Embedding a homogeneous Banach space in a dual space

We shall now focus on the space $\Xi_{\mathcal{B}}^*$. For $\mu \in \Xi_{\mathcal{B}}^*$ and $n \in \mathbb{Z}$, let

$$\widehat{\mu}(n) = \langle \xi_n, \mu \rangle.$$

By definition of $\Xi_{\mathcal{B}}$, it follows that the map $\mu \mapsto (\widehat{\mu}(n))$ is 1-1 on $\Xi_{\mathcal{B}}^*$. The following is the key result of this paper. **Theorem 2.1.** Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and define

$$\Phi:\mathcal{B}\to \Xi_\mathcal{B}^*$$

by

 $\langle \varphi, \Phi(f) \rangle = \langle f, \varphi \rangle$ for $f \in \mathcal{B}$ and $\varphi \in \Xi_{\mathcal{B}}$. (That is, $\Phi(f) = \iota(f)|_{\Xi_{\mathcal{B}}}$ $(f \in \mathcal{B})$, where $\iota : \mathcal{B} \to \mathcal{B}^{**}$ is the canonical embedding.) Then Φ is an isometry and

$$\widehat{\Phi(f)}(n) = \widehat{f}(n)$$

for $f \in \mathcal{B}$ and $n \in \mathbb{Z}$. Moreover, a sequence (μ_m) in $\Xi_{\mathcal{B}}^*$ converges wk^{*} to 0 in $\Xi_{\mathcal{B}}^*$ as $m \to \infty$ if and only if the sequence is bounded in $\Xi_{\mathcal{B}}^*$ and $\widehat{\mu_m}(n) \to 0$ as $m \to \infty$ for every $n \in \mathbb{Z}$.

Proof: Let $f \in \mathcal{B}$. It follows from Proposition 1.2 that

$$||f||_{\mathcal{B}} = \sup\{|\langle f, \varphi \rangle| : \varphi \in \Xi_{\mathcal{B}}, \, ||\varphi||_{\mathcal{B}^*} \le 1\} = ||\Phi(f)||_{\Xi_{\mathcal{B}}^*}.$$

Also,

$$\widehat{\Phi}(\widehat{f})(n) = \langle \xi_n, \Phi(f) \rangle = \langle f, \xi_n \rangle = \widehat{f}(n) \quad (n \in \mathbb{Z}),$$

so $\widehat{\Phi(f)} = \widehat{f}$. The last statement follows immediately, since span $\{\xi_n : n \in \mathbb{Z}\}$ is dense in $\Xi_{\mathcal{B}}$.

Because of the theorem, we shall from now on consider \mathcal{B} as a closed subspace of $\Xi_{\mathcal{B}}^*$ and identify $\Phi(f)$ and f for $f \in \mathcal{B}$. We shall use the following simple result several times.

Lemma 2.2. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and suppose that $\widehat{\mu}(n) \neq 0$ for some $\mu \in \Xi_{\mathcal{B}}^*$ and $n \in \mathbb{Z}$. Then $\alpha^n \in \mathcal{B}$. In particular, if $p \in \Xi_{\mathcal{B}}^*$ is a trigonometric polynomial, then $p \in \mathcal{B}$.

Proof: Since $\langle \xi_n, \mu \rangle = \hat{\mu}(n) \neq 0$, we have $\xi_n \neq 0$ in $\Xi_{\mathcal{B}} \subseteq \mathcal{B}^*$ and thus $\hat{f}(n) \neq 0$ for some $f \in \mathcal{B}$. Hence $\alpha^n \in \mathcal{B}$ by Theorem 1.1. The last statement is now obvious.

For $\mu \in \Xi^*_{\mathcal{B}}$ and $N \in \mathbb{N}$, let

$$\sigma_N(\mu) = \sum_{n=-N}^N \left(1 - \frac{|n|}{N+1}\right) \widehat{\mu}(n) \alpha^n$$

be the Fejér sums of μ . Then $\sigma_N(\mu) \in \mathcal{B}$ by the previous lemma.

Corollary 2.3. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} . For $\mu \in \Xi^*_{\mathcal{B}}$, we have

 $\sigma_N(\mu) \to \mu \quad \text{wk}^*$ in $\Xi^*_{\mathcal{B}}$ as $N \to \infty$ and $\|\sigma_N(\mu)\|_{\mathcal{B}} \le \|\mu\|_{\Xi^*_{\mathcal{B}}}$ for $N \in \mathbb{N}$. *Proof:* For $\varphi \in \Xi_{\mathcal{B}}$ and $N \in \mathbb{N}$, we have

$$\langle \varphi, \sigma_N(\mu) \rangle = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1} \right) \widehat{\varphi}(n) \widehat{\mu}(n) = \langle \sigma_N(\varphi), \mu \rangle.$$

Since $\|\sigma_N(\varphi)\|_{\Xi_{\mathcal{B}}} \leq \|\varphi\|_{\Xi_{\mathcal{B}}}$ by Proposition 1.2, it follows that $\|\sigma_N(\mu)\|_{\mathcal{B}} \leq \|\mu\|_{\Xi_{\mathcal{B}}^*}$. Also, $(\sigma_N(\mu))(m) \to \widehat{\mu}(m)$ as $N \to \infty$ for $m \in \mathbb{Z}$, so $\sigma_N(\mu) \to \mu$ wk^{*} in $\Xi_{\mathcal{B}}^*$ as $N \to \infty$ by Theorem 2.1.

When $(L^1)^*$ and L^{∞} are identified via the duality

$$\langle f,g \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)g(-t) dt \quad (f \in L^1, g \in L^{\infty}),$$

the functional ξ_n is identified with the function α^n . Hence

$$\Xi_{L^1} = \overline{\operatorname{span}\{\alpha^n : n \in \mathbb{Z}\}}^{L^\infty} = \mathcal{C}$$

and thus

$$\Xi_{L^1}^* = \mathcal{M}.$$

In the general case, we shall now see that $\Xi_{\mathcal{B}}^*$ can be regarded as a subspace of \mathcal{M} . We first prove a more general version of the result.

Proposition 2.4. Let \mathcal{B}_1 and \mathcal{B}_2 be homogeneous Banach spaces on \mathbb{T} and suppose that \mathcal{B}_1 is continuously embedded in \mathcal{B}_2 . Let $\iota : \mathcal{B}_1 \to \mathcal{B}_2$ be the inclusion map. Then $\rho = \iota^*|_{\Xi_{\mathcal{B}_2}}$ maps $\Xi_{\mathcal{B}_2}$ into a dense subset of $\Xi_{\mathcal{B}_1}$ and

$$\rho^*: \Xi^*_{\mathcal{B}_1} \to \Xi^*_{\mathcal{B}_2}$$

is 1-1. Moreover, if \mathcal{B}_1 is dense in \mathcal{B}_2 , then ρ is 1-1 and the range of ρ^* is wk^{*} dense in $\Xi_{\mathcal{B}_2}^*$.

Proof: We have $\rho(\xi_n) = \xi_n$ for $n \in \mathbb{Z}$, so ρ maps $\Xi_{\mathcal{B}_2}$ into $\Xi_{\mathcal{B}_1}$ and has dense range. Hence ρ^* is 1-1. If \mathcal{B}_1 is dense in \mathcal{B}_2 , then ρ is clearly 1-1 and the range of ρ^* is thus wk^{*} dense in $\Xi^*_{\mathcal{B}_2}$.

With $\mathcal{B}_2 = L^1$, we obtain the following.

Corollary 2.5. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and let $\iota : \mathcal{B} \to L^1$ be the inclusion map. Then $\rho = \iota^*|_{\mathcal{C}}$ maps \mathcal{C} into a dense subset of $\Xi_{\mathcal{B}}$ and

$$\rho^*: \Xi^*_{\mathcal{B}} \to \mathcal{M}$$

is 1-1. Moreover, if \mathcal{B} is dense in L^1 , then ρ is 1-1 and the range of ρ^* is wk^{*} dense in \mathcal{M} .

T. V. PEDERSEN

From now on, we consider $\Xi_{\mathcal{B}}^*$ as a subspace of \mathcal{M} . For $\mu \in \Xi_{\mathcal{B}}^*$ and $s \in \mathbb{T}$, the translate μ_s is defined as a measure by $\mu_s(E) = \mu(E-s)$ for measurable sets $E \subseteq \mathbb{T}$. Since $\sigma_N(\mu_s) = \sigma_N(\mu)_s$ is a bounded sequence in \mathcal{B} and since $\widehat{\sigma_N(\mu_s)}(m) \to \widehat{\mu_s}(m)$ as $N \to \infty$ for $m \in \mathbb{Z}$, we deduce that $\sigma_N(\mu_s) \to \mu_s$ wk^{*} in $\Xi_{\mathcal{B}}^*$ as $N \to \infty$, so $\mu_s \in \Xi_{\mathcal{B}}^*$ with $\|\mu_s\|_{\Xi_{\mathcal{B}}^*} = \|\mu\|_{\Xi_{\mathcal{B}}^*}$. (Alternatively, $\mu_s \in \Xi_{\mathcal{B}}^*$ could be defined by $\langle \varphi, \mu_s \rangle = \langle \varphi_s, \mu \rangle$ ($\varphi \in \Xi_{\mathcal{B}}$).)

As a special case of strong Bochner integrals ([10, Chapter 3]), recall the following definition. Let \mathcal{Z} be a Banach space and let $h : \mathbb{T} \to \mathcal{Z}^*$ be a wk^{*} measurable map (that is, the map $t \mapsto \langle z, h(t) \rangle$ ($\mathbb{T} \to \mathbb{C}$) is measurable for every $z \in \mathcal{Z}$) with $\int_{\mathbb{T}} \|h(t)\| dt < \infty$. Define the wk^{*} Bochner integral $\int_{\mathbb{T}} h(t) dt \in \mathcal{Z}^*$ by

$$\left\langle z, \int_{\mathbb{T}} h(t) \, dt \right\rangle = \int_{\mathbb{T}} \langle z, h(t) \rangle \, dt$$

for $z \in \mathcal{Z}$. Also, for $f \in L^1$ and $\mu \in \mathcal{M}$, let

$$(f * \mu)(t) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t-s) \, d\mu(s) \quad (t \in \mathbb{T})$$

be the convolution of f and μ .

Theorem 2.6. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and let $\mu \in \Xi_{\mathcal{B}}^*$. Then the map $s \mapsto \mu_s (\mathbb{T} \to \Xi_{\mathcal{B}}^*)$ is wk^{*} continuous, and, for $f \in L^1$, the integral

$$\frac{1}{2\pi} \int_{\mathbb{T}} f(s) \mu_s \, ds$$

exists as a wk^{*} Bochner integral in $\Xi_{\mathcal{B}}^*$ and equals $f * \mu$. Also, $\mu_s \to \mu$ in $\Xi_{\mathcal{B}}^*$ as $s \to 0$ if and only if $\mu \in \mathcal{B}$.

Proof: We have $\|\mu_s\|_{\Xi_{\mathcal{B}}^*} = \|\mu\|_{\Xi_{\mathcal{B}}^*}$ for $s \in \mathbb{T}$ and $\widehat{\mu_s}(n) = e^{-ins}\widehat{\mu}(n) \to \widehat{\mu}(n)$ as $s \to 0$ for $n \in \mathbb{Z}$, so $\mu_s \to \mu$ wk^{*} in $\Xi_{\mathcal{B}}^*$ as $s \to 0$ by Theorem 2.1. For $f \in L^1$, it thus follows that $\int_{\mathbb{T}} f(s)\mu_s ds$ exists as a wk^{*} Bochner integral in $\Xi_{\mathcal{B}}^*$. Furthermore, Bochner integrals commute with continuous linear functionals, so

$$\left(\frac{1}{2\pi} \int_{\mathbb{T}} f(s)\mu_s \, ds\right)^{\widehat{}}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} \langle \xi_n, f(s)\mu_s \rangle \, ds = \frac{1}{2\pi} \int_{\mathbb{T}} f(s)\widehat{\mu_s}(n) \, ds$$
$$= \widehat{\mu}(n)\frac{1}{2\pi} \int_{\mathbb{T}} f(s)e^{-ins} \, ds = \widehat{f}(n)\widehat{\mu}(n)$$

for $n \in \mathbb{Z}$. Consequently $1/(2\pi) \int_{\mathbb{T}} f(s) \mu_s ds = f * \mu$.

Let \mathcal{Z} be the space of those $\mu \in \Xi_{\mathcal{B}}^*$ for which $\mu_s \to \mu$ in $\Xi_{\mathcal{B}}^*$ as $s \to 0$. Then $\mathcal{B} \subseteq \mathcal{Z}$. On the other hand, for $\mu \in \mathcal{Z}$, we have $\mu_s \to \mu$ in \mathcal{M} as $s \to 0$, so it follows from [9, V.19.27] that $\mu \in L^1$. Also, \mathcal{Z} is

closed in $\Xi_{\mathcal{B}}^*$, so we deduce that \mathcal{Z} is a homogeneous Banach space on \mathbb{T} . Hence the trigonometric polynomials in \mathcal{Z} are dense in \mathcal{Z} , so $\mathcal{Z} \subseteq \mathcal{B}$ by Lemma 2.2.

Our aim now is to describe the spaces $\Xi_{\mathcal{B}}^*$ as so-called prehomogeneous Banach spaces on \mathbb{T} . To suit our purpose, we have weakened condition (i) in the following definition compared to the definition in [12, p. 64] (where it is required that \mathcal{Y} contains every trigonometric polynomial).

A Banach space \mathcal{Y} continuously embedded in \mathcal{M} is called a prehomogeneous Banach space on \mathbb{T} if the following conditions are satisfied.

- (i) If $\mu \in \mathcal{Y}$ and $\hat{\mu}(n) \neq 0$ for some $n \in \mathbb{Z}$, then $\alpha^n \in \mathcal{Y}$. Moreover, for every trigonometric polynomial p in \mathcal{Y} , we have $||p_s||_{\mathcal{Y}} = ||p||_{\mathcal{Y}}$ for $s \in \mathbb{T}$ and $p_s \to p$ in \mathcal{Y} as $s \to 0$.
- (ii) For every trigonometric polynomial p and $\mu \in \mathcal{Y}$, we have $||p * \mu||_{\mathcal{Y}} \leq ||p||_{L^1} ||\mu||_{\mathcal{Y}}$. (Since $p * \mu = \sum \widehat{p}(n)\widehat{\mu}(n)\alpha^n$, we have $p * \mu \in \mathcal{Y}$ by (i).)
- (iii) There is a topology, τ , on \mathcal{Y} such that the unit ball of \mathcal{Y} is τ compact and such that the map $\xi_n : \mathcal{Y} \to \mathbb{C}$ is τ continuous for $n \in \mathbb{Z}$.

The following is [12, Exercises 2 and 3, p. 64].

Lemma 2.7. Let \mathcal{Y} be a prehomogeneous Banach space on \mathbb{T} .

- (a) A measure $\mu \in \mathcal{M}$ belongs to \mathcal{Y} if and only if $(\sigma_N(\mu))$ is a bounded sequence in \mathcal{Y} .
- (b) The closure \$\mathcal{Y}_h\$ in \$\mathcal{Y}\$ of the trigonometric polynomials in \$\mathcal{Y}\$ is a homogeneous Banach space on \$\mathbb{T}\$.

Proof: (a) Let $\mu \in \mathcal{Y}$. Since $\sigma_N(\mu) = K_N * \mu$, where (K_N) is the Fejér kernel ([13, p. 12]), and since $||K_N||_{L^1} = 1$ for $N \in \mathbb{N}$, it follows from (ii) that $(\sigma_N(\mu))$ is a bounded sequence in \mathcal{Y} . Conversely, if $\mu \in \mathcal{M}$ and $(\sigma_N(\mu))$ is a bounded sequence in \mathcal{Y} , then it has a τ clusterpoint $\nu \in \mathcal{Y}$ as $N \to \infty$. Since ξ_n is τ continuous for $n \in \mathbb{Z}$, we deduce that $\mu = \nu \in \mathcal{Y}$.

(b) We have $\mathcal{Y}_h \subseteq L^1$ since L^1 is closed in \mathcal{M} . For $f \in \mathcal{Y}_h$, it follows from (i) that $||f_s||_{\mathcal{Y}} = ||f||_{\mathcal{Y}}$ ($s \in \mathbb{T}$) and that $f_s \to f$ in \mathcal{Y} as $s \to 0$. Hence \mathcal{Y}_h is a homogeneous Banach space on \mathbb{T} .

We shall now see that $\Xi^*_{\mathcal{B}}$ is a prehomogeneous Banach space on \mathbb{T} .

Theorem 2.8. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} . Equipped with the wk^{*} topology, $\Xi_{\mathcal{B}}^*$ is a prehomogeneous Banach space on \mathbb{T} and (Ξ^*)

$$(\Xi_{\mathcal{B}}^*)_h = \mathcal{B}.$$

Proof: Condition (i) follows from Lemma 2.2. Let p be a trigonometric polynomial and let $\mu \in \Xi_{\mathcal{B}}^*$. Then $p * \mu = 1/(2\pi) \int_{\mathbb{T}} p(s)\mu_s ds$ exists as a wk^{*} Bochner integral in $\Xi_{\mathcal{B}}^*$ by Theorem 2.6. Hence $\|p * \mu\|_{\Xi_{\mathcal{B}}^*} \leq \|p\|_{L^1} \|\mu\|_{\Xi_{\mathcal{B}}^*}$, so (ii) holds. Moreover, (iii) follows from Alaoglu's theorem and Theorem 2.1. Since \mathcal{B} is the closure of the trigonometric polynomials in \mathcal{B} and is closed in $\Xi_{\mathcal{B}}^*$, we deduce from Lemma 2.2 that $(\Xi_{\mathcal{B}}^*)_h = \mathcal{B}$.

For $\mu \in \Xi_{\mathcal{B}}^*$, we have $\sigma_N(\mu) \in \mathcal{B}$ by Lemma 2.2. The next corollary is an immediate consequence of the two previous results and gives a useful characterization of $\Xi_{\mathcal{B}}^*$.

Corollary 2.9. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and let $\mu \in \mathcal{M}$. Then $\mu \in \Xi^*_{\mathcal{B}}$ if and only if $(\sigma_N(\mu))$ is a bounded sequence in \mathcal{B} .

Finally, we can now prove that the correspondence $\mathcal{B} \mapsto \Xi^*_{\mathcal{B}}$ is bijective.

Theorem 2.10. The maps

$$\mathcal{B} \mapsto \Xi^*_{\mathcal{B}}$$

(\mathcal{B} a homogeneous Banach space on \mathbb{T}) and

 $\mathcal{Y} \mapsto \mathcal{Y}_h$

(\mathcal{Y} a prehomogeneous Banach space on \mathbb{T}) define a bijective correspondence between the class of homogeneous Banach spaces on \mathbb{T} and the class of prehomogeneous Banach spaces on \mathbb{T} .

Proof: By Theorem 2.8, we have $(\Xi_{\mathcal{B}}^*)_h = \mathcal{B}$, when \mathcal{B} is a homogeneous Banach space on \mathbb{T} . Now, let \mathcal{Y} be a prehomogeneous Banach space on \mathbb{T} . For $\mu \in \mathcal{M}$, the previous corollary implies that $\mu \in \Xi_{\mathcal{Y}_h}^*$ if and only if $(\sigma_N(\mu))$ is a bounded sequence in \mathcal{Y}_h . However, this condition is also equivalent to $\mu \in \mathcal{Y}$ by Lemma 2.7. Hence $\Xi_{\mathcal{Y}_h}^* = \mathcal{Y}$, which proves the result.

3. Homogeneous Banach algebras

The simplest example of a homogeneous Banach space on \mathbb{T} which is also a Banach algebra under pointwise multiplication is the algebra \mathcal{C} . We have $\mathcal{C}^* = \mathcal{M}, \Xi_{\mathcal{C}} = L^1$ and thus

$$\Xi^*_{\mathcal{C}} = L^{\infty},$$

so $\Xi^*_{\mathcal{C}}$ is closed under pointwise multiplication. This is true in general.

Theorem 3.1. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and suppose that \mathcal{B} is a Banach algebra under pointwise multiplication. Then

- (a) $\mathcal{B} \subseteq \mathcal{C}$.
- (b) $\Xi_{\mathcal{B}}^* \subseteq L^{\infty}$ and $\Xi_{\mathcal{B}}^*$ is a Banach algebra under pointwise multiplication.
- (c) If a homogeneous Banach space L on T is a Banach B-module under pointwise multiplication, then Ξ^{*}_L is a Banach Ξ^{*}_B-module under pointwise multiplication.

Proof: Let $f \in \mathcal{B}$ with $||f||_{\mathcal{B}} \leq 1$. Then (f^n) is bounded in L^1 , so $f \in L^{\infty}$ with $||f||_{\infty} \leq 1$. Hence $\mathcal{B} \subseteq L^{\infty}$ and the inclusion is continuous. Moreover, $\sigma_N(f) \to f$ in \mathcal{B} and thus in L^{∞} as $N \to \infty$, so we deduce that $f \in \mathcal{C}$. Consequently $\mathcal{B} \subseteq \mathcal{C}$ and thus $\Xi^*_{\mathcal{B}} \subseteq L^{\infty}$ by Proposition 2.4. Now, let $f \in \Xi^*_{\mathcal{B}}$ and $g \in \Xi^*_{\mathcal{L}}$. Then

$$\|\sigma_N(f)\sigma_N(g)\|_{\mathcal{L}} \le \|\sigma_N(f)\|_{\mathcal{B}} \cdot \|\sigma_N(g)\|_{\mathcal{L}} \le \|f\|_{\Xi_{\mathcal{B}}^*} \cdot \|g\|_{\Xi_{\mathcal{L}}^*}$$

for $N \in \mathbb{N}$, so the sequence $(\sigma_N(f)\sigma_N(g))$ has a wk^{*} cluster point $h \in \Xi_{\mathcal{L}}^*$ as $N \to \infty$. Since $(\sigma_N(f)\sigma_N(g))(m) \to \widehat{fg}(m)$ as $N \to \infty$ for $m \in \mathbb{Z}$, we deduce that $fg = h \in \Xi_{\mathcal{L}}^*$, with

$$||fg||_{\Xi_{\mathcal{L}}^*} \le ||f||_{\Xi_{\mathcal{B}}^*} \cdot ||g||_{\Xi_{\mathcal{L}}^*}$$

Considering \mathcal{B} as a Banach \mathcal{B} -module, this shows that $\Xi_{\mathcal{B}}^*$ is a Banach algebra under pointwise multiplication, and the result follows.

It is well known that the dual space \mathcal{B}^* of a commutative Banach algebra \mathcal{B} is a commutative Banach \mathcal{B} -module under the action $\langle a, b\varphi \rangle = \langle ab, \varphi \rangle (a, b \in \mathcal{B}, \varphi \in \mathcal{B}^*)$. The fact that L^1 is a Banach L^{∞} -module thus states that $\Xi_{\mathcal{C}}$ is a $\Xi_{\mathcal{C}}^*$ -submodule of $\Xi_{\mathcal{C}}^{**}$, and we shall see that this holds in general.

Proposition 3.2. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} which is also a Banach algebra under pointwise multiplication. Then $\Xi_{\mathcal{B}}$ is a closed $\Xi_{\mathcal{B}}^*$ -submodule of $\Xi_{\mathcal{B}}^{**}$.

Proof: Let $\rho : L^1 \to \Xi_{\mathcal{B}}$ be as in Proposition 2.4 (with $\mathcal{B}_2 = \mathcal{C}$). For $f \in L^1$ and $g \in \Xi_{\mathcal{B}}^*$, it is easily verified that $g\rho(f) = \rho^{**}(\rho^*(g)f)$ in $\Xi_{\mathcal{B}}^{**}$. Since $\rho^*(g)f \in L^1$, we thus have $g\rho(f) \in \Xi_{\mathcal{B}}$, and the result follows since ρ has dense range in $\Xi_{\mathcal{B}}$.

As a standard corollary, we obtain the following.

Corollary 3.3. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} which is also a Banach algebra under pointwise multiplication. Then multiplication is separately wk^{*} continuous in $\Xi_{\mathcal{B}}^*$.

T. V. Pedersen

Proof: Let (f_i) be a net in $\Xi_{\mathcal{B}}^*$ that converges wk^{*} to 0, and let $g \in \Xi_{\mathcal{B}}^*$ and $\varphi \in \Xi_{\mathcal{B}}$. Then $g\varphi \in \Xi_{\mathcal{B}}$ by the previous proposition, so we deduce that

$$\langle \varphi, gf_i \rangle = \langle gf_i, \varphi \rangle = \langle f_i, g\varphi \rangle = \langle g\varphi, f_i \rangle \to 0$$

as required.

Remark. Multiplication need not be wk^{*} continuous in $\Xi_{\mathcal{B}}^*$. In L^{∞} , we have $\alpha^n \to 0$ wk^{*} as $|n| \to \infty$, but $\alpha^n \alpha^{-n} = 1$ for $n \in \mathbb{N}$.

We say that a homogeneous Banach space \mathcal{B} on \mathbb{T} is a homogeneous Banach algebra on \mathbb{T} if \mathcal{B} is a Banach algebra under pointwise multiplication and the character space of \mathcal{B} is \mathbb{T} . We shall use the inclusion $\Xi_{\mathcal{B}}^* \subseteq L^{\infty}$ to show that \mathcal{C} is the only homogeneous Banach algebra on \mathbb{T} in which every closed ideal has an bounded approximate identity with a common bound. The following result as well as its proof is similar to [4, Lemma XVII.2.1].

Proposition 3.4. Let \mathcal{Y} be a Banach algebra continuously embedded in L^{∞} and suppose that there exists a constant C such that $1_V \in \mathcal{Y}$ with $\|1_V\|_{\mathcal{Y}} \leq C$ for every open set $V \subseteq \mathbb{T}$. Then $\mathcal{C} \subseteq \mathcal{Y}$ and $\|\cdot\|_{\mathcal{Y}}$ is equivalent to the uniform norm on \mathcal{C} .

Proof: Let V_1, \ldots, V_N be pairwise disjoint open sets in \mathbb{T} , let a_1, \ldots, a_N be complex numbers and consider the function

$$f = \sum_{n=1}^{N} a_n \mathbf{1}_{V_n}.$$

Then $||f||_{\infty} = \sup_{1 \le n \le N} |a_n|$. For $\varphi \in \mathcal{Y}^*$ with $||\varphi||_{\mathcal{Y}^*} \le 1$, we have

$$|\langle f, \varphi \rangle| \leq \sum_{n=1}^{N} |a_n| \cdot |\langle 1_{V_n}, \varphi \rangle| \leq ||f||_{\infty} \sum_{n=1}^{N} |\langle 1_{V_n}, \varphi \rangle|.$$

Denoting the real and imaginary part of φ by φ_1 and φ_2 , we have

$$\begin{split} \sum_{n=1}^{N} |\langle 1_{V_n}, \varphi \rangle| &\leq \sum_{\langle 1_{V_n}, \varphi_1 \rangle \geq 0} \langle 1_{V_n}, \varphi_1 \rangle - \sum_{\langle 1_{V_n}, \varphi_1 \rangle < 0} \langle 1_{V_n}, \varphi_1 \rangle \\ &+ \sum_{\langle 1_{V_n}, \varphi_2 \rangle \geq 0} \langle 1_{V_n}, \varphi_2 \rangle - \sum_{\langle 1_{V_n}, \varphi_2 \rangle < 0} \langle 1_{V_n}, \varphi_2 \rangle \\ &= \langle 1_{W_{1+}}, \varphi_1 \rangle - \langle 1_{W_{1-}}, \varphi_1 \rangle + \langle 1_{W_{2+}}, \varphi_2 \rangle - \langle 1_{W_{2-}}, \varphi_2 \rangle, \end{split}$$

where W_{1+} , W_{1-} , W_{2+} and W_{2-} are open sets. Hence

$$|\langle f, \varphi \rangle| \le 4C \|f\|_{\infty},$$

so we deduce that

$$\|f\|_{\mathcal{Y}} \le 4C \|f\|_{\infty}.$$

Consequently the two norms are equivalent on

 $\operatorname{span}\{1_V : V \subseteq \mathbb{T} \text{ is open}\}.$

Let $f \in \mathcal{C}$ with $0 \leq f \leq 1$. For $N \in \mathbb{N}$, let

$$U_{Nn} = \{t \in \mathbb{T} : f(t) > n/N\} \quad (n = 0, \dots, N-1),$$

and let

$$f_N = \frac{1}{N} \sum_{n=0}^{N-1} 1_{U_{Nn}}.$$

Then $||f - f_N||_{\infty} \leq 1/N$, so we deduce that

$$\mathcal{C} \subseteq \overline{\operatorname{span}}\{1_V : V \subseteq \mathbb{T} \text{ is open}\},\$$

and the result follows.

Theorem 3.5. The algebra C is the only homogeneous Banach algebra on \mathbb{T} in which there exists a constant C such that every closed ideal has a approximate identity bounded by C.

Proof: Let \mathcal{B} be homogeneous Banach algebra on \mathbb{T} and suppose that there exists a constant C such that every closed ideal in \mathcal{B} has a bounded approximate identity bounded by C. Let $E \subseteq \mathbb{T}$ be a closed set and let (f_n) be an approximate identity bounded by C for the closed ideal $\{f \in \mathcal{B} : f = 0 \text{ on } E\}$. Then $f_n \to 1$ uniformly on compact sets in $\mathbb{T} \setminus E$ and (f_n) is uniformly bounded, so

$$\widehat{f_n}(m) \to \widehat{\mathbb{1}_{\mathbb{T} \setminus E}}(m) \quad (m \in \mathbb{Z})$$

as $n \to \infty$. On the other hand, let f be a wk^{*} cluster point in $\Xi_{\mathcal{B}}^*$ of the sequence (f_n) and let (f_{n_i}) be a subnet of (f_n) which converges wk^{*} to f. Then

$$\widehat{f_{n_i}}(m) \to \widehat{f}(m) \quad (m \in \mathbb{Z}),$$

so we deduce that $1_{\mathbb{T}\setminus E} = f \in \Xi_{\mathcal{B}}^*$ with $\|1_{\mathbb{T}\setminus E}\|_{\Xi_{\mathcal{B}}^*} \leq C$. Theorem 3.1 and the previous proposition thus imply that the norm $\|\cdot\|_{\mathcal{B}}$ is equivalent to the uniform norm on \mathcal{B} , so \mathcal{B} is a closed subalgebra of \mathcal{C} . Since \mathcal{B} is a homogeneous Banach algebra on \mathbb{T} , it thus follows that $\mathcal{B} = \mathcal{C}$.

We do not know whether there exists a homogeneous Banach algebra on \mathbb{T} other than \mathcal{C} in which every closed ideal has a bounded approximate identity.

T. V. PEDERSEN

4. Multipliers

Let X_1 and X_2 be Banach spaces continuously embedded in \mathcal{M} . We say that a linear operator $T: X_1 \to X_2$ is a multiplier if there exists a sequence $(\hat{T}(n))$ such that

$$\widehat{T\mu} = \widehat{T}\widehat{\mu} \quad (\mu \in X_1)$$

Such an operator is automatically continuous. We denote the space of multipliers from X_1 to X_2 by (X_1, X_2) . (See [5] or [14] for general information on multipliers and for descriptions of (X_1, X_2) for various choices of X_1 and X_2 .) For homogeneous Banach spaces, we have the following well-known result. Observe that every homogeneous Banach space \mathcal{B} on \mathbb{T} is a Banach \mathcal{M} -module for the convolution product since $\mu * f = (1/(2\pi)) \int_{\mathbb{T}} f_s d\mu(s) \in \mathcal{B}$ for $\mu \in \mathcal{M}$ and $f \in \mathcal{B}$.

Proposition 4.1. For homogeneous Banach spaces \mathcal{B}_1 and \mathcal{B}_2 on \mathbb{T} and a linear operator $T : \mathcal{B}_1 \to \mathcal{B}_2$, the following conditions are equivalent.

- (a) $T \in (\mathcal{B}_1, \mathcal{B}_2).$
- (b) $T(\mu * f) = \mu * Tf \quad (\mu \in \mathcal{M}, f \in \mathcal{B}_1).$
- (c) $TR_s = R_s T$ $(s \in \mathbb{T}).$

For the homogeneous Banach spaces \mathcal{B} considered in this section, we assume, for simplicity, that, for every $n \in \mathbb{Z}$, there exists $f \in \mathcal{B}$ such that $\widehat{f}(n) \neq 0$.

Proposition 4.2. Let \mathcal{B}_1 and \mathcal{B}_2 be homogeneous Banach spaces on \mathbb{T} . Every $T \in (\mathcal{B}_1, \mathcal{B}_2)$ extends uniquely by wk^{*} continuity to $\widetilde{T} \in (\Xi_{\mathcal{B}_1}^*, \Xi_{\mathcal{B}_2}^*)$. Conversely, every $S \in (\Xi_{\mathcal{B}_1}^*, \Xi_{\mathcal{B}_2}^*)$ maps \mathcal{B}_1 into \mathcal{B}_2 , so $S|_{\mathcal{B}_1} \in (\mathcal{B}_1, \mathcal{B}_2)$. Moreover, $(\mathcal{B}_1, \mathcal{B}_2) = (\mathcal{B}_1, \Xi_{\mathcal{B}_2}^*)$.

Proof: For $T \in (\mathcal{B}_1, \mathcal{B}_2)$ and $n \in \mathbb{Z}$, we have

$$\langle f, T^* \xi_n \rangle = \widehat{T}(n) \widehat{f}(n) = \langle f, \widehat{T}(n) \xi_n \rangle \quad (f \in \mathcal{B}_1),$$

so $T^*\xi_n = \widehat{T}(n)\xi_n$. Hence $T^*(\Xi_{\mathcal{B}_2}) \subseteq \Xi_{\mathcal{B}_1}$ and $\widetilde{T} = (T^*|_{\Xi_{\mathcal{B}_2}})^*$ is the required extension. For $S \in (\Xi^*_{\mathcal{B}_1}, \Xi^*_{\mathcal{B}_2})$, we have $S\alpha^n = \widehat{S}(n)\alpha^n$ $(n \in \mathbb{Z})$, so $S(\mathcal{B}_1) \subseteq \mathcal{B}_2$. The same argument proves the last statement. \Box

Remark. For linear operators $S : \Xi^*_{\mathcal{B}_1} \to \Xi^*_{\mathcal{B}_2}$, we still have (a) \Leftrightarrow (b) \Rightarrow (c) in Proposition 4.1, but not necessarily (c) \Rightarrow (b); see, for example, [19].

Homogenous Banach spaces on the unit circle 147

Figà-Talamanca and Gaudry ([6], [7]) have shown that (L^p, L^q) $(1 \le p, q < \infty)$ is a dual space. We shall use a result of Rieffel ([18]) to show that this holds for homogeneous Banach spaces in general. For Banach spaces X and Y, denote their projective tensor product by $X \otimes_{\gamma} Y$. When X and Y are Banach L^1 -modules, let

$$K = \overline{\operatorname{span}} \{ fx \otimes y - x \otimes fy : f \in L^1, \, x \in X, \, y \in Y \}$$

and let

$$X \otimes_{L^1} Y = (X \otimes_{\gamma} Y)/K.$$

Then every $\rho \in X \otimes_{L^1} Y$ has an expansion

$$\rho = \sum_{n=1}^{\infty} x_n \otimes y_n$$

with $\sum_{n=1}^{\infty} \|x_n\|_X \cdot \|y_n\|_Y < \infty$, and

$$\|\rho\|_{X\otimes_{L^{1}}Y} = \inf\left\{\sum_{n=1}^{\infty} \|x_{n}\|_{X} \cdot \|y_{n}\|_{Y} : \rho = \sum_{n=1}^{\infty} x_{n} \otimes y_{n}\right\}$$

is the norm on $X \otimes_{L^1} Y$.

Theorem 4.3. Let \mathcal{B}_1 and \mathcal{B}_2 be homogeneous Banach spaces on \mathbb{T} and define

$$\Phi: (\mathcal{B}_1, \mathcal{B}_2) \to (\mathcal{B}_1 \otimes_{L^1} \Xi_{\mathcal{B}_2})$$

by

$$\langle f \otimes \varphi, \Phi(T) \rangle = \langle Tf, \varphi \rangle \quad (f \in \mathcal{B}_1, \varphi \in \Xi_{\mathcal{B}_2}, T \in (\mathcal{B}_1, \mathcal{B}_2)).$$

Then Φ is an isometric isomorphism, and Φ is a homeomorphism between the closed unit balls equipped with the weak operator and the wk^{*} topology respectively.

Proof: It follows from [18] that the map $\widetilde{\Phi} : (\mathcal{B}_1, \Xi_{\mathcal{B}_2}) \to (\mathcal{B}_1 \otimes_{L^1} \Xi_{\mathcal{B}_2})^*$ defined by $\langle f \otimes \varphi, \widetilde{\Phi}(T) \rangle = \langle \varphi, Tf \rangle$ for $f \in \mathcal{B}_1, \varphi \in \Xi_{\mathcal{B}_2}$ and $T \in (\mathcal{B}_1, \Xi_{\mathcal{B}_2}^*)$ is an isometric isomorphism, so Φ is an isometric isomorphism by the previous proposition. Let (T_i) be a net in the closed unit ball of $(\mathcal{B}_1, \mathcal{B}_2)$ which converges to T in the weak operator topology. Then

$$\langle f \otimes \varphi, \Phi(T_i) \rangle \to \langle f \otimes \varphi, \Phi(T) \rangle \quad (f \in \mathcal{B}_1, \varphi \in \Xi_{\mathcal{B}_2})$$

and it follows that $\Phi(T_i) \to \Phi(T)$ wk^{*}. From [2, Proposition IX.5.5] (the proof given there carries over to Banach spaces), we deduce that the closed unit ball of $(\mathcal{B}_1, \mathcal{B}_2)$ is compact in the weak operator topology, so the result follows.

T. V. PEDERSEN

We shall now show that the abstract space $\mathcal{B}_1 \otimes_{L^1} \Xi_{\mathcal{B}_2}$ can be identified with a sequence space. For $f \in \mathcal{B}_1$ and $\varphi \in \Xi_{\mathcal{B}_2}$, define $f * \varphi$ as a sequence by $\widehat{f * \varphi} = \widehat{f}\widehat{\varphi}$, and let

$$\mathcal{B}_1 * \Xi_{\mathcal{B}_2} = \left\{ \rho = \sum_{n=1}^{\infty} f_n * \varphi_n : \sum_{n=1}^{\infty} \|f_n\|_{\mathcal{B}_1} \cdot \|\varphi_n\|_{\Xi_{\mathcal{B}_2}} < \infty \right\}$$

equipped with norm

$$\|\rho\|_{\mathcal{B}_1*\Xi_{\mathcal{B}_2}} = \inf\left\{\sum_{n=1}^{\infty} \|f_n\|_{\mathcal{B}_1} \cdot \|\varphi_n\|_{\Xi_{\mathcal{B}_2}} : \rho = \sum_{n=1}^{\infty} f_n * \varphi_n\right\}.$$

For L^p spaces, the following was proved in [18, Theorem 3.3].

Proposition 4.4. There exists an isometric isomorphism $\Psi : \mathcal{B}_1 \otimes_{L^1} \Xi_{\mathcal{B}_2} \to \mathcal{B}_1 * \Xi_{\mathcal{B}_2}$ such that $\Psi(f \otimes \varphi) = f * \varphi \ (f \in \mathcal{B}_1, \varphi \in \Xi_{\mathcal{B}_2}).$

Proof: The map $\psi : \mathcal{B}_1 \times \Xi_{\mathcal{B}_2} \to \mathcal{B}_1 * \Xi_{\mathcal{B}_2}$ defined by $\psi(f, \varphi) = f * \varphi$ $(f \in \mathcal{B}_1, \varphi \in \Xi_{\mathcal{B}_2})$ is bilinear and continuous, so there is a continuous, linear map $\tilde{\psi} : \mathcal{B}_1 \otimes_{\gamma} \Xi_{\mathcal{B}_2} \to \mathcal{B}_1 * \Xi_{\mathcal{B}_2}$ with $\tilde{\psi}(f \otimes \varphi) = f * \varphi$ $(f \in \mathcal{B}_1, \varphi \in \Xi_{\mathcal{B}_2})$. Moreover, $\tilde{\psi}$ is surjective and $K \subseteq \ker \tilde{\psi}$. For $f \in \mathcal{B}_1$ and $\varphi \in \Xi_{\mathcal{B}_2}$, we have $f * \varphi = (1/(2\pi)) \int_{\mathbb{T}} f(s) \varphi_s \, ds \in \Xi_{\mathcal{B}_2}$, so it follows from the proof of [18, Theorem 3.3] that $\ker \tilde{\psi} \subseteq K$, which finishes the proof.

Every trigonometric polynomial p defines a multiplier $T_p \in (\mathcal{B}_1, \mathcal{B}_2)$ by $T_p f = p * f$ $(f \in \mathcal{B}_1)$, which we identify with p. We have the following density results.

Proposition 4.5.

- (a) For homogeneous Banach spaces B₁ and B₂ on T, the unit ball of the trigonometric polynomials is strongly dense in the unit ball of (B₁, B₂).
- (b) For a homogeneous Banach space \mathcal{B} on \mathbb{T} , the span of $\{R_s : s \in \mathbb{T}\}$ is strongly dense in $(\mathcal{B}, \mathcal{B})$.

Proof: (a) For $T \in (\mathcal{B}_1, \mathcal{B}_2)$, let

$$\sigma_N(T) = \sum_{n=-N}^N \left(1 - \frac{|n|}{N+1}\right) \widehat{T}(n) \alpha^n \quad (N \in \mathbb{N}).$$

Then $\sigma_N(T)f = \sigma_N(Tf) \to Tf$ in \mathcal{B}_2 as $N \to \infty$ for $f \in \mathcal{B}_1$ and $\|\sigma_N(T)\|_{(\mathcal{B}_1,\mathcal{B}_2)} \leq \|T\|_{(\mathcal{B}_1,\mathcal{B}_2)}$ $(N \in \mathbb{N}).$

(b) For $n \in \mathbb{Z}$ and $f \in \mathcal{B}$, the integral

$$\alpha^n * f = \frac{1}{2\pi} \int_{\mathbb{T}} R_s f \cdot e^{ins} \, ds$$

exists as a Bochner integral, so α^n belongs to the strong closure of span $\{R_s : s \in \mathbb{T}\}$, and the conclusion thus follows from (a).

Finally, we shall see that $(\mathcal{B}, \mathcal{B})$ is the dual space of a homogeneous Banach space of continuous functions on \mathbb{T} . Let \mathcal{W} be the Wiener algebra of absolutely convergent Fourier series on \mathbb{T} .

Corollary 4.6. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} and let $A_{\mathcal{B}} = \mathcal{B} * \Xi_{\mathcal{B}}$. Then $A_{\mathcal{B}}$ is a homogeneous Banach space on \mathbb{T} with $\mathcal{W} \subseteq A_{\mathcal{B}} \subseteq \mathcal{C}$ and $(\mathcal{B}, \mathcal{B}) = A_{\mathcal{B}}^*$.

Proof: For $f \in \mathcal{B}$ and $\varphi \in \Xi_{\mathcal{B}}$, we have

$$(f*\varphi)(s) = \lim_{N \to \infty} \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1}\right) \widehat{f}(n)\widehat{\varphi}(n)e^{ins} = \langle R_{-s}f, \varphi \rangle \quad (s \in \mathbb{T}),$$

so $A_{\mathcal{B}}$ is a homogeneous Banach space on \mathbb{T} with $A_{\mathcal{B}} \subseteq \mathcal{C}$. For $n \in \mathbb{Z}$ and $\varepsilon > 0$, choose $f \in \mathcal{B}$, $f \neq 0$ such that

$$|\widehat{f}(n)| = |\langle f, \alpha^n \rangle| \ge (1 - \varepsilon) ||f||_{\mathcal{B}} \cdot ||\alpha^n||_{\mathcal{B}^*}.$$

Since $f * \alpha^n = \widehat{f}(n)\alpha^n$, we thus have

$$\|\alpha^n\|_{A_{\mathcal{B}}} \le \frac{\|f\|_{\mathcal{B}^*} \|\alpha^n\|_{\mathcal{B}^*}}{|\widehat{f}(n)|} \le \frac{1}{1-\varepsilon}$$

Hence $\|\alpha^n\|_{A_{\mathcal{B}}} = 1$, so $\mathcal{W} \subseteq A_{\mathcal{B}}$. The last statement is just a reformulation of Theorem 4.3 and Proposition 4.4.

5. Examples

In this section, we shall determine $\Xi_{\mathcal{B}}^*$ for some examples of homogeneous Banach spaces \mathcal{B} on \mathbb{T} . We have already seen that $\Xi_{L^1}^* = \mathcal{M}$ and that $\Xi_{\mathcal{C}}^* = L^{\infty}$.

We denote the space of left-continuous functions of bounded variation by \mathcal{BVC}_l . For $f \in \mathcal{BVC}_l$, there exists a unique measure $\mu(f)$ with $\widehat{\mu(f)}(0) = 0$ and $c \in \mathbb{C}$ such that

$$f(t) = \mu(f)([0,t)) + c \quad (t \in \mathbb{T}).$$

Moreover, $f \in \mathcal{BVC}_l$ is absolutely continuous on \mathbb{T} if and only if $\mu(f) \in L^1$, and in this case $f' = \mu(f)$ a.e. The space of absolutely continuous functions on \mathbb{T} is denoted by \mathcal{AC} .

This generalizes to (pre)homogeneous Banach spaces on \mathbb{T} . For a homogeneous Banach space \mathcal{B} on \mathbb{T} , let \mathcal{B}^1 be the space of functions $f \in \mathcal{AC}$ for which $\mu(f) \in \mathcal{B}$ and equip \mathcal{B}^1 with the norm $||f||_{\mathcal{B}^1} =$ $||f'||_{\mathcal{B}} + |f(0)| \ (f \in \mathcal{B}^1)$. Similarly, for a prehomogeneous Banach space \mathcal{Y} on \mathbb{T} , we say that a function $f \in \mathcal{BVC}_l$ belongs to \mathcal{Y}^1 if $\mu(f) \in \mathcal{Y}$, and we norm \mathcal{Y}^1 by $||f||_{\mathcal{Y}^1} = ||\mu(f)||_{\mathcal{Y}} + |f(0)| \ (f \in \mathcal{Y}^1)$. Then \mathcal{B}^1 is a homogeneous Banach space on \mathbb{T} and \mathcal{Y}^1 is a prehomogeneous Banach space on \mathbb{T} . The following result is easily proved.

Proposition 5.1. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} . Then

$$\Xi_{\mathcal{B}^1}^* = (\Xi_{\mathcal{B}}^*)^1.$$

It immediately follows that

$$\Xi_{\mathcal{AC}}^* = \Xi_{(L^1)^1}^* = (\Xi_{L^1}^*)^1 = (\mathcal{M})^1 = \mathcal{BVC}_l.$$

We now turn to other examples.

Dual spaces. The following result is not surprising, considering that the main motivation for the construction of the space $\Xi_{\mathcal{B}}^*$ was to embed \mathcal{B} in a "small" dual space.

Lemma 5.2. Let \mathcal{B} be a homogeneous Banach space on \mathbb{T} . Suppose that there is a Banach space \mathcal{Z} such that $\mathcal{Z}^* = \mathcal{B}$ and such that $\xi_n \in \mathcal{Z}$ for $n \in \mathbb{Z}$. Then $\Xi_{\mathcal{B}} = \mathcal{Z}$ and thus $\Xi_{\mathcal{B}}^* = \mathcal{B}$.

Proof: Observe that \mathcal{Z} is a closed subspace of $\mathcal{Z}^{**} = \mathcal{B}^*$. Also,

$$\Xi_{\mathcal{B}} = \overline{\operatorname{span}\{\xi_n : n \in \mathbb{Z}\}}^{\mathcal{B}^*} = \overline{\operatorname{span}\{\xi_n : n \in \mathbb{Z}\}}^{\mathcal{Z}}$$

so $\Xi_{\mathcal{B}}$ is a closed subspace of \mathcal{Z} . If $f \in \mathcal{Z}^* = \mathcal{B}$ and $f \perp \Xi_{\mathcal{B}}$, then $\widehat{f}(n) = 0$ for $n \in \mathbb{Z}$ and thus f = 0. It thus follows from the Hahn-Banach theorem that $\Xi_{\mathcal{B}} = \mathcal{Z}$.

The result applies, in particular, to the spaces L^p with 1 $and to the Wiener algebra <math>\mathcal{W} \sim l^1(\mathbb{Z})$.

Lipschitz algebras. For $0 < \gamma \leq 1$, let Λ_{γ} be the Lipschitz algebra of functions f on \mathbb{T} for which there exists a constant C such that

$$|f(t) - f(s)| \le C|t - s|^{\gamma}$$

for $s, t \in \mathbb{T}$. Normed by $||f||_{\Lambda_{\gamma}} = ||f||_{\infty} + \sup\{|f(t) - f(s)| \cdot |t - s|^{-\gamma} : t, s \in \mathbb{T}, t \neq s\}$, it is well known that Λ_{γ} is a Banach algebra. For $0 < \gamma < 1$, let λ_{γ} be the closed subalgebra of Λ_{γ} of functions satisfying

$$|f(t) - f(s)| = o(|t - s|^{\gamma})$$

uniformly as $|t - s| \to 0$. Then λ_{γ} is a homogeneous Banach algebra on \mathbb{T} ([16]). Moreover, it follows from [3] that the map $\Psi : \lambda_{\gamma}^{**} \to \Lambda_{\gamma}$ defined by

$$\Psi(F)(t) = \langle \delta_t, F \rangle \quad (F \in \lambda_{\gamma}^{**}, t \in \mathbb{T})$$

is an isomorphism, where $\delta_t \in \lambda_{\gamma}^*$ denotes the point evalution functional at t.

Now, suppose that $F \in \lambda_{\gamma}^{**}$ with $F \perp \Xi_{\lambda_{\gamma}}$ and let $m \in \mathbb{Z}$. Then

$$\widehat{\Psi(F)}(m) = \frac{1}{2\pi} \int_{\mathbb{T}} \langle \delta_t, F \rangle e^{-imt} \, dt = \frac{1}{2\pi} \left\langle \int_{\mathbb{T}} \delta_t e^{-imt} \, dt, F \right\rangle,$$

where $\int_{\mathbb{T}} \delta_t e^{-imt} dt$ exists as a wk^{*} Bochner integral in λ_{γ}^* . Since

$$\frac{1}{2\pi} \left\langle \alpha^n, \int_{\mathbb{T}} \delta_t e^{-imt} \, dt \right\rangle = \frac{1}{2\pi} \int_{\mathbb{T}} \langle \alpha^n, \delta_t \rangle e^{-imt} \, dt$$
$$= \frac{1}{2\pi} \int_{\mathbb{T}} e^{i(n-m)t} \, dt = \langle \alpha^n, \xi_m \rangle$$

for $n \in \mathbb{Z}$, we deduce that $(1/2\pi) \int_{\mathbb{T}} \delta_t e^{-imt} dt = \xi_m$, so

$$\widehat{\Psi}(F)(m) = \langle \xi_m, F \rangle = 0.$$

Hence $\Psi(F) = 0$ and thus F = 0, so we deduce that $\Xi_{\lambda_{\gamma}} = \lambda_{\gamma}^*$ and thus $\Xi_{\lambda_{\gamma}}^* = \Lambda_{\gamma}$.

Moreover, span{ $\delta_t : t \in \mathbb{T}$ } is dense in λ_{γ}^* ([3, Lemma 2.6]), so we deduce that a sequence (f_n) in $\Lambda_{\gamma} (= \Xi_{\lambda_{\gamma}}^*)$ converges wk^{*} to 0 if and only if it is bounded in Λ_{γ} and converges pointwise to 0 on \mathbb{T} .

To complete our discussion of Lipschitz algebras, we mention that

$$\Xi_{\mathcal{C}^1}^* = (\Xi_{\mathcal{C}}^*)^1 = (L^{\infty})^1 = \Lambda_1$$

by Proposition 5.1.

The Pisier algebra. Let $(\xi_n(\omega))$ be a sequence of independent, normal, complex random variables defined on some probability space Ω . For $f \in L^2$, consider the Gaussian Fourier series

$$f_{\omega}(t) = \sum_{n=-\infty}^{\infty} \xi_n(\omega) \widehat{f}(n) e^{int} \quad (t \in \mathbb{T}, \, \omega \in \Omega).$$

We say that $f \in C$ almost surely if $f_{\omega} \in C$ for almost every $\omega \in \Omega$. The space $C_{\text{a.s.}}$ of such functions is a homogeneous Banach space on \mathbb{T} equipped with the norm

$$||f||_{\mathrm{a.s.}} = \int_{\Omega} ||f_{\omega}||_{\infty} d\omega \quad (f \in \mathcal{C}_{\mathrm{a.s.}}).$$

Pisier proved that

$$\mathcal{P} = \mathcal{C}_{\mathrm{a.s.}} \cap \mathcal{C}$$

is closed under pointwise multiplication and that it is a homogeneous Banach algebra on $\mathbb T$ (the so-called Pisier algebra) equipped with the norm

$$||f||_{\mathcal{P}} = ||f||_{\infty} + ||f||_{\text{a.s.}} \quad (f \in \mathcal{P}).$$

(For this and other results, see, for instance, [17] or [12].)

It follows from [15, Corollary VI.1.5] that $C_{\text{a.s.}} = Z^*$ for some Banach space Z with $\xi_n \in Z$ for $n \in \mathbb{N}$. Hence

$$\Xi_{\mathcal{P}}^* \subseteq \Xi_{\mathcal{C}_{\mathrm{a.s.}}}^* \cap \Xi_{\mathcal{C}}^* = \mathcal{C}_{\mathrm{a.s.}} \cap L^{\infty}$$

by Proposition 2.4 and Lemma 5.2. Conversely, for $f \in \mathcal{C}_{\text{a.s.}} \cap L^{\infty}$, the sequence $(\sigma_N(f))$ is bounded in $\mathcal{C}_{\text{a.s.}}$ and \mathcal{C} , so it follows from Corollary 2.9 that $f \in \Xi_{\mathcal{P}}^*$. Hence

$$\Xi_{\mathcal{P}}^* = \mathcal{C}_{\mathrm{a.s.}} \cap L^{\infty}.$$

Finally, with an obvious notation, we have $C_{\text{a.s.}} = L_{\text{a.s.}}^{\infty}$ ([12, p. 58]), so we obtain the more symmetric expression

$$\Xi^*_{\mathcal{C}_{\mathrm{a.s.}}\cap\mathcal{C}} = L^{\infty}_{\mathrm{a.s.}} \cap L^{\infty}.$$

Uniformly convergent Fourier series. For $\mu \in \mathcal{M}$ and $N \in \mathbb{N}$, let

$$S_N(\mu) = \sum_{n=-N}^N \widehat{\mu}(n) \alpha^n$$

be the partial sums of μ , and let

$$\mathcal{U} = \{ f \in \mathcal{C} : \|S_N(f) - f\|_{\infty} \to 0 \text{ as } N \to \infty \}$$

be the space of uniformly convergent Fourier series on $\mathbb T$ equipped with the norm

$$||f||_{\mathcal{U}} = \sup_{N} ||S_N(f)||_{\infty} \quad (f \in \mathcal{U})$$

It is easily seen that \mathcal{U} is a homogeneous Banach space on \mathbb{T} . For $\mu \in \Xi_{\mathcal{U}}^*$, we have $\widehat{\sigma_M(\mu)}(n) \to \widehat{\mu}(n)$ as $M \to \infty$ for $n \in \mathbb{Z}$ and thus $\|S_N(\sigma_M(\mu)) - S_N(\mu)\|_{\infty} \to 0$ as $M \to \infty$ for $N \in \mathbb{N}$. Hence

$$\sup_{N} \|S_N(\mu)\|_{\infty} \leq \sup_{M,N} \|S_N(\sigma_M(\mu))\|_{\infty} = \sup_{M} \|\sigma_M(\mu)\|_{\mathcal{U}} < \infty.$$

In particular, $\mu \in L^{\infty}$. Conversely, let $f \in L^{\infty}$ with $\sup_{N} ||S_{N}(f)||_{\infty} < \infty$. Then $(S_{N}(f))$ is bounded in \mathcal{U} and $\widehat{S_{N}(f)}(m) \to \widehat{f}(m)$ as $N \to \infty$ for $m \in \mathbb{Z}$. Hence $S_{N}(f) \to f$ wk^{*} in $\Xi^{*}_{\mathcal{U}}$ as $N \to \infty$, so we deduce that

$$\Xi_{\mathcal{U}}^* = \{ f \in L^\infty : \sup_N \|S_N(f)\|_\infty < \infty \},\$$

the space of uniformly bounded Fourier series on \mathbb{T} .

Spaces of analytic functions. As mentioned earlier, the definition of a homogeneous Banach space \mathcal{B} includes the case where $\hat{f}(n) = 0$ for every $f \in \mathcal{B}$ for some values of n and in particular spaces of analytic functions. For instance, the Hardy space \mathcal{H}^1 on the open unit disc \mathbb{D} is a homogeneous Banach space on \mathbb{T} . Moreover, by the F. and M. Riesz theorem ([11, p. 47]), we have

$$\Xi^*_{\mathcal{H}^1} \subseteq \{\mu \in \mathcal{M} : \widehat{\mu}(n) = 0 \text{ for every } n < 0\} = \mathcal{H}^1$$

 \mathbf{SO}

$$\Xi^*_{\mathcal{H}^1} = \mathcal{H}^1$$

This also follows from Lemma 5.2, since $\mathcal{H}^1 = (\mathcal{C}/\mathcal{A}_0)^*$, where \mathcal{A} is the disc algebra of functions analytic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$ and $\mathcal{A}_0 = \{f \in \mathcal{A} : f(0) = 0\}$. For the disc algebra, we have $\mathcal{A}^* = \mathcal{M}/\mathcal{A}^{\perp} = \mathcal{M}/\mathcal{H}_0^1$ (where $\mathcal{H}_0^1 = \{f \in \mathcal{H}^1 : f(0) = 0\}$). Hence $\Xi_{\mathcal{A}} = L^1/\mathcal{H}_0^1$ and thus

$$\Xi_{\mathcal{A}}^* = \mathcal{H}^{\infty}.$$

Finally, we consider the space

$$\mathcal{BMOA}=\mathcal{BMO}\cap\mathcal{H}^1$$

of functions in \mathcal{H}^1 which are of bounded mean oscillation on \mathbb{T} , and the closed subspace \mathcal{VMOA} of functions of vanishing mean oscillation on \mathbb{T} (see, for example, [8] for the definitions). Fefferman's duality theorem ([1, Corollary 8.1] or [8, Theorem VI.4.4]) states that

$$\mathcal{BMOA} = (\mathcal{H}^1)^*.$$

Hence conditions (i) and (iii) in the definition of a prehomogeneous Banach space on \mathbb{T} are satisfied for \mathcal{BMOA} . Moreover, for $g \in \mathcal{BMOA}$, we have $g_s \to g \text{ wk}^*$ in \mathcal{BMOA} as $s \to 0$, so it follows from the proof of Theorem 2.6 that

$$f * g = \frac{1}{2\pi} \int_{\mathbb{T}} f(s) g_s \, ds$$

exists as a wk^{*} Bochner integral in \mathcal{BMOA} for $f \in L^1$. Hence

$$\|f * g\|_{\mathcal{BMOA}} \le \|f\|_{L^1} \|g\|_{\mathcal{BMOA}},$$

so we deduce that \mathcal{BMOA} is a prehomogeneous Banach space on $\mathbb{T}.$ Also,

$$(\mathcal{BMOA})_h = \mathcal{VMOA},$$

by [8, Theorem VI.5.1], so it follows from Theorem 2.10 that \mathcal{VMOA} is a homogeneous Banach space on \mathbb{T} with

$$\Xi^*_{\mathcal{VMOA}} = \mathcal{BMOA}.$$

References

- A. BAERNSTEIN II, Analytic functions of bounded mean oscillation, in "Aspects of contemporary complex analysis", (D. A. Brannan and J. G. Clunie, eds.), Proceedings of a conference held in Durham, 1979, Academic Press, London, 1980, pp. 3–36.
- [2] J. B. CONWAY, "A course in functional analysis", Springer-Verlag, Berlin, 1985.
- [3] K. DE LEEUW, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), 55–66.
- [4] N. DUNFORD AND J. T. SCHWARTZ, "Linear operators III", John Wiley & Sons, New York, 1971.
- [5] R. E. EDWARDS, "Fourier series II", Holt, Rinehart and Winston, New York, 1967.
- [6] A. FIGÀ-TALAMANCA, Translation invariant operators in L^p, Duke Math. J. 32 (1965), 495–501.
- [7] A. FIGÀ-TALAMANCA AND G. I. GAUDRY, Density and representation theorems for multipliers of type (p,q), J. Austral. Math. Soc. 7 (1967), 1–6.
- [8] J. B. GARNETT, "Bounded analytic functions", Academic Press, New York, 1981.
- [9] E. HEWITT AND K. A. ROSS, "Abstract harmonic analysis I", Die Grundlehren der mathematischen Wissenschaften 115, Springer-Verlag, Berlin, 1963.
- [10] E. HILLE AND R. S. PHILLIPS, "Functional analysis and semigroups", revised ed., American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R.I., 1957.
- [11] K. HOFFMAN, "Banach spaces of analytic functions", Prentice-Hall, Englewood Cliffs, N.J., 1962.
- [12] J.-P. KAHANE, "Some random series of functions", second ed., Cambridge Studies in Advanced Mathematics 5, Cambridge University Press, Cambridge-New York, 1985.

- [13] Y. KATZNELSON, "An introduction to harmonic analysis", John Wiley & Sons, New York, 1968.
- [14] R. LARSEN, "The multiplier problem", Lecture Notes in Math. 105, Springer-Verlag, Berlin, 1965.
- [15] M. B. MARCUS AND G. PISIER, "Random Fourier series with applications to harmonic analysis", Annals in Mathematics Studies 101, Princeton University Press, Princeton, N.J., 1981.
- [16] H. MIRKIL, Continuous translation of Hölder and Lipschitz functions, Canad. J. Math. 12 (1960), 674–685.
- [17] G. PISIER, A remarkable homogeneous Banach algebra, Israel J. Math. 34 (1979), 38–44.
- [18] M. A. RIEFFEL, Multipliers and tensor products of L^p-spaces of locally compact groups, *Studia Math.* 33 (1969), 71–82.
- [19] W. RUDIN, Invariant measures on L^{∞} , Studia Math. 44 (1972), 219–227.
- [20] G. E. SHILOV, Homogeneous rings of functions, Amer. Math. Soc. Transl. (1) 8 (1962), 392–455; reprinted from Amer. Math. Soc. Transl. 92 (1953).

Laboratoire de Mathématiques Pures Université Bordeaux 1 351, cours de la Libération F-33405 Talence cédex France *E-mail address*: vils@math.u-bordeaux.fr

> Primera versió rebuda el 21 de gener de 1999, darrera versió rebuda el 17 de juny de 1999.