
Publicacions Matemàtiques, Vol 43 (1999), 341–449.

COMPLETE MINIMAL SURFACES IN R
3

Francisco J. López∗ and Francisco Mart́ın∗

Abstract
In this paper we review some topics on the theory of complete
minimal surfaces in three dimensional Euclidean space.
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1. Introduction

In this paper we review some topics on the theory of minimal surfaces
in three dimensional Euclidean space.

The study of minimal surfaces in R
3 started with Lagrange in 1762.

He studied the problem of determining a graph over an open set Ω in R
2,

with the least possible area among all surfaces that assume given values
on ∂(Ω).

Mathematics soon realized that here was not only a problem of ex-
traordinary difficulty, but also of unlimited possibilities.

In 1776, Meusnier supplied a geometric interpretation of the minimal
graph equation (7): the mean curvature H vanishes. On this premise it
has become customary to use the term minimal surface for any surface
satisfying H = 0, notwithstanding the fact that such surfaces often do
not provide a minimum for the area.

During the nineteenth century, more discoveries and publications ap-
peared, thanks to the works of Catalan, Bonnet, Serret, Riemann, Weier-
strass, Enneper, Schwarz, among others. From the point of view of mod-
ern theory, Weierstrass and Enneper’s works are specially important.
They introduced the so called Enneper-Weierstrass representation for
minimal surfaces, which established a closed relationship between this
theory and Complex Analysis.

In the middle of the nineteenth century, Plateau observed that minimal
surfaces can be physically realized as soap films. So, the problem of
determining a minimal surface with fixed topology and bounded by a
prescribed Jordan curve is now usually called Plateau’s problem. In this
field we place emphasis on the works of Courant, Douglas, Morse, Rado,
Schiffman, among others. However, this topic is not covered in this
survey, and [17], [26], [61], [71] can be used as good references.

This paper is devoted to some aspects of the theory of complete min-
imal surfaces. As we will see, completeness has a strong influence on
the topology, conformal structure and other geometrical properties of a
minimal surface.

To be more precise, we include a brief study of: the Gauss map of
complete minimal surfaces, complete minimal surfaces with bounded co-
ordinate functions, some of the latest achievements about properly em-
bedded minimal surfaces and what is known about complete minimal
surfaces with finite total curvature.

The aim of this work is not to carry out an exhaustive exposition of
these subjects. We only give a summary of the most relevant results
or discuss its main applications and related questions. However, we
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have tried to compile a complete list of references that could help the
interested reader to delve more deeply into these subjects.

In Section 2 we briefly study the construction of minimal surfaces with
polygonal boundary and its applications.

Section 3 is devoted to the Gauss map of minimal surfaces, where we
deal with Fujimoto’s theorem, which asserts that the plane is the only
complete minimal surface in R

3 whose Gauss map omits at least five
points of the sphere. We include the Osserman-Mo generalization of this
theorem. For further treatment on the subject see [24].

In Section 4 we study complete minimal surfaces which are bounded
as subsets of R

3 (Naridashvili’s theorem), and some questions related
with Calabi’s problem for minimal surfaces.

In Section 5 (the most extensive) we deal with complete minimal sur-
faces of finite total curvature. We look at Osserman’s classical theorems
and the formula of Jorge and Meeks, including a complete list of examples
of surfaces of this kind. Our interest lies in: existence and uniqueness
theorems for surfaces with critical total curvature (from the point of
view of the Jorge-Meeks formula), minimal surfaces with high symme-
try group, and nonorientable minimal surfaces. The study of embedded
minimal surfaces with finite total curvature is included in Section 6.

Finally, in Section 6 we briefly study some of the latest achievements
in the theory of properly embedded minimal surfaces in R

3. Since the
discovery of Costa’s minimal surface, the study of this area gathered
new speed. From Collin’s theorem, a properly embedded minimal sur-
face has finite topology if and only if it has finite total curvature, and
provided that the number of ends is greater or equal to two. In this
section, we review the families of surfaces with three or more ends, plac-
ing the emphasis the study of the Costa-Hoffman-Meeks and Hoffman-
Meeks families of surfaces. We also include a uniqueness theorem for the
Hoffman-Meeks family in terms of its symmetry. The last part of Sec-
tion 6 is devoted to Meeks’ conjecture about properly embedded planar
domains. So, we prove the López-Ros theorem and include a summary
of the Meeks-Pérez-Ros theorem.

Further results about properly embedded minimal surfaces, not in-
cluded in this survey, can be found in Meeks and Rosenberg works [65],
[66], and in Meeks’ survey [63].

Acknowledgments. We would like to thank M. Weber for allowing
us to include some of his images in this survey. We would also like to
thank E. Thayer for allowing us to include some of his pictures, which
were produced by using Jim Hoffman’s graphics programs. Finally, we
are indebted to J. Pérez for helpful criticisms of the paper.
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1.1. Preliminaries.
In this section, we review some basic topics about minimal surfaces in

R
3, emphasizing the Weierstrass representation. The most part of these

results can be found in [73], although we have also included additional
references for some of them.

Let (M,ds2) be a connected Riemannian surface. Let K, ∆ and dA
denote the Gauss curvature, the Laplace operator and the area element
associated to ds2, respectively.

We can associate to (M,ds2) a conformal structure. This fact is a
consequence of the following classical result.

Theorem 1.1. Let (M,ds2) be a Riemannian surface. Then, any
point P ∈M has a neighborhood in which there exists a parametrization
of M in terms of isothermal parameters.

So, any orientable Riemannian surface has an underlying structure of
Riemann surface. A proof of this result for can be found in [44].

Thus, if M is orientable, it is possible to define harmonic, holomorphic
and meromorphic functions and 1-forms on M . We also denote by d the
exterior differential on functions and 1-forms, and label � as the Hodge
operator on 1-forms. For details see [20].

Let X : M → R
3 be an orientable isometric immersion of (M,ds2)

in three dimensional Euclidean space, and call N : M → S
2 its Gauss

map. Denote H : M → R as the mean curvature function associated to
N . Recall that the mean curvature at a point of the surface is defined
as half the sum of the principal curvatures at this point. A well-known
formula says

(1) ∆X = 2H N.

Definition 1. The immersion X is minimal if and only if H = 0.

1.1.1. Weierstrass representation.
As a consequence of (1), X is minimal if and only if X = (X1, X2, X3)

is harmonic (this fact only depends on the complex structure associated
to (M,ds2)). In that case, dXj , j = 1, 2, 3, are harmonic 1-forms on M ,
and so

Φj
def= ∂(Xj) = dXj + i(�dXj), j = 1, 2, 3,

are holomorphic 1-forms on M . Usually, we write Φ = (Φ1,Φ2,Φ3).
In what follows, we will assume that X is an orientable minimal im-

mersion.
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If z is a conformal parameter in M , then it is not hard to deduce that

3∑
j=1

(∂(Xj))2 = 0,

i.e.,

(2) Φ2
1 + Φ2

2 + Φ2
3 ≡ 0.

Moreover, ds2 = |Φ1|2 + |Φ2|2 + |Φ3|2, and since X is an immersion,

(3) |Φ1|2 + |Φ2|2 + |Φ3|2 �≡ 0.

On the other hand, if we consider P0, P in M and γ any differentiable
curve in M starting at P0 and ending at P , then one has

Real
(∫

γ

Φ
)

= X(P )−X(P0).

Note that the right hand side of the last equality does not depend on the
curve γ connecting P0 and P . In other words, the 1-forms Φj , j = 1, 2, 3,
verify:

Real
∫
γ

Φj = 0, j = 1, 2, 3,

for any closed curve γ in M . Usually, we say that Φ1, Φ2, and Φ3 have
no real periods.

Therefore, we write Real
∫ P
P0

Φj instead of Real
∫
γ

Φj , j = 1, 2, 3.
If we define

g =
Φ3

Φ1 − iΦ2
, η = Φ1 − iΦ2,

then equation (2) becomes:

(4)

Φ1 =
1
2
(1− g2)η,

Φ2 =
i

2
(1 + g2)η,

Φ3 = gη,

and so, it is not hard to check that:

N(P ) =
(

2
Real(g(P ))
1 + |g(P )|2 , 2

Im(g(P ))
1 + |g(P )|2 ,

1− |g(P )|2
1 + |g(P )|2

)
.
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This means that the meromorphic function g is the stereographic pro-
jection, from the point (0, 0, 1), of the Gauss map N of X. In particular,
N is a conformal map, and this property characterizes minimal surfaces
(besides the sphere).

Observe that equation (3) means that η is holomorphic with zeroes
precisely at the poles of g, but with twice order.

We define (M,η, g) (or (M,Φ)) as the Weierstrass representation of
the immersion X.

Conversely, one can construct minimal surfaces as follows:

Theorem 1.2. Let M be a Riemann surface, and let η, g denote
a holomorphic 1-form and a meromorphic function on M , respectively.
Define Φj, j = 1, 2, 3, as in (4), and suppose that (3) holds.

Assume also that Φj, j = 1, 2, 3, have no real periods on M , i.e., for
any closed curve γ in M ,

Real
∫
γ

Φj = 0, j = 1, 2, 3.

Fix a point P0 ∈M . Then, the map

X : M −→ R
3

X(P ) = Real
∫ P

P0

(Φ1,Φ2,Φ3),

is a well defined conformal minimal immersion.
Furthermore, (M,η, g) is the Weierstrass representation of X.

Note that the Weierstrass representation determines the minimal im-
mersion up to translations.

We can write in terms of the Weierstrass representation any geomet-
rical matter. So, if we fix a conformal parameter z on M , and write
η = f(z) dz, then, straightforward computations give:

ds2 =
1
4
|f(z)|2(1 + |g(z)|2)2|dz|2,(5)

K(z) = −
(

4|g′(z)|
|f(z)|(1 + |g(z)|2)2

)2

.(6)
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1.1.2. Minimal surfaces and symmetries.
Now we are going to give some basic results about isometries of mini-

mal surfaces. Let X : M → R
3 be a minimal immersion, and label (η, g)

its Weierstrass data. Let A : M →M be a diffeomorphism. We say that
A is a symmetry of M if and only if there exists A ∈ O(3,R) and �v ∈ R

3

such that (X ◦ A)(P ) = A · t(X(P )) + �v, where t(·) means transpose
matrix. Denote Sym(M) as the group of symmetries of M , and write
Iso(M) as the isometry group of M . Then, it is clear that Sym(M) is a
subgroup of Iso(M). Calabi proved the following:

Theorem 1.3 (Calabi [49]). Let X,X ′ : M → R
3 be two conformal

minimal immersions inducing the same Riemannian metric on M . Label
Φ,Φ′ as their Weierstrass data, respectively.

Then, there exists A ∈ O(3,R) and θ ∈ C, |θ| = 1, such that

tΦ′ = θ(A · tΦ).

In particular, if there exists j ∈ {1, 2, 3} such that Φj is not exact then
Iso(M) = Sym(M). Indeed, if F is an isometry of M , then X ′ = X ◦F is
a well defined minimal immersion. Taking into account that the 1-forms
Φ′
j , j = 1, 2, 3, in the Weierstrass data of X ′ have no real periods and

Theorem 1.3, it is not hard to conclude.
Define L(M) as the group of holomorphic and antiholomorphic diffeo-

morphisms, α, of M satisfying: tN ◦ α = A ◦ tN , where A ∈ O(3,R) is
a linear isometry of R

3. Hoffman and Meeks have proved essentially the
following theorem:

Theorem 1.4 (Hoffman, Meeks). If X : M −→ R
3 is a com-

plete minimal immersion with finite total curvature, and there exists
j ∈ {1, 2, 3} such that Φj is not exact, then:

L(M) = Iso(M) = Sym(M).

A complete discussion about this subject can be found in [32], [49].

1.1.3. Maximum principle for minimal surfaces.
A minimal surface can, at least locally, be represented in the form x3 =

u(x1, x2); the function u satisfies minimal surface equation, a quasilinear
elliptic second order partial differential equation:

(7) (1 + u2
x1

)ux1 x1 − 2ux1 ux2 ux1 x2 + (1 + u2
x2

)ux2 x2 = 0.
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Next, we state two theorems which summarize the well known versions
of the maximum principle which we require in this survey. These theo-
rems are a consequence of a deep analysis of the above partial differential
equation (see [25]).

Theorem 1.5 (Interior maximum principle). Suppose M1, M2

are connected minimal surfaces in R
3. Suppose p is an interior point of

both M1 and M2, and suppose TpM1 = TpM2. Assume that TpM1 =
{x3 = 0} so that both M1, M2 are given near p as the graphs of two real
analytic functions u1 and u2, respectively. If u1 ≥ u2 in a neighborhood
of p, then M1 = M2.

Theorem 1.6 (Maximum Principle at Infinity [48], [68]). Sup-
pose N is a flat three-dimensional manifold and M1 and M2 are disjoint,
connected, properly immersed surfaces in N with compact boundary (pos-
sibly empty). Then:

1. If ∂(M1) or ∂(M2) is nonempty, then, after possibly reindexing,
there exists a point x ∈ ∂(M1) and a point y ∈ M2, such that
dist(x, y) = dist(M1,M2).

2. If ∂(M1) and ∂(M2) are empty, then M1 and M2 are flat.

One of the more recent and nicer applications of the maximum prin-
ciple is the following theorem by Hoffman and Meeks:

Theorem 1.7 (Strong halfspace theorem [31]). A connected,
proper, possibly branched, nonplanar minimal surface M in R

3 is not
contained in a halfspace.

This theorem has been a fundamental tool in obtaining a large number
of results in this field.

1.1.4. Nonorientable minimal surfaces.
We now discuss the case of nonorientable minimal surfaces. An im-

mersion X : M ′ → R
3 of a nonorientable surface is minimal if and only

if the mean curvature of X on any orientable piece of M is zero.
Consider now X ′ : M ′ −→ R

3 a conformal minimal immersion of
a nonorientable Riemannian surface M ′ in R

3. Let π0 : M → M ′,
I : M → M denote the conformal oriented two sheeted covering of M ′

and the antiholomorphic order two deck transformation for this covering,
respectively.
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If (g, η) represents the Weierstrass data of X = X ′ ◦ π0, then it is not
hard to deduce that :

(8) I∗(Φj) = Φj , j = 1, 2, 3.

In particular, g ◦I = I0 ◦g, where I0(z) = −1/z, and so there is a unique
map

G : M ′ −→ RP
2 ≡ C/〈I0〉

satisfying
G ◦ π0 = g ◦ p0,

where p0 : C → C/〈I0〉 is the natural projection. We call G the general-
ized Gauss map of X ′.

Conversely, if (M, g, η) is the Weierstrass representation of a minimal
immersion X of an orientable surface M in R

3, and I : M → M is
an antiholomorphic involution without fixed points on M satisfying (8),
then X induces a minimal immersion X ′ of M ′ = M/〈I〉 in R

3 such that
X = X ′ ◦ π0.

By definition, (M, I, g, η) is the Weierstrass representation of the non-
orientable minimal immersion X ′. For more details see [62].

1.1.5. Classical examples.
Finally, we present the Weierstrass representation of some classical

examples.

• The helicoid. M = C, g = ez, Φ3 = i dz.

Figure 1. The helicoid.
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• The catenoid. M = C− {0}, g = z, Φ3 = dz
z .

Figure 2. The catenoid.

• Enneper’s surface. M = C, g = z, Φ3 = z dz.

Figure 3. Enneper’s surface.

• Scherk’s surfaces. Let M ′ = C − {1,−1, i,−i}, g′ = z, Φ′
3 =√

(−1)j 4z dz
z4−1 , where j ∈ {0, 1}. The map X ′ = Real

∫
Φ′ is not

well defined because the 1-forms Φ′
i, i = 1, 2, 3, have real periods

on M ′. To solve this, we define M as the universal covering of
M ′, and take g, Φ3 as the lifts of g′, Φ′

3 to M , respectively. Thus,
X = Real

∫
Φ is well defined. If j = 0, we get Scherk’s doubly

periodic surface, and in case j = 1 we obtain Scherk’s singly
periodic surface.

• Henneberg’s surface. M = C − {0}, I(z) = −1/z, g = z,
Φ3 = 2z(1 − 1

z4 ) dz. These meromorphic data induce a minimal
Möbius strip, but unfortunately the immersion is not regular at
the points {1,−1} and {i,−i} (where (3) fails).
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Figure 4. Scherk’s doubly periodic surface.

2. Construction of minimal surfaces
with polygonal boundary

Although Plateau’s problem is one of the classical questions in geom-
etry and analysis, progress in solving it has been very slow. The first
satisfactory solution of the Plateau problem for a general contour was
given by Douglas and Radó in 1930. The following theorem summa-
rizes several existence results by Douglas, Radó, Osserman, Gulliver,
Alt, among others.

Theorem 2.1 (Fundamental existence theorem). Every closed
rectificable Jordan curve Γ in R

3 bounds an area minimizing surface
X : D → R

3 of the disc type, and all solutions of this type are regular
surfaces, i.e., they are free of branch points. If Γ is regular and real
analytic, then they have no branch points on ∂D, either.

We refer to books [17], [26], [61], [71], [73] for a good setting.



354 F. J. López, F. Mart́ın

A classical problem considered by Schwarz, Weierstrass and Riemann
was to determine minimal surfaces bounded by straight lines. These
authors obtained existence results for minimal surfaces with boundary a
given polygon, where the sides of the polygon could be of finite or infinite
length.

The works of Riemann are especially interesting. Riemann’s posthu-
mous paper [82] treated minimal surfaces passing through one or several
straight lines. In particular, it dealt with the following special bound-
aries: (i) Two infinitely long, skew straight lines. (ii) Three straight lines,
two of which lie in a plane P and intersect; the third lies in a plane P ′

parallel to P . (iii) Three intersecting straight lines. (iv) A quadrilateral.
(v) Two arbitrary circles which lie in parallel planes.

In relation to the last case, Riemann constructed doubly connected
minimal surfaces bounded by two parallel and distinct straight lines.
We refer to Paragraph 6.2.2.

A comprehensive presentation of the Schwarz-Riemann-Weierstrass
approach to the solution of Plateau’s problem for polygonal boundaries
can be found in Darboux’s treatise [16, Vol. 1 and 3].

Let X : M → R
3 be a complete minimal surface, and γ0 a curve in

M . If γ = X(γ0) is a straight line, then the Schwarz reflection principle
(see [17], [39]) implies that the rotation of 180◦ about γ is a symmetry
of X(M). If γ0 is a planar geodesic of M (i.e., γ is the orthogonal
intersection of X(M) with a plane, Π), then X(M) is symmetric under
the reflection through Π.

If we label (g, η) as the Weierstrass representation of X, then g(γ) lies,
in both cases, in the great circle of C determined, up to composing with
the stereographic projection, by:

• the vector plane which is orthogonal to γ, if γ is a straight line,
or

• the vector plane Π0, parallel to Π, if γ is a planar geodesic con-
tained in Π.

Sometimes it is useful to know that the curve γ is a straight line (resp.,
a planar geodesic) of X(M) if and only if X∗(γ0) is a planar geodesic
(resp., a straight line) of X∗(M), where X∗ = Re(

∫
i∂X) is the adjoint

surface.

We are going to explain a classical method used to construct compact
minimal surfaces with polygonal boundary.
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A Schwarzian chain is a set C = {L1, . . . , Lr, E1, . . . , Es}, where
L1, . . . , Ls are straight lines and E1, . . . , Es are planes. We say that
a compact minimal surface X : M → R

3 is a solution of the Schwarzian
chain problem for chain C if and only if:

• M is simply connected and the Gauss map of X is injective,
• X(∂M) lies in the union of the straight lines and planes in C, and

along its boundary, X is perpendicular to all planar parts of C.

Suppose that X is a solution of the Schwarzian chain problem for C,
and let (g, η) be its Weierstrass representation. Since g is a biholomor-
phism, we can identify M and g(M) ⊂ C. So, up to a Möbius transfor-
mation, we can suppose that M is a domain of C bounded by pieces of
great circles, and g(z) = z. Write η = f(z) dz, and define

q(z) =
∫ z

z0

√
−f(w) dw, z0 ∈M.

If we assume that q : M → Ω = q(M) ⊂ C is a biholomorphism, then
it is not hard to see that:

The q-images of the straight lines in ∂M lie on straight lines which
intersect the real axis at an angle of 45◦ or of 135◦, whereas the
planar geodesics are mapped by q into straight lines which are
parallel either to the real axis or to the imaginary axis.

Conversely, suppose that M ⊂ C is a simply connected domain bound-
ed by pieces of great circles, Ω ⊂ C is a polygonal domain bounded by
lines as above, and q : M → Ω is a biholomorphism. Then, defining
g(z) = z and η(z) = −( dqdz )

2, the Weierstrass data (M, g, η) determine a
minimal surface bounded by a Jordan curve which consists of pieces of
straight lines and planar geodesic arcs.

The above reasoning provides a handy method to solve Schwarzian
chain problems, and in particular, to construct compact minimal sur-
faces bounded by straight lines. It can also be used to construct com-
plete periodic minimal surfaces by successive Schwarz reflections about
straight lines and planar geodesic arcs. For details, we refer to Karcher’s
survey [39] and Dierkes et al. [17].

Regarding minimal surfaces with non compact polygonal boundary,
in 1966, Jenkins and Serrin in [35] proved an existence and uniqueness
theorem for minimal graphs bounded by straight lines. They obtained
simple, necessary and sufficient conditions to solve the Dirichlet problem
in a compact convex domain bounded by a polygon assuming values +∞,
−∞ and continuous data on different straight segments in the boundary.
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To be more precise, they prove:

Theorem 2.2 (Jenkins, Serrin). Let D be a bounded convex
domain whose boundary contains two sets of open straight segments
A1, . . . , Ak and B1, . . . , Bl, with the property that no two segments Ai
and no two segments Bi have a common endpoint. The remaining por-
tion of the boundary consists of endpoints of the segments Ai and Bi,
and open arcs C1, . . . , Cm. Consider the Dirichlet problem:

Determine a minimal graph in D which assumes the value +∞ on
each Ai, −∞ on each Bi and assigned continuous data on each
of the open arcs Ci.

Let P denote a simple closed polygon whose vertices are chosen from
among the end points of the segments Ai and Bj. Let α, β be, respec-
tively, the total length of the segments Ai and Bj which are part of P.
Finally, let γ denote the perimeter of P.

Then, if the family of arcs {Ci} is not empty, the Dirichlet problem
stated above is solvable if and only if

2α < γ and 2β < γ.

Furthermore, the solution is unique if it exists.

Figure 5. A Jenkins-Serrin graph.
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Figure 6. A fundamental piece of the Neovius surface.

Finally, we review some complete surfaces that can be constructed
by using the above methods. The main idea is to give a fundamental
piece of the surface bounded by straight lines or planar geodesic arcs,
and so, in successive steps, to use the Schwarz reflection principle for
constructing a complete example. Those constructions which lead to
embedded examples are of special interest. For more details about this
subject, we refer to the excellent survey [39].

Schwarz’s surface. This triply periodic surface X : M → R
3 con-

tains a disc-type fundamental piece which is bounded by a nonplanar
quadrilateral. Its Weierstrass data are:

M = C, g = z, η =
dz√

1− 14z4 + z8
.

Jenkins-Serrin surfaces. In Figure 5, we illustrate a particular Jen-
kins-Serrin graph. In this case, the polygon is a rectangle and the data on
the four edges are +∞, 0, +∞ and 0, respectively. The doubly-periodic
minimal surface obtained by successive Schwarz reflections is embedded,
and its Weierstrass data are:

M = C− {0}, g = z, ηg =
dz√

z4 + 2rz2 + 1
,

where r ∈]− 1, 1[.
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Figure 7. Schwarz’s surface.

Scherk’s doubly and singly periodic surfaces. These surfaces
were described in Paragraph 1.1.5.

3. Gauss map of minimal surfaces

O. Bonnet (1860) proved that the Gauss map N : M → S
2 of a

minimal surface X : M → R
3 is conformal, and E. B. Christoffel that

this property characterizes minimal surfaces, besides the round sphere.
Furthermore, the area of the spherical image of M , counting multi-

plicities, can be computed as follows

(9) A(N(M)) = −
∫
M

K dA.

The last integral is known as the total curvature C(M) of the immer-
sion X.

One of the fundamental problems in classical theory of minimal sur-
faces is to obtain Liouville type results for complete minimal surfaces.
R. Osserman was who started the systematic development of this the-
ory, and so, in 1961 he proved that the Gauss map of a complete nonflat
orientable minimal surface misses at most a set of logarithmic capacity
zero. In 1981 F. Xavier [96] proved that the image of the Gauss map
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covers the sphere except at most six values, and finally in 1988 H. Fu-
jimoto [22], [23] obtained the best possible theorem, and proved that
the number of exceptional values of the Gauss map is at most four. An
interesting extension of Fujimoto’s results was proved in 1990 by X. Mo
and R. Osserman [69]. They showed that if the Gauss map of a com-
plete orientable minimal surface takes on five distinct values only a finite
number of times, then the surface has finite total curvature.

There are many kinds of complete orientable minimal surfaces whose
Gauss map omits four points of the sphere. Among these examples
we emphasize the classical Scherk’s doubly periodic surface and those
described by K. Voss in [91] (see also [73]). The first author of this paper
in [53] constructs orientable examples with nontrivial finite topology.

Under the additional hypothesis of finite total curvature, R. Osser-
man [72] proved that the number of exceptional values is at most three.

In the nonorientable case, the Gauss map of the two sheeted orientable
covering surface induces, in a natural way, a generalized Gauss map from
the nonorientable surface on the projective plane. Very recently [56], the
authors of this survey have found complete nonorientable minimal sur-
faces in R

3 whose generalized Gauss map omits two points of RP
2. This

result proves that Fujimoto’s theorem is sharp for this kind of surfaces.

In this section we shall give a brief outline of some of the above results.

We start with a classical theorem by Osserman. For a good under-
standing of the theorem, it is advisable to read the preliminaries of Sec-
tion 5.

Theorem 3.1 (Osserman [72]). The Gauss map of a complete ori-
entable nonflat minimal surface with finite total curvature omits at most
three points of S

2.

Proof: Let X : M → R
3 be a complete conformal nonflat minimal im-

mersion with finite total curvature, and label (η, g) its Weierstrass data.
Recall that the meromorphic function g is the stereographic projection
of the Gauss map N of X.

Since C(M) is finite, we may assume that M is conformally equiv-
alent to a compact Riemann surface M ′ minus a finite set of points
{P1, . . . , Pr}, and that the Weierstrass data extend meromorphically to
M ′ (see Theorems 5.1 and 5.2).

The zeroes and poles of g correspond to points of M ′ with vertical
normal vector. As g has only a finite set of branch points, we can make
a rotation of coordinates in R

3 in such a way that:
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• g has simple poles on M ′.
• g assumes finite values at {P1, . . . , Pr}.

On the other hand, given P ∈ M ′ and z a conformal parameter on
M ′ centered at P , we define the branching number n(P ) of g at P as
the order of the zero of dg/dz at 0. Since g is a branched covering of S

2

with a finite number deg(g) of sheets, then there are only a finite set of
points in M ′ where n(P ) �= 0. Hence, we can define the total order of
branching of g as follows:

n =
∑
P∈M ′

n(p).

If γ = genus(M ′), then by Riemann’s relation (see [20]):

(10) n = 2(deg(g) + γ − 1).

Recall that the 1-form η has double zeros exactly at the poles of g.
Moreover, if z is a conformal parameter centered at Pj on M ′, then

3∑
j=1

|Φj |2 ∼ c/|z|2mj ,

where mj ≥ 2. (See the comments previous to Theorem 5.3.)
By Riemann’s relation once again

2n−
r∑
j=1

mj = 2γ − 2,

and so it is easy to deduce that

(11) r + γ − 1 ≤ deg(g).

Suppose now that g|M omits k points q1, . . . , qk ∈ S
2. Then

g−1({q1, . . . , qk}) ⊂ {P1, . . . , Pr}, and counting multiplicities, each qj
has exactly deg(g) preimages. Thus,

k deg(g) ≤
r∑
j=1

(1 + n(pj)) = r +
r∑
j=1

n(pj) ≤ r + n.

Last inequality and (10) imply that

k deg(g)− r ≤ 2(deg(g) + γ − 1).
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Adding (11) gives
1− γ ≤ (3− k) deg(g),

and taking into account (11), we infer r ≤ (4−k) deg(g). Since M is not
compact, r > 0, and so k < 4.

Enneper’s surface and the catenoid are examples of finite total curva-
ture whose Gauss map omits one and two points of S

2, respectively.
A. Weitsman and F. Xavier in [94] and Y. Fang in [19] have obtained

nonexistence results for complete, nonflat, orientable minimal surfaces
in R

3 whose Gauss map omits three points of S
2, provided that the

absolute value of the total curvature is less than or equal to 16π and
20π, respectively.

Therefore, it left open the following questions:

1. Are there complete nonflat orientable minimal surfaces in R
3 with

finite total curvature whose Gauss map omits three points of S
2?

2. Are there complete nonorientable minimal surfaces in R
3 with fi-

nite total curvature whose generalized Gauss map omits one point
of RP

2?

Now, we deal with the general problem for complete, orientable, min-
imal surfaces. Mo and Osserman proved the following extension of Fuji-
moto’s theorem:

Theorem 3.2 (Mo, Osserman [69]). If the Gauss map of a com-
plete orientable minimal surface takes on five distinct values of S

2 only
a finite number of times, then the surface has finite total curvature.

Proof: We will need the following function-theoretic lemma:

Lemma 3.3 (Fujimoto [22]). Let h(w) be analytic in |w| < R and
omits the points α1, α2, α3, α4. Let ε, ε′ satisfy 0 < 4ε′ < ε < 1.

Then there is a positive constant B depending only on α1, α2, α3, α4,
ε, ε′, such that

(1 + |h(w)|2) 3−ε
2 |h′(w)|∏4

j=1 |h(w)− αj |1−ε′
≤ B

2R
R2 − |w|2 .

We omit the proof of this lemma.

Let X : S → R
3 be a complete nonflat minimal surface whose Gauss

map omits the points α1, α2, α3, α4, α5. We denote (η, g) as the Weier-
strass representation of X.
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Up to a rigid motion of R
3, we can assume α5 = ∞. Then the hy-

pothesis of the theorem implies the existence of a compact set, D, such
that g|D is holomorphic and omits the values α1, α2, α3, α4.

Define

S′ = {P ∈ S −D/g′ �= 0 at P}, S′′ = S′ ∪D.

We consider the new metric

ds2
1 =

∣∣∣∣∣∣f(ξ)
1

1−p
∏4
j=1(g(ξ)− αj)

p(1−ε′)
1−p

g′(ξ)
p

1−p

∣∣∣∣∣∣ |dξ|2,
where 0 < 4ε′ < ε < 1, p = 2/(3− ε), and η = f(ξ) dξ. Then it is easy to
check that the above expression is independent of both the choice of local
parameter ξ and the indeterminacy arising from fractional exponents. As
f and g are holomorphic, then ds1 is flat on S′, and it extends smoothly
over S′′.

Our purpose is to prove that (S′′, ds2
1) is complete.

We proceed by contradiction. Then, there is a divergent path γ(t) :
[0, 1[→ S′′ with finite length. Without loss of generality, we can suppose
that there is a positive distance d between γ and D. It is clear that
either γ(t) is divergent on S or γ(t) tends to a point where g′ = 0.

If we put g(ξ) ∼ c(ξ − ξ0)m, m ≥ 1, then ds1 ∼ c′|ξ − ξ0|
2m
ε−1 >

c′|ξ−ξ0|−2. Thus, the length of γ in (S′′, ds2
1) is infinite, which is absurd.

So, we can assume that γ is divergent in S. Choose t0 such that∫ 1

t0
ds1 < d/3, i.e., the length of γ([t0, 1[) is less than d/3. Consider a

small geodesic disk ∆ centered at γ(t0). As ds2
1 is flat around ∆, then

there exists r > 0 such that the exponential map F : D(0, r) → ∆ is an
isometry, where D(0, r) = {z ∈ C/|z| < r} and F (0) = γ(t0). We can
extend F in S′ as a local isometry to the largest disk possible D(0, R).
Since γ is divergent on S and the length of γ([t0, 1[) is less than d/3,
then R ≤ d/3, and so the distance between F (D(0, R)) and D must be
at least 2d/3. As R is the largest possible and the points g′ = 0 are
infinitely far away, there is a point w0 ∈ ∂D(0, R) such that the image
under F of the segment joining 0 and w0 is a divergent curve Γ on S.

To get a contradiction, it suffices to prove that Γ has finite length in
the original metric ds2 in S (recall that this metric is complete). Let
h = g ◦ F be the Gauss map pulled back to the disk D(0, R). Since
F (D(0, R)) ⊂ S′, h omits the values α1, . . . , α5 = ∞. As F is a local
isometry, one has ds2

1 = |dw|2, i.e., ds2
1 is the Euclidean metric in D(0, R).
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Using w as local parameter, then we obtain∣∣∣∣∣f(w)
∏4
j=1(h(w)− αj)p(1−ε

′)

h′(w)p

∣∣∣∣∣ = 1.

Therefore, if C is the segment in D(0, R) corresponding to the curve Γ
and L is its length, we easily deduce from Fujimoto’s Lemma that

2L =
∫
C

|f(w)|(1 + |h(w)|2)|dw|

≤ Bp
∫
C

(
2R

R2 − |w|2
)p

|dw| = (2B)p

Rp−1

∫ 1

0

dt

(1− t2)p
.

As p < 1, L is finite, which is absurd.
This contradiction proves that (S′′, ds2

1) is complete. Since the met-
ric ds2

1 is flat outside a compact subset of S′′, then it has finite total
curvature. By Theorem 5.1, S′′ is finitely connected. In particular, g′

has a finite number of zeros and S is finitely connected. Furthermore,
(see [73]) S is conformally equivalent to a compact Riemann surface S
punctured in a finite number of points. Since g is holomorphic and
omits four values in C, Picard’s theorem implies that g has a meromor-
phic extension to S. If we call m the degree of g as holomorphic function
between compact Riemann surfaces, one has (see equality (9))∫

S

K dA = −4πm,

and so (S, ds2) has finite total curvature. This proves the theorem.

As a consequence of Theorems 3.1 and 3.2, we can obtain Fujimoto’s
theorem:

Theorem 3.4 (Fujimoto [22], [23]). The plane is the only complete
orientable minimal surface in R

3 whose Gauss map omits at least five
points of the sphere.

As we have mentioned at the beginning of this section, Fujimoto’s
theorem is sharp for orientable complete minimal surfaces. The same
holds in the nonorientable case (i.e., for the orientable two sheeted cover
of a complete nonorientable minimal surface), as a consequence of the
following result:

Theorem 3.5 ([56]). There are complete nonorientable minimal sur-
faces in R

3 whose Gauss map omits two points of the projective plane.

We omit the proof.
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4. Complete minimal surfaces
with bounded coordinate functions

Calabi asked if it is possible to have a complete minimal surface in R
3

entirely contained in a halfspace. Jorge and Xavier [37] showed complete
nonflat minimal surfaces contained in slabs of R

3. The proof is based in
a ingenious idea of using Runge’s theorem.

Very recently, Nadirashvili in [70] have used Runge’s theorem in a
more elaborate way to produce complete bounded minimal surfaces in
R

3. In this section we summarize Nadirashvili’s techniques (see also [10])
to obtain a complete minimal disc inside a ball in R

3.
As consequence of the strong halfspace theorem (Theorem 1.7), none

of these examples is properly immersed.
Let D and |dz|2 be the unit disc in C and the Euclidean metric on the

disc, respectively. The space of harmonic maps from D in R
3 is denoted

by Har(D,R3). Moreover, for r ∈ R
+, denote: Dr = {z ∈ C/|z| < r}

and Br = {x ∈ R
3/‖x‖ < r}.

Given X : D → R
3 a conformal immersion and U, V ⊂ D, we write:

• ds2
X = λ2

X · |dz|2 as the metric in D induced by X,
• KX as the Gauss curvature of X,
• distX(U, V ) instead of distds2

X
(U, V ).

Next lemma will be very important during the proof of the Main The-
orem of this section.

Lemma 4.1. Let X : D −→ R
3 be a complete minimal immersion

satisfying:

(i) (D, ds2
X) is a geodesic disc of radius d > 0,

(ii) X(D) ⊂ Br, r > 0,
(iii) X(0) = (0, 0, 0) and KX(z) > 0, ∀ z ∈ D.

Then, ∀ s, ε > 0, there exists a complete minimal immersion Y : D → R
3

such that:

1. (D, ds2
Y ) is a geodesic disc of radius d + s,

2. ‖X(z)− Y (z)‖ < ε, ∀ z ∈ D1−ε,

3. Y (D) ⊂ BR, where R =
√
r2 + s2 + ε,

4. Y (0) = (0, 0, 0) and KY (z) > 0, ∀ z ∈ D.

The original proof of this lemma can be found in [70]. For a more
detailed exposition, see [10].
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Theorem 4.2 (Nadirashvili [70]). There exists a complete minimal
immersion X : D → R

3 satisfying:

1. X(D) is bounded,
2. KX(z) < 0, ∀ z ∈ D.

Proof: We consider the sequence:

α1 =
1
2
e

1
2 , αn = e−

1
2n , n ≥ 2.

It is straightforward to check that 1
2 < αn < 1 and

∞∏
n=1

αn =
1
2
.

The first step in the proof of this theorem is to construct a sequence
{Xn}n∈N of minimal immersions from D in R

3 and a sequence of real
numbers {an}n∈N, an ∈]0, 1[, ∀n ∈ N, satisfying:

(i) an < an+1 < 1, and an ≥ 1− 1
n ,

(ii) distXn(0, ∂(Dan)) ≥ 2
3dn, where dn =

n∑
k=1

1
k

,

(iii) ‖Xn+1(z)−Xn(z)‖ ≤ 1
(n+1)2 , ∀ z ∈ Dan

,

(iv) λXn+1(z) ≥ αn λXn
(z), ∀ z ∈ Dan

,

(v) KXn+1(z) ≤ αnKXn(z), ∀ z ∈ Dan .

We choose as the first term (X1, a1), where X1 : D → R
3 is a minimal

immersion verifying:

• (D, ds2
X1

) is a geodesic disc of radius 1,

• X1(D) ⊂ B1,
• X1(0) = (0, 0, 0) and KX1 < 0;

and a1 is a real number, 0 < a1 < 1 such that

distX1 (0, ∂(Da1)) ≥
2
3

=
2
3
d1.

Assume that we have constructed (X1, a1), . . . , (Xn, an). Let sn+1 =
1/(n + 1) and consider {εk}k∈N a sequence in R

+ which converges to
0. We apply Lemma 4.1 to (Xn, sn+1, εk), k ∈ N, and so we obtain
a sequence of minimal immersions {Yk}k∈N satisfying Statements 1–4
in the lemma. From Statement 2 it is obvious that {Yk}k∈N → Xn
uniformly on Dan . Even more, as Yk ∈ Har(D,R3), then for any multi-
index, α, the sequence {Dα Yk}k∈N → DαXn uniformly on Dan . So,
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taking into account the above assertion, it is clear that {λYk
}k∈N → λXn

and {KYk
}k∈N → KXn

.
These facts imply the existence of k0 ∈ N, large enough, such that:

• ‖Yk0(z)−Xn(z)‖ ≤ 1
(n+1)2 , ∀ z ∈ Dan

,

• λYk0
(z) ≥ αn λXn(z), ∀ z ∈ Dan ,

• KYk0
(z) ≤ αnKXn(z), ∀ z ∈ Dan .

Hence, we take Xn+1
def= Yk0 . On the other hand, from Lemma 4.1 we

obtain distXn+1(0, ∂(Dan)) = dn + 1
n+1 = dn+1. Thus, we can choose

an+1 satisfying: an < an+1 < 1, distXn+1(0, ∂(Dan+1)) ≥ 2
3dn+1, and

an+1 ≥ 1− 1
n+1 . So, the pair (Xn+1, an+1) satisfies conditions (i)–(v).

Observe that the choice of {an}n∈N guarantees that

(12)
⋃
n∈N

Dan = D.

If K ⊂ D is a compact set, then, using (12), there exists n0 ∈ N such
that K ⊂ Dan , ∀n ≥ n0. Thus, from (ii), {Xn}n∈N is a Cauchy sequence
on K.

Using Harnack’s theorem (see [11]) we deduce that {Xn}n∈N converges
in the space Har(D,R3) to an harmonic map X. We are going to see that
X is the minimal immersion that we are looking for.

Claim 1. X : D −→ R
3 is an immersion and KX < 0.

Indeed, it is easy from (12) to see that for any z ∈ D, there exists
nz ∈ N such that z ∈ Dan , ∀n ≥ nz. So, taking (iii) and (iv) into
account we have

λXn(z) ≥ αn−1 · · ·αnz λXnz
(z) ≥ 1

2
λXnz

(z), ∀n ≥ nz,(13)

KXn(z) ≤ αn−1 · · ·αnz KXnz
(z) ≤ 1

2
KXnz

(z), ∀n ≥ nz,(14)

where we are using that
∞∏
n=1

αn =
1
2
. Taking limits in (13) and (14) we

obtain λX(z) ≥ 1
2λXnz

(z) > 0, and KX(z) ≤ 1
2KXnz

(z) < 0, for any
z ∈ D. This concludes the proof of this claim.
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Claim 2. X(D) ⊂ B3.

From Lemma 4.1, one has Xn(D) ⊂ BRn
, where R1 = 1 and Rn =√

R2
n−1 + s2

n + εn. Hence, it is straightforward to check that

Rn ≤
√

R2
n−1 +

1
n2

+
1
n2

≤ Rn−1 +
2
n2

.

Applying successively the above inequality we obtain

Rn ≤ 1 +
n∑
k=2

2
k2

≤ 1 +
+∞∑
k=2

2
k2

< 3.

Therefore, Xn(D) ⊂ B3 ∀n ∈ N, and so the statement of the claim holds.

Claim 3. The disc (D, ds2
X) is complete.

Reasoning as in (13), it is possible to prove that

distX(0, ∂(Dan)) ≥ 1
2

distXn(0, ∂(Dan)) ≥ 1
3
dn, ∀n ∈ N.

Therefore, distX(0, ∂(D)) ≥ 1
3dn, ∀n ∈ N. As limn→+∞ dn = +∞, then

we conclude the proof.

One of the most interesting open questions as regards to complete
bounded minimal surfaces in R

3 is to construct, if possible, complete
minimal surfaces inside a ball of R

3 with arbitrary genus. This problem
has been solved in [53] for minimal surfaces in a slab.

5. Complete minimal surfaces with finite total curvature

The study of complete minimal surfaces of finite total curvature began
with Huber and Osserman’s theorems (Theorems 5.1 and 5.2). Minimal
surfaces of this kind have some special properties that are not shared
by general minimal surfaces. For being more precise, complete minimal
surfaces with finite total curvature have a quite controlled asymptotic be-
havior at infinity. Furthermore, this asymptotic behavior is surprisingly
related with the topology of the surface (Theorem 5.3).

Let X : M −→ R
3 be an isometric minimal immersion of an ori-

entable Riemannian surface (M,ds2) in three dimensional Euclidean

space. Write C(M) the total curvature of X:
∫
M

K dA. As we men-

tioned in Subsection 1.1, M has a conformal structure in a natural way,
and we label (g, η) the Weierstrass data of X. In the remaining part of
this section we suppose M is complete and C(M) > −∞. Under these
assumptions, A. Huber proved:
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Theorem 5.1 (Huber [34]). The Riemann surface M is conformally
diffeomorphic to a compact Riemann surface M punctured in a finite
number of points.

Hence, we can write M = M − {P1, . . . , Pn}, and we refer to the
points {P1, . . . , Pn} as the ends of M . We define genus(M) def= genus(M).

By using Huber’s theorem, Osserman showed:

Theorem 5.2 (Osserman [72], [73]). The Weierstrass data g and
η extend meromorphically to M .

Therefore, g has well defined degree and, from (9), it is not hard to
prove that C(M) = −4π deg(g). Furthermore, we can define the normal
vector of X at an end Pi, i ∈ {1, . . . , n}, as the unique vector in S

2

whose stereographic projection is equal to g(Pi).
The geometry of the ends {P1, . . . , Pn} is strongly controlled by the

order of the poles of Φ at these points.
W. H. Meeks and L. P. Jorge showed how these singularities determine

the asymptotic behavior of the minimal surface around each end, giving
geometric meaning to the numbers:

νi = (Maximum{ord(Φj , Pi), j = 1, 2, 3})− 1

where ord(Φj , Pi) is the order of the pole of Φj at Pi, i = 1, . . . , n,
j = 1, 2, 3. We call νi as the weight of the end Pi. Since Φ has no real
periods, then Residue(Φ, Pi) ∈ R

3, and so νi ≥ 1.

Theorem 5.3 (Jorge, Meeks [36]). If X : M → R
3 is minimal,

complete and of finite total curvature, then the immersion X is proper.

Moreover, if Υr
def= X(M) ∩ S

2(r), then Υr/r consists of n closed
curves Γ1, . . . ,Γn in S

2(1) which converge C1 to closed geodesics
γ1, . . . , γn of S

2(1), with multiplicities ν1, . . . , νn, as r goes to infinity.
Moreover,

2 deg(g) = −χ(M) +
r∑
i=1

(νi + 1) ≥ n− χ(M),

and equality holds if and only if each end is embedded.

The last expression in Theorem 5.3 is called in mathematical literature
the formula of Jorge and Meeks.
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We say that the end Pi, i ∈ {1, . . . , n} is embedded if and only if
there exists a neighborhood Di ⊂M of this point such that X|Di−{Pi} :
Di − {Pi} → R

3 is an embedding. This is equivalent to the fact νi = 1.
In this case we have the following result:

Theorem 5.4 (Schoen [87]). Suppose that Pi, i ∈ {1, . . . , n} is
embedded, and assume N(Pi) = (0, 0,±1). Then, outside of a compact
set, X(Di − {Pi}) is a graph over the exterior of a bounded domain in
the (x1, x2)-plane with the following series expansion:

(15) x3(x1, x2) = ai log(r) + bi +
cix1 + dix2

r2
+ O

(
1
r2

)
,

where r =
√

x2
1 + x2

2. Furthermore, Φ1, Φ2 have poles of order two at
Pi and have no residues, while Φ3 is either regular (⇔ ai = 0) or has a
simple pole at this point.

Remark 1. There are no complete minimal surfaces with finite total
curvature contained in a halfspace (see also Theorem 1.7). Indeed, from
Theorem 5.4 such a surface has a coordinate function bounded either
from above or from below. Since M is parabolic (see Theorem 5.1), this
coordinate function is constant, and so, the surface is a plane. Then, it is
clear that the only complete minimal surface with finite total curvature
and one embedded end is the plane.

From (15), it is clear that ai �= 0 if and only if X(Di − {Pi}) is
asymptotic to a half catenoid, and ai = 0 if and only if X(Di − {Pi}) is
asymptotic to a plane.

Definition 2. We say that an embedded end Pi, i ∈ {1, . . . , n}, is:

• A catenoid end iff ai �= 0.
• A planar end iff ai = 0.

If Pi, i ∈ {1, . . . , n} is a catenoid end, then we call ai the logarithmic
growth associated to Pi.

If the number νi is equal to 3 and the Gauss map is regular at Pi
(i.e., Pi is not a ramification point of g) then it is not hard to prove that
X(M) is asymptotic to the Enneper’s surface around Pi. In general, we
say that Pi is an Enneper end iff νi = 3. Other values for νi and the
ramification number of g at Pi yield different asymptotic behaviors of X
around the end Pi.
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Any properly immersed minimal surface satisfies the monotonicity for-
mula (see [45]):

Theorem 5.5 (Monotonicity formula). Let X : M → R
3 be a

properly immersed connected minimal surface. Consider A(r) the area
of the part of X(M) inside a ball of radius r > 0 centered at p ∈ R

3.
Then,

A(r)
πr2

is a nondecreasing function of r.

In case of finite total curvature, we can obtain the following easy con-
sequence of the preceding result and Theorem 5.3:

Theorem 5.6. Let X : M → R
3 be a connected complete minimal

immersion with finite total curvature. Following Theorem 5.3, define

n(M) =
n∑
i=1

νi.

Then, for any p ∈ R
3, the cardinal number of X−1(p) is at most n(M)−

1, with the sole exception of the case X(M) is a plane.

During the last century or more, the only known complete orientable
minimal surfaces with finite total curvature were the plane, the catenoid
and Enneper’s surface, and Henneberg’s example the only nonorientable
one. At the beginning of the 80’s a large quantity of new examples started
to appear thanks to the works of Chen, Gackstatter, Costa, Hoffman,
Meeks and Karcher, among others. In the next three subsections we give
a brief description of the most remarkable ones. All the examples will be
constructed by using the Weierstrass representation, i.e., Theorem 1.2.

5.1. Existence of minimal surfaces of least total curvature.

Let X : M → R
3 be a complete minimal surface with finite total cur-

vature. We say that X has critical total curvature iff |C(M)| ≤ |C(M ′)|,
where X ′ : M ′ → R

3 is any complete minimal surface with the same
genus as M . Looking at the formula of Jorge and Meeks, this means
that the degree of the Gauss map is the least possible among the sur-
faces with the same genus.
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Using Theorem 5.1, write M = M − {P1, . . . , Pn}, and recall that
Theorem 5.3 implies νi ≥ 1, i = 1, . . . , n. Taking into account Remark 1
and the formula of Jorge and Meeks, it is not hard to deduce that |C(M)|
is critical if and only if C(M) = −4π(genus(M) + 1) (i.e., degree(g) =
genus(M) + 1), and so either n = 1 and ν1 = 3 or n = 2 and ν1 =
ν2 = 1. If the genus of M is not zero, the second case cannot occur (see
Theorem 5.16 in Subsection 5.4), and so only the first one holds. Thus,
surfaces of this kind have only one end of Enneper type.

All these facts were observed by D. Hoffman, who conjectured that
there should be such examples of every genus. In the following para-
graphs, we summarize some results that give an affirmative answer to
the question.

5.1.1. Chen and Gackstatter’s surface of genus one.

The following is an example given by Chen and Gackstatter in [8]. Let
M be the algebraic curve of genus one

M =
{

(z, w) ∈ C
2

: w2 = z(z2 − 1)
}
,

with the natural complex structure (see [88]). Define

M = M − {(∞,∞)}, g = A
w

z
, η = B

z

w
dz,

where A ∈ R− {0} and B ∈ C, |B| = 1. If we define Φj as in (4), then
equation (3) holds on M .

Following Theorem 1.2, we have to prove that it is possible to find A
and B in such a way that the 1-forms

Φ1 =
B

2A

( z

w
−A2w

z

)
dz,

Φ2 =
B i

2A

( z

w
+ A2w

z

)
dz,

Φ3 = AB dz,

have no real periods.
The existence of real periods must be searched among the cycles that

generate the first homology group of M . This group is generated by the
curves γ1, γ2 and β defined as follows:
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• γi is a lift to M of the simple closed curve ci in the z-plane illus-
trated in Figure 8, i = 1, 2.

c1 c2

−1 0 1

Figure 8. The curves c1 and c2.

• β is the boundary of a conformal disc around the point (∞,∞).

The period problem is equivalent to solve the following system of equa-
tions:

Real
∫
γj

Φk = 0, j = 1, 2, k = 1, 2, 3

Real
∫
β

Φk = 0, k = 1, 2, 3.

The 1-form Φ3 is exact, and so all its periods vanish. Moreover, since the
1-forms Φk are meromorphic on M and their only pole is the end (∞,∞),
then their residues at this point vanish too. This means that

∫
β

Φk = 0,
k = 1, 2, 3.

Therefore, it suffices to solve

(16) Real
∫
γj

Φk = 0, j = 1, 2, k = 1, 2.

If we label fj =
∫
γj

z
w dz, and gj =

∫
γj

w
z dz, j = 1, 2, then elementary

algebraic arguments imply that (16) is equivalent to:

(17) f1g2 − f2g1 = 0, and A2 = B2f1/g1.

Note that we have to solve only the first equation of (17), and then
choose A and B satisfying the second one.

To do this, consider the holomorphic automorphism J((z, w))=(−z, iw).
Without loss of generality, we can suppose that γ2 = J∗(γ1). Observe
also that J∗( zw dz) = −i zw dz and J∗(wz dz) = iwz dz. Therefore, f2 =
−if1 and g2 = ig1, and so the first equation in (17) holds.
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In fact, it is not hard to see that fj/gj ∈ R
+, and so B = ±1,

A = ±
√

fj/gj . The different choices of the sign produce, up to a rigid
motion, the same surface.

The arising surface has the following properties:

• deg(g) = 2, and so C(M) = −8π.

• M has only one end of Enneper type (i.e., its weight is 3), and M
is asymptotic to Enneper’s surface.

• The conformal transformations on M : J((z, w)) = (−z, iw) and
S((z, w)) = (z, w), induce on X(M) a rotation about the x3-
axis by angle π

2 followed by a symmetry with respect to the
plane x3 = 0 and a symmetry with respect to the plane x2 = 0,
respectively. Following Theorem 1.4, these transformations gener-
ate the symmetry group of the surface, which contains 8 elements.
Therefore, Chen-Gackstatter’s surface of genus one has the same
symmetries as Enneper’s surface.

5.1.2. Chen and Gackstatter’s surface of genus two.
The example that will be described is also due to Chen and Gackstat-

ter [8].
Let Ma, a ∈]1,+∞[, be the compact Riemann surface:

Ma =
{

(t, w) ∈ C
2

: w2 =
t(t2 − a2)
t2 − 1

}
and label ∞ = (∞,∞), 0 = (0, 0), ±1 = (±1,∞), ±a = (±a, 0).

Consider the following Weierstrass data:

Ma = Ma − {∞}, g = Aw, ηg = B dt, A ∈ R, B ∈ C, |B| = 1

on Ma. Then, defining Φj , j = 1, 2, 3 as in (4), the inequality (3) holds.
Therefore, from Theorem 1.2, if Φj , j = 1, 2, 3, have no real periods, we
get a minimal immersion X : Ma → R

3.
The main achievement of this paragraph is to show that there exists

a0 ∈]1,+∞[ such that X : Ma0 → R
3 is well-defined for a suitable choice

of the constants A, B.
First, define the following mappings:

J, S : Ma −→Ma

J(t, w) = (−t, iw) S(t, w) = (t, w).
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Note that J is holomorphic and has order 4, and S is an antiholomorphic
involution. So, they generate a group with 8 elements which is isomorphic
to D(4). Moreover, J and S fix 0, ∞, and J2 fixes 1, −1, a and −a.

To write the period problem easily, we need to do a complete descrip-
tion of the first homology group of the surface. Let αj(s), βj(s), j = 1, 2,
be the oriented simple closed curves in the t-plane illustrated in Figure 9.
We assume that α1(0) ∈ R, α1(0) > a, α2(0) ∈ R, 1 > α2(0) > 0,
β1(0) ∈ R, 0 > β1(0) > −1, β2(0) ∈ R, a > β2(0) > 1. Let aj(s) be the
unique lift of αj(s) to Mk a satisfying w(aj(0)) ∈ R+, j = 1, 2. Denote
in the same way as bj(s), the corresponding lifts of βj(s) with initial
conditions w(bj(0)) ∈ iR+, j = 1, 2.

β1 β2α2 α1

−1 0 1−a a

Figure 9. The curves αi and βi, i = 1, 2.

Then observe that

(18) J∗(bi) = ai, i = 1, 2.

Elementary topological arguments give that the set B={ai, bi, i=1, 2}
is a homology basis on Ma. To solve the period problem, we have to
prove that Φ has no real periods on the curves in B.

Let τ1, τ2 be the following 1-forms on Ma

τ1 =
dt

w
, τ2 = w dt.

Observe

Φ1 =
B

2A
(τ1−A2τ2)

Φ2 =
i B

2A
(τ1 + A2τ2)

and Φ3 is exact.
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So the period problem associated to (Φ1,Φ2,Φ3) deals with the fol-
lowing functions on ]1,+∞[

f1(a) =
1
2

∫
b1

τ1, f2(a) =
1
2

∫
b2

τ1,

g1(a) =
1
2

∫
b1

τ2, g2(a) =
1
2

∫
b2

τ2.

It is not hard to see that

(19) J∗(τ1) = iτ1, J∗(τ2) = −iτ2.

Observe that fi(a), gi(a) > 0 i = 1, 2. From (18)∫
ai

τ1 = 2ifi(a),
∫
ai

τ2 = −2igi(a), i = 1, 2.

We need the following technical lemma.

Lemma 5.7. The asymptotic behavior of fi, gi, i = 1, 2 at 1, ∞ is
given as follows:

lim
a→1

f1(a)
a− 1

=
π

2
, lim

a→∞
f1(a)a−

1
2 =

1
2
B

(
1
2
,
3
4

)
,(i)

lim
a→1

f2(a) = 2, lim
a→∞

f2(a)a =
1
2
B

(
3
2
,
1
4

)
,

lim
a→1

g1(a)
a− 1

=
π

2
, lim

a→∞
g1(a)a−

3
2 =

1
2
B

(
3
2
,
1
4

)
,(ii)

lim
a→1

g2(a) =
2
3
, lim

a→∞
g2(a)a−1 =

1
2
B

(
1
2
,
3
4

)
,

where B is the classical Beta function.

Recall that the Beta function is defined for m,n ∈ C, Re(m) > 0,
Re(n) > 0, as follows:

B (m,n) =
∫ 1

0

tm−1(1− t)n−1 dt.
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This is related to the Gamma function according to

B (m,n) =
Γ(m)Γ(n)
Γ(m + n)

.

Proof: From the definition of f1 it follows that

f1(a) =
∫ a

1

√
t2 − 1

t(a2 − t2)
dt.

Several changes of variables give

f1(a) =
∫ a

1

√
t2 − 1

t(a2 − t2)
dt

=
1
2

∫ a2

1

u− 3
4

√
u− 1
a2 − u

du

=
1
k

(a2 − 1)
∫ 1

0

((a2 − 1)s + 1)−
3
4
√
s√

1− s
ds.

Hence,

lim
a→1

f1(a)
a− 1

=
∫ 1

0

√
s

1− s
ds =

π

2
.

Using that lim
a→∞

f1(a) = lim
b→0

f1

(
1
b

)
we obtain

lim
a→∞

f1(a)a
−1
2 = lim

b→0

1− b2

2

∫ 1

0

((1− b2)s + b2)−
3
4
√
s√

1− s
ds

=
1
2

∫ 1

0

s−
1
4 (1− s)−

1
2 ds =

1
2
B

(
1
2
,
3
4

)
.

Similar arguments and changes of variables complete the above assertions
for gi, i = 1, 2.

Let us define ϕ : R+ − {1} −→ R,

ϕ(a) =
f2(a)
f1(a)

− g2(a)
g1(a)

.

As a consequence of the preceeding analysis we can state the following
lemma:

Lemma 5.8. The function ϕ vanishes at a point a0 ∈]1,+∞[.
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Proof: From Lemma 5.7 we deduce that:

lim
a→1+

ϕ(a) =
8
3π

lim
a→1+

1
a− 1

= +∞

lim
a→+∞

ϕ(a)a
1
2 = lim

a→+∞

(
1
a

f2(a)a
f1(a)a−

1
2
− g2(a)a−1

g1(a)a−
3
2

)
= −B

(
1
2 ,

3
4

)
B

(
3
2 ,

1
4

) < 0.

An intermediate value argument completes the proof.

Now, we are able to solve the period problem. The immersion X is

well defined if and only if Real
(∫

d

Φj

)
= 0, for every closed curve d

in Ma and j ∈ {1, 2, 3}. As Φj has only one singularity at ∞, then
Residue(Φj ,∞) = 0, j = 1, 2, 3. So, it suffices to prove:

Real
(∫

d

Φj

)
= 0, j = 1, 2, 3

for any closed curve, d, lying in the homology basis B of Mk a defined at
the beginning of this section.

It is clear that J∗(tΦ) = R · (tΦ), where R ∈ O(3,R) is the matrix

R =

 0 1 0
−1 0 0
0 0 −1

 .

Hence using the last equality and (18), Real
(∫

d

Φ
)

= �0, ∀ d ∈ B if and

only if:

Real
(∫

b1

Φ
)

= Real
(∫

b2

Φ
)

= �0.

Using the definitions of fi, i = 1, 2, the last equations hold if and only if
B2 = 1 and

f1(a) = A2g1(a)

f2(a) = A2g2(a)

for some A ∈ R, a ∈]1,+∞[. As fi(a), gi(a) ∈ R
∗, ∀ a ∈]1,+∞[, then

the existence of a, A satisfying the former is equivalent to solving the
following equation

(20) f1(a)g2(a)− f2(a)g1(a) = 0
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and putting A2 =
f1(a)
g1(a)

> 0. Recalling the definition of the function ϕ,

this means that ϕ(a) = 0. Using Lemma 5.8 we conclude the period
problem.

(b) (a)

Figure 10. (a) Chen and Gackstatter’s surface of genus one.
(b) Chen and Gackstatter’s surface of genus two.

The arising surface has the following properties:

• deg(g) = 3, and so C(M) = −12π.

• M has only one end of Enneper type (i.e., its weight is 3), asymp-
totic to Enneper’s surface.

• The conformal transformations on M : J((t, w)) = (−t, iw) and
S((t, w)) = (t, w), induce on X(M) a rotation about the x3-
axis by angle π

2 followed by a symmetry with respect to the
plane x3 = 0 and a symmetry with respect to the plane x2 = 0,
respectively. Following Theorem 1.4, these transformations gener-
ate the symmetry group of the surface, which contains 8 elements.
Therefore, Chen-Gackstatter genus two minimal surface has the
same symmetries as Enneper’s surface.

5.1.3. The surfaces of Espirito-Santo, Thayer and Sato.

These examples are due to Espirito-Santo [18] (genus three), Thayer
[89] (genus less than or equal to 35) and Sato [86] (arbitrary genus).

The first two authors solved the period problem by giving numerical
arguments. However, Sato used a homotopy argument, which can be
thought of as an intermediate value theorem of several variables.
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Figure 11. The surface of Espirito-Santo.

We need to introduce the following notation.
Let

Fj(z, a2, . . . , aj) = zΠj/2m=1(z
2 − a2

2m)Π(j+1)/2
n=1 (z2 − a2

2n−1)
−1,

where j, k,m, n ∈ N, j ≥ 3, a1, . . . , aj ∈ R, 1 = a1 < a2 < · · · < aj .
Then, put

M = {(z, w) ∈ C
2

: w2 = Fj(z, a1, . . . , aj)},

with the natural complex structure, and observe that this surface has
genus j. Write

Mj = M j − {(∞,∞)}, even j,

Mj = M j − {(∞, 0)}, odd j.

Finally, define the following meromorphic data on Mj :

g = cjw, Φ3 = ηg = dz,

where cj ∈ R. Note that g has degree j + 1.
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As above, the existence of real periods must be searched among the
cycles that generate the first homology group of Mj . Hence, we need
a homology basis of Mj . A natural homology basis consists of the
curves β1, . . . , β2j obtained, respectively, as the lifts to Mj of the seg-
ments

[−aj ,−aj−1], [−aj−1,−aj−2], . . . , [−a1, 0], [0, a1], . . .
. . . , [aj−2, aj−1], [aj−1, aj ]

in the z-plane, together with a Jordan curve γ lying in a conformal disc
centered at the only end of Mj (and containing no points in {z−1(±ai),
i = 1, . . . , j} ∪ {(0, 0)}).

Since Mj has only one end, the residue of Φi at this end is 0, i = 1, 2, 3,
and so γ does not generate any real period.

On the other hand, the holomorphic transformations

J(z, w) = (−z, iw), S(z, w) = (z, w)

are well defined on Mj . Taking into account their behavior on the
curves βk, k = 1, . . . , 2j, and the 1-forms Φi, i = 1, 2, 3, it is not hard
to deduce that Φ has no real periods on M if and only if it has no real
periods on the curves αi

def= β2i−1, i = 1, . . . , j.
Note that Φ3 is exact, and define

Al =
∫
αl

dz

w
, Bl =

∫
αl

w dz, l = 1, . . . , j.

Observe that the quotient Al

Bl
is well defined and positive, l = 1, . . . , j.

Reasoning as in the above paragraphs, the immersion X = Real
∫

Φ is
well defined if and only if

(21) c2j =
A1

B1
= · · · = Aj

Bj
.

Furthermore, denote

ϕj l(a2, . . . , aj)
def=

Al+1

Bl+1
− Al

Bl
, l = 1, . . . , j − 1.

With this new notation, (21) becomes

(22) ϕj l(a2, . . . , aj) = 0, l = 1, . . . , j − 1,
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for a suitable choice of cj . If Sj = {(a2, . . . , aj) ∈ R
j−1 : 1 < a2 < · · · <

aj}, we define

P : Sj −→ R
j−1

P(a2, . . . , aj) = (ϕj 1(a2, . . . , aj), . . . , ϕj j−1(a2, . . . , aj)) .

So, it suffices to prove that P vanishes at least once.

Figure 12. The Thayer-Sato surface of genus five.

The proof of this fact is quite technical, and it can be found in [86].
We are only going to give a brief sketch of it. The main idea consists of
finding a compact polyhedral domain K ⊂ Sj , K homeomorphic to the
unit ball

Bj−1 = {(a2, . . . , aj) ∈ R
j−1 : ||(a2, . . . , aj)|| ≤ 1},

such that:

• 0 /∈ P(∂(K)),
• r ◦ (P|∂(K)) : ∂(K) → ∂(Bj−1) has nonzero topological degree,

where r(x) = x
||x|| .

Then, a homotopy argument leads to the existence of a point in K−∂(K)
where P vanishes.



382 F. J. López, F. Mart́ın

The arising surface has the following properties:

• deg(g) = j + 1, and so C(M) = −4(j + 1)π.

• M has only one end of Enneper type (i.e., its weight is 3), asymp-
totic to Enneper’s surface.

• The conformal transformations on M : J((z, w)) = (−z, iw) and
S((z, w)) = (z, w), induce on X(M) a rotation about the x3-
axis by angle π

2 followed by a symmetry with respect to the
plane x3 = 0 and a symmetry with respect to the plane x2 = 0,
respectively. Following Theorem 1.4, these transformations gener-
ate the symmetry group of the surface, which contains 8 elements.
Therefore, the surface has the same symmetries as Enneper’s sur-
face.

Remark 2. Weber and Wolf in [92] have also constructed minimal
surfaces with arbitrary genus and critical total curvature. They develop
Teichmüller theoretical methods to produce minimal surfaces which have
a low degree Gauss map for their genus.

Uniqueness theorems for surfaces of this kind are known only when
the genus is zero or one (see Subsection 5.4). Therefore, although it is
expected, we cannot assert whether the Weber and Wolf surfaces coincide
with Sato’s ones or not.

5.2. New families of examples.

This subsection is devoted to review some families of orientable min-
imal surfaces with finite total curvature which are interesting from dif-
ferent points of view. So, we describe surfaces with arbitrary genus and
high symmetry group. We also state a general existence theorem for
nonrigid minimal surfaces.

As we will see, the period problem for highly symmetric minimal sur-
faces becomes quite easy. This is due to the fact that the rotational
symmetry acts as a cyclic group on the generators of the first homology
group of the surface, thereby reducing the period problem.

Examples derived from Chen-Gackstatter genus one surface.
Karcher in [39] generalized the Cheng-Gackstatter genus one surface by
increasing the order of the normal rotational symmetry from 2 to k ∈ N.
This also increases the genus from 1 to k − 1, and the weight of the end
from 3 to 2k− 1. This technique was introduced before by Hoffman and
Meeks in [32]. To be more precise, for each k ∈ N, k > 2, consider the
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following Weierstrass data:

Mk =
{

(z, w) ∈ C
2

: wk =
z2 − 1

z

}
Mk = Mk − {(∞,∞)}, g = Awk−1, ηg = dz,

where A ∈ R − {0}. To solve the period problem, define the conformal
transformations on Mk:

J(z, w) = (−z, e
πi
k w), S(z, w) = (z, w),

and observe that:

(23) J∗(tΦ) = R · (tΦ), S∗(tΦ) = S · (tΦ),

where:

R =

 cos πk sin π
k 0

− sin π
k cos πk 0

0 0 −1

 S =

 1 0 0
0 −1 0
0 0 1

 .

We are looking for a homology basis of Mk. Let α1(s), β1(s) be the
oriented simple closed curves in the t-plane illustrated in Figure 13. We
assume that α1(0) ∈ R, α1(0) > 1, β1(0) ∈ R, 0 < β1(0) < 1. Let a1(s)
be the unique lift of α1(s) to Mk satisfying w(a1(0)) ∈ R+. Denote
in the same way as b1(s), the corresponding lift of β1(s) with initial
condition arg(w(b1(0))) = π

k .

−1 0 1

β1 α1

Figure 13. The curves α1 and β1.

Then observe that

(24) J∗(a1) = b1, S∗(a1) = −a1.

Define also c as the boundary of a closed conformal disc around the
end (∞,∞).
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If we label aj = (Jj)∗(a1), (j = 0, . . . , 2k − 1), then

B = {aj , j = 0, . . . , 2k − 1} ∪ {c}

generates the homology of Mk. Since the residue at the end of Φ vanishes
and Φ3 is exact, it suffices to check that Φ1 and Φ2 have no real periods
along aj , j = 0, . . . , 2k − 1. Taking (23) into account, it is not hard to
see that this period problem reduces to:

∫
a1

η =
∫
a1

ηg2.

This equality easily holds for a suitable choice of A.

The arising surface has the following properties:

• genus(M) = k−1, deg(g) = 2(k−1), and so C(M) = −8(k−1)π.

• M has only one end and its weight is 2k − 1.

• The conformal transformations on M : J and S, induce on X(Mk)
a rotation about the x3-axis by angle −πk followed by a symme-
try with respect to the plane x3 = 0 and a symmetry with re-
spect to the plane x2 = 0, respectively. Following Theorem 1.4,
these transformations generate the symmetry group of the surface,
which contains 4k elements.

Thayer and Sato families. Combining an extension of Sato’s idea
with Karcher’s generalization to allow for higher weight on the ends,
Thayer, and independently Sato, produced the Weierstrass data for a
countable collection of surfaces Mp k for p, k ∈ N, p ≥ 0, k ≥ 2. These
Weierstrass representation are:

Mp k =
{
(z, w)/wk = Fp(z, q1, q2, . . . , qp)

}
,

Mp k = Mp k − {(∞,∞)}, g = Awk−1, η g = dz,

where A, qj ∈ R, with A > 0, 1 = q1 < q2 < · · · < qp, and

Fp(z, q1, q2, . . . , qp) =

 z
∏m
l=1

z2−q22l

z2−q22l−1
, if p = 2m,

z
z2−q2p

∏m
l=1

z2−q22l

z2−q22l−1
, if p = 2m + 1.
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In [89], Thayer presented numerical results suggesting that the period
problems were solvable for p ≤ 34, k ≤ 9. Later, Sato [86] obtained a
rigorous proof for the existence of these examples, which is similar in
style to that described in paragraph 5.1.3.

Figure 14. Thayer’s surface for p = 3 and k = 4.

The surface Mp k has genus p(k− 1), one end of weight 2k− 1 and the
symmetry of the Karcher’s generalized Enneper surface with the same
weight at the end.

Examples derived from the Chen-Gackstatter genus two sur-
face. The authors of this survey and D. Rodŕıguez [57] exhibited a
family of complete minimal surfaces X : Mk → R

3 of genus k, k ≥ 2, k
even, that generalizes the Chen-Gackstatter genus two example. Except
in the case of k = 2 which corresponds to Chen and Gackstatter’s exam-
ple, the examples do not lie in any of the families of surfaces discovered
by Thayer, Sato and Weber-Wolf.

Summarizing, the surfaces Mk have the following properties:

(i) The Weierstrass data (Mk, g, ηg) of X are:

Mk = Mk − {(∞,∞)},

where

Mk =
{

(t, w) ∈ (C ∪∞)2 : w2 =
t(tk − ak)
tk − 1

}
, a ∈]1,+∞[,
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and

g = A tk/2−1w, ηg = tk/2−1 dt, A ∈ R− {0}.

(ii) C(Mk) = −4(2k − 1)π.
(iii) X(Mk) has 4k symmetries.
(iv) X(Mk) intersects the (x1, x2)-plane in k straight lines meeting

at equal angles at the origin. Moreover the symmetry group
Sym(Mk) is generated by a rotation by angle π/k around the x3-
axis followed by a symmetry with respect to the (x1, x2)-plane and
a symmetry with respect to the (x1, x3)-plane.

(v) X(M2) is the genus two Chen-Gackstatter example.

In [57] the authors proved that there exists a unique a ∈]1,+∞[ solving
the period problem. The ideas are similar to those in paragraph 5.1.2.

Nonrigid minimal surfaces: Pirola’s surfaces. Using methods
from Algebraic Geometry, Pirola have proved:

Theorem 5.9 (Pirola [80]). Let M be a compact connected Rie-
mann surface and Z be a nonempty finite subset of M . Then, there is a
complete nonrigid minimal immersion X : M −Z → R

3 with finite total
curvature.

Looking at Theorem 1.3, the immersion X is nonrigid if and only if
the 1-forms Φj , j = 1, 2, 3, in the Weierstrass representation are exact.

Minimal surfaces with catenoid ends. In this paragraph we fol-
low the notation introduced by Cosin and Ros in [12]. A properly im-
mersed minimal surface with r embedded ends will be called an r-oid.
Among these kinds of surfaces, we emphasize the following examples:

• The Jorge-Meeks r-oid with symmetry group Dr × Z2 [36].
• The r-oids with high genus by Berglund and Rossman [1], [85].
• The genus zero Platonoids with symmetry groups isomorphic to

the symmetry group of the Platonic solids [99], [40], [90].

It is natural to state the following Plateau problem at infinity:

Given a balanced finite system of planes and halfcatenoids in R
3

and a nonnegative integer g, find a r-oid of genus g whose ends
are asymptotic, up to translations, to the given data.
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By definition, we say that a system of planes and halfcatenoids is bal-
anced if and only if the sum of the flux vectors (see Paragraph 6.2.1) is
zero. Classical theory of compact Riemann surfaces says that any mini-
mal surface with finite total curvature and embedded ends is balanced.
This is an easy consequence of the fact that the sum of the residues of
a meromorphic 1-form on a compact Riemann surface is zero. From a
geometrical point of view, the flux of a halfcatenoid is the value of its
normal vector at infinity times for the length of its neck and the flux
of a plane is zero. Kusner was the first author who proposed the above
problem in its right terms.

Figure 15. Jorge and Meeks’ four-oid.

In the genus zero case, Kato, Umehara and Yamada [41], [42], [43]
reduce the above Plateau problem at infinity, using Weierstrass repre-
sentation, to a system of algebraic equations. So, they prove that, for
generic data, this problem admits a solution.

Let X : M → R
3 be an r-oid. Then M is conformally diffeomorphic to

M−{P1, . . . , Pr}, where M is compact. We will say that M is Alexandrov
embedded if M bounds a compact 3-manifold Ω and the immersion X
extends to a proper local diffeomorphism f : Ω−{P1, . . . , Pr} → R

3. In
the line of Kato-Umehara-Yamada theorems, Cosin and Ros [12] have
obtained the existence of a genus zero r-oid, r ≥ 3, satisfying:

1. The normal vectors at the ends lie in the plane x3 = 0.
2. The surface is Alexandrov-embedded and symmetric with respect

to the plane x3 = 0.
3. The polygon whose edges are the ordered flux vectors of M bounds

an immersed disc in the plane.
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Minimal surfaces with embedded planar ends. Let X : M →
R

3 a complete minimal immersion with finite total curvature. Then
(reinterpreting Theorems 5.1 and 5.2) there is associated to X a C1,α

immersion of a compact Riemann M into S
3,

X : M → S
3 ≡ R

3 ∪ {∞},

such that M = M − {P1, . . . , Pn} and X|M = X. The immersion X is
possibly branched at the ends P1, . . . , Pn. However, if the ends are em-
bedded and asymptotic to planes, Bryant [4] observed that X is regular
at the ends. Furthermore, this author also noted that these surfaces give
extrema for the Willmore functional: W =

∫
H2 dA.

Concerning minimal surfaces with embedded flat ends, we know the
following results:

• There exist examples of genus zero and 4, 6 and n ends, n ≥ 8.
In case of 4 and 6 ends, the classification is known [4], [47], [74].

• There are no examples of genus zero and 3, 5, and 7 ends [5].

• The moduli space of genus zero examples with 2p ends, 2 ≤ p ≤ 7,
has dimension 4(p− 1) [5].

• There exist rectangular tori with four ends [14].

• There is a real two-dimensional family of four-ended immersed
examples on each conformal torus [46].

• There are no three-ended tori [46].

Concerning to the last point, Kusner conjectured that:

Conjecture 1 (Kusner). There are no complete, orientable, mini-
mal surfaces with finite total curvature and three embedded planar ends.

In genus two case, Pirola [81] have obtained a partial answer to this
conjecture, by proving that there are no three-ended untwisted genus
two surfaces.

5.3. Nonorientable examples.

Let X ′ : M ′ → R
3 be a complete nonorientable minimal immersion

with finite total curvature. We call (M, I, g, η) the Weierstrass data of
X ′ (for more details see Subsection 1.1).
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Under these assumptions, using Huber’s and Osserman’s theorems
(see Theorems 5.1 and 5.2), we obtain that M is conformally diffeo-
morphic to a compact Riemann surface M punctured in a finite number
of points {P1, . . . , Pr} and (g, η) extends meromorphically to M . Fur-
thermore, I extends meromorphically to M and we have:

r = 2s, {P1, . . . , Pr} = {Q1, . . . , Qs, I(Q1), . . . , I(Qs)}.

Therefore, g has a well defined degree and C(M) = −4π deg(g). Let
G : M ′ → RP

2 be the generalized Gauss map. As we mentioned in
Subsection 1.1, the following diagram is commutative

M
g−−−−→ C!p !p0

M ′ G−−−−→ RP
2

where p0 : C → RP
2 ≡ (C/〈I0〉) is the natural projection, and

I0(z) = −1/z.
As deg(p) = deg(p0) = 2, then deg(G) is also well-defined and

deg(g) = deg(G). In particular C(M ′) = −2π deg(G).
Note that

M
′
=

M

〈I〉

is a compact nonorientable conformal surface, and

M ′ = M
′ − {p(Q1), . . . , p(Qs)}.

On the other hand, Jorge-Meeks formula can be reformulated as fol-
lows:

(25) deg(g) = −χ(M
′
) +

s∑
i=1

(νi + 1)

where
νi = Maximum{ord(Φj , Qi), j = 1, 2, 3} − 1

and ord(Φj , Qi) is the order of the pole of Φj at Qi.
In the nonorientable case, we have stronger restrictions on the topology

of M ′ (or M). Meeks showed that:
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Theorem 5.10 (Meeks [62]). Let M
′
be a compact nonorientable

conformal surface, and M ′ = M
′ − {P1, . . . , Ps}. If X ′ : M ′ → R

3 is a
complete minimal immersion with finite total curvature, then the Euler
characteristic χ(M

′
) of M

′
and C(M ′)/2π are congruent modulo 2.

This theorem is consequence of the following topological lemma.

Lemma 5.11 (Meeks [62]). Let M1 and M2 be two compact surfaces
without boundary, and consider p : M1 → M2 a branched covering map.
Then:

1. χ(M2) odd implies that χ(M1) and deg(p) are both either even or
odd.

2. χ(M2) even yields that χ(M1) is even too.

The proof of this result can be found in the above mentioned Meek’s
article, and we omit it.

Proof of Theorem 5.10: Consider G : M
′ → RP

2 the generalized Gauss
map of X ′. Then G is a branched covering map. Taking into account that
χ(RP

2) = 1, we apply Lemma 5.11 and obtain deg(G) = −C(M ′)/(2π) ≡
χ(M

′
)(mod 2).

As a consequence of the monotonicity formula (Theorem 5.5), Kusner
proved the following theorem:

Theorem 5.12 (Kusner [47]). Let X ′ : M ′ → R
3 be a connected

complete nonorientable minimal immersion with finite total curvature.
Following (25), define

n(M ′) =
n∑
i=1

νi.

Then, for any p ∈ R
3, the cardinal number of X ′−1(p) is at most

n(M ′)− 1.

No properly embedded surface in R
3 is nonorientable. Hence, and as

a consequence of Theorem 5.12, we have

Corollary 5.13 (Kusner [47]). There are no complete nonorientable
minimal surfaces with finite total curvature and two embedded ends.
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5.3.1. Nonorientable minimal surfaces of least total curva-
ture.

Let X ′ : M ′ → R
3 be a complete nonorientable minimal surface with

finite total curvature. As in the orientable case, we say that X ′ has
critical total curvature iff |C(M ′)| ≤ |C(M ′′)|, where X ′′ : M ′′ → R

3

is any complete nonorientable minimal surface with the same genus as
M ′. Looking at the formula of Jorge and Meeks (25), this means that
the degree of the generalized Gauss map is the least possible among the
surfaces with the same genus.

We know that M ′ = M
′ − {P1, . . . , Pn}, and from Theorem 5.3 we

have νi ≥ 1, i = 1, . . . , n. Taking into account Remark 1 and the
formula of Jorge and Meeks (25), it is not hard to deduce that |C(M ′)|
is critical if and only if C(M ′) = −2π(genus(M ′) + 2) (i.e., degree(G) =
genus(M ′)+2), and so either n = 1 and ν1 = 3 or n = 2 and ν1 = ν2 = 1.
The second case cannot occur (see Corollary 5.13), and so only the first
one holds. Thus, surfaces of this kind have only one end of weight 3.

Meeks’ minimal Möbius strip. We consider M = C − {0} and
I(z) = −1/z. Define

g(z) = z2 z + 1
z − 1

,

η = i
(z − 1)2

z4
dz.

So, the Weierstrass 1-forms are

Φ1 =
i

2

[
(z − 1)2

z4
− (z + 1)2

]
dz,

Φ2 = −1
2

[
(z − 1)2

z4
+ (z + 1)2

]
dz,

Φ3 = i
z2 − 1
z2

dz

which obviously satisfy (3) and (8). Furthermore, it is clear that

Residue(Φ, 0) = Residue(Φ,∞) = 0.

Hence, Φ has no real periods, and so the minimal immersion X : M →
R

3, X = Real(
∫

Φ) is well defined.
As deg(g) = 3, then C(M) = −12π.
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Taking M ′ = M/〈I〉, X induces a complete nonorientable minimal
immersion with finite total curvature, X ′ : M ′ → R

3, satisfying C(M ′) =
−6π. Observe that M ′ is homeomorphic to RP

2 − {p(0)}, which has
the topological type of a Möbius strip. The surface X ′(M ′) has two
symmetries. The nontrivial one is induced by T (z) = z, and corresponds
to a reflection about the x2-axis, which is contained in the surface.

Figure 16. Meeks’ minimal Möbius strip.

A minimal Klein bottle with one end. This section is devoted
to construct the complete minimal Klein Bottle, which was discovered
in [51]. This surface has four symmetries and only one end.

Let Mr be the conformal torus:

Mr =
{

(z, u) ∈ (C ∪ {∞})2/z2 =
u(u− r)
ru + 1

}

and label 0 = (0, 0), ∞ = (∞,∞), r = (r, 0), −1/r = (−1/r,∞) ∈ Mr.
Let I denote the antiholomorphic involution without fixed points defined
as follows:

I : Mr −→Mr

I(z, u) =
(

1
z
,
−1
u

)
.
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Figure 17. The minimal Klein bottle of total curvature −8π.

Define Mr = Mr−{0,∞}, r ∈ R. Mr is a Riemann surface of genus 1,
and I leaves Mr invariant. We define also the conformal mappings:

J, S : Mr −→Mr

J(z, u) = (−z, u), S(z, u) = (z, u).

Note that S has order 2 and J order k. The group generated by J
and S is isomorphic to the dihedral group D(2) with 4 elements, and
leaves Mr invariant. Moreover, this group fixes both r,−1/r ∈ Mr and
J ◦ I = I ◦ J , S ◦ I = I ◦ S. So, it can be induced, in a natural way, on
the nonorientable conformal surfaces M ′

r = Mr/〈I〉. We want to define
a proper conformal minimal immersion of M ′

r into R
3, for a suitable r.

First, define the following meromorphic Weierstrass data:

(26) g = z
u− 1
u + 1

η = i
(u + 1)2

u2z
du

on Mr.
Then Φ1 = 1

2η(1 − g2), Φ2 = i
2η(1 + g2), Φ3 = ηg satisfy (3) on Mr,

and (8). So, as we have said at the end of Subsection 1.1, if X : Mr →
R

3, X = Real
∫

(Φ1,Φ2,Φ3) is well defined, then it induces a minimal
immersion X ′ : M ′

r → R
3 satisfying: X = p ◦X ′, where p : Mr →M ′

r is
the natural projection.
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Theorem 5.14. There exists r0 ∈ R − {0,−1} such that X is well
defined.

Proof: X is well defined if and only if Φj , j = 1, 2, 3 have no real
periods, that is, Real

∫
γ

Φj = 0, for every closed curve, γ in Mr. It is
easy to check that Residue(Φj , 0) = Residue(Φj ,∞) = 0, j = 1, 2, 3. So,
it suffices to prove Real

∫
γ

Φj = 0 for any closed curve γ lying in Mr

(not containing the ends).

On the other hand, if γ is a closed curve in Mr,∫
γ

Φj =
∫
I∗(γ)

I∗(Φj) =
∫
I∗(γ)

Φj ,

and so:

Real
(∫

γ

Φj

)
=

1
2

∫
γ+I∗(γ)

Φj .

Therefore, what remains is to show that on a homology basis Γ of Mr:∫
γ+I∗(γ)

Φj = 0, γ ∈ Γ.

A suitable homology basis of Mr may be constructed as follows. Let
c1(t), c2(t) be two oriented differentiable curves in the u-plane illus-
trated in the Figure 18 in the case r > 0. We suppose c1(0) = (ε1, 0),
ε1 > Maximum{0,−1/r}, and c2(0) = (ε2, 0), ε2 > Maximum{0, r}.

c1 c2

r0− 1
r

Figure 18. The curves c1 and c2.

The winding number of c1 around 0,−1/r is 1, and 0 around r. The
winding number of c2 around 0 is 1, around r is −1 and around −1/r is
0.
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Let γi(t) = (z(ci(t)), ci(t)), i = 1, 2 be the unique lift of ci to Mr,
i = 1, 2, satisfying arg(z(c1(0))) = πi

2 , arg(z(c2(0))) = 0, respectively.
The set

{Jh ◦ γi, Sj ◦ γi, h ∈ {0, 1}, j ∈ {0, 1}, i ∈ {1, 2}}

contains a homology basis of Mr. As J ◦ I = I ◦ J , S ◦ I = I ◦ S, then∫
J∗(γi)+I∗(J∗(γi))

Φj =
∫
γi+I∗(γi)

(J)∗(Φj)

and analogously:∫
S(γi)+I∗(S(γi))

Φj =
∫
γi+I∗(γi)

(S ◦ I)∗(Φj)

for i ∈ {1, 2}, j ∈ {1, 2, 3}. Then J∗(tΦ) = A · tΦ, (S ◦ I)∗(tΦ) = B ·t Φ,
where A,B ∈ O(3,R) are the matrices

A =

−1 0 0
0 −1 0
0 0 1

 B =

−1 0 0
0 1 0
0 0 −1

 .

Thus,
∫
γ+I∗(γ)

Φj = 0, for every γ ∈ Γ if and only if∫
γi+I∗(γi)

Φj = 0, j ∈ {1, 2, 3}, i ∈ {1, 2}.

Since I∗(γ1) = γ1 and I∗(γ2) = γ1 − γ2 + (J)∗(γ1), the map X has no
real periods if and only if

∫
γ1

Φj = 0, j = 1, 2, 3. But Φ3 is exact, Φ1,
Φ2 have no residues and hence above equations are equivalent to

(27)
∫
γ1

ηg2 = 0.

Remember that ηg2 = i (u−1)2(u−r)
u(ru+1)

du
z . Then take f = (− 2(2r+1)

r u+2)(u−r)
z ,

and observe that:

−iηg2 + df = 2(a0 + a1u)
du

z
, where

a0 = 2r − 1, a1 =
−1− 3r

r
.
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Integrating by parts,
∫
γ1

ηg2 = i
∫
γ1

2(a0 + a1u)duz , and so equation (27)
is equivalent to: ∫ −1/r

0

(a0 + a1u)
du

z
= 0.

Up to the change u = −t/r, above integral vanishes if and only if:

∫ 1

0

(b0 + b1t)
dt

wr(t)
= 0, where :

b0 = r2a0; b1 = −ra1, wr(t) =

√
t(t + r2)

1− t
> 0, t ∈]0, 1[.

Define f : R −→ R by

(28) f(r) =
∫ 1

0

(b0 + b1t)
dt

wr
.

It is clear that r < −1/2 implies b0, b1 < 0, and r > −1/3 yields
b0, b1 > 0. So f vanishes at least once on ] − 1/2,−1/3[, and never
vanishes on R−]− 1/2,−1/3[. In fact, f < 0 on ]−∞,−1/2[, f > 0 on
]− 1/3,+∞[.

For arbitrary genus greater than 2, it is still open the following con-
jecture:

Conjecture 2. There are complete, nonorientable, minimal surfaces
of genus g and least total curvature, for any g > 2.

5.3.2. Highly symmetric nonorientable examples.
If the group of symmetries is large enough, elementary topological

arguments determine, up to conformal transformations, the underlying
complex structure of such a surface. Then, it is not hard to describe
the Weierstrass data arising out of these kinds of examples and obtain
uniqueness theorems.

Basically, two ways exist to construct new examples of highly sym-
metric minimal surfaces:

• In the first one the genus of M is fixed and the number of ends in-
creases. Among these surfaces we emphasize a family of immersed
projective planes with p (p ≥ 3, p odd) embedded flat ends and
total curvature −2π(2p− 1), by Kusner [47].
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To be more precise, given p odd, p ≥ 3, define

Mp = C−
{
z ∈ C/z2p + 2

√
2p− 1
p− 1

zp − 1 = 0
}
, I(z) = −1

z
,

gp =
zp−1(zp −√

2p− 1)√
2p− 1zp + 1

,

ηp =
i(
√

2p− 1zp + 1)2

(z2p + 2
√

2p−1
p−1 zp − 1)2

.

It is straightforward to check that (Φ1,Φ2,Φ3) has no residues at
the ends, and satisfies (8). So, the minimal minimal immersion
Xp = Real(

∫
Φ) is well defined, and induces a minimal immer-

sion X ′
p of the nonorientable surface M ′

p = Mp/〈I〉 in R
3. The

surface X ′
p(M

′
p) contains p straight lines which lie in a plane and

meet at equal angles. The dihedral group of order 2p acts on
X ′
p(M

′
p) by reflections about these lines.

• In the second one, the number of ends are fixed and the genus of
M increases. Inside these kinds of minimal surfaces we empha-
size a family of complete nonorientable highly symmetric minimal
surfaces with arbitrary topology and one end, constructed by the
authors of this survey in [54], [55]. For each topology the au-
thors constructed the most symmetric example. Furthermore, if
the Euler characteristic of the closed associated surface is even,
the examples minimize the energy (or the degree of the Gauss
map) among the surfaces with their symmetry.

The Weierstrass data are:

Mkmr =
{

(z, w) ∈ C
2 : zk =

w(wm − r)
rwm + 1

}
Mkmr = Mkmr − {(0, 0), (∞,∞)}

I1 : Mkmr −→Mkmr

I1(z, w) =
(

1
z
,− 1

w

)

g = zk−1w
m − 1

wm + 1
g ω = i

w2m − 1
wm+1

dw

where k ≥ 2, m ≥ 1 and m is odd, r is suitable and r ∈ R −
{0,−1}.
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When k ≥ 2, k even, we also have:

Mkmr =
{

(z, w) ∈ C
2 : zk =

w(wm − r)
rwm + 1

}
Mkmr = Mkmr − {(0, 0), (∞,∞)}

I2 : Mkmr −→Mkmr

I2(z, w) =
(
−1
z
,− 1

w

)

g = zk−1 wm − 1
w(wm + 1)

g ω = i
w2m − 1
wm+1

dw

where as above m ≥ 1, m odd, r is suitable and r ∈ R− {0,−1}.
For each k, m the surfaces Mkmr intersect the x1 x2-plane in

km straight lines which meet at equal angles at the origin, and the
dihedral group D(km) acts on Mkmr by reflections about these
lines.

If k = 2 and m = 1, we obtain the once punctured Klein bottle
of total curvature −8π described above.

5.4. Uniqueness results for minimal surfaces of least total
curvature.

Following the formula of Jorge and Meeks, there are essentially three
numbers which determine the geometry of a complete orientable minimal
surface with finite total curvature: the genus of the surface, the number
of ends and the degree of the Gauss map. A natural way to obtain
classification results is to fix some of these variables and study the arising
moduli space of minimal surfaces.

The most classical results of classification are due to Osserman and
Schoen.

Theorem 5.15 (Osserman [73]). A complete minimal surface in
R

3 with finite total curvature −4π is the catenoid or Enneper’s surface.

Proof: Let X : M → R
3 be a complete orientable minimal surface

with total curvature −4π. From Huber and Osserman theorems (Theo-
rems 5.1 and 5.2), M = M−{P1, . . . , Pr} and the Weierstrass data (g, η)
extend meromorphically to M . Since C(M) = −4π deg(g), then g has
degree 1, and so, it is a biholomorphism. In particular, M = C. From
the formula of Jorge and Meeks (see Theorem 5.3), we infer that either
r = 2 and ν1 = ν2 = 1 or r = 1 and ν1 = 3.
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• In the first case, we can put, up to a Möbius transformation, M =
C − {0}, g = z and ηg = B dz/z. Since ηg has no real periods,
B ∈ R, which corresponds to the Weierstrass representation of a
catenoid.

• In the second case, we can put M = C and g = z. So, ηg = Bz dz,
which corresponds to Enneper’s surface.

This concludes the proof.

Theorem 5.16 (Schoen [87]). The only complete minimal surface
in R

3 with finite total curvature and two embedded ends is the catenoid.

The proof of this theorem consists of an elegant use of Alexandrov’s
reflection principle. We refer to [87].

If we also deal with nonorientable surfaces, we have:

Theorem 5.17 (Meeks [62]). The only complete minimal surfaces
in R

3 with total curvature greater than −8π are: the plane, the catenoid,
Enneper’s surface and Meeks’ minimal Möbius strip.

Proof: By Theorem 5.15, Enneper’s surface and the catenoid are the
only orientable surfaces with total curvature −4π.

Claim 1. There are no complete nonorientable minimal surfaces with
total curvature −2π.

Suppose that X ′ : M ′ → R
3 is complete nonorientable minimal sur-

faces with total curvature −2π. Using Jorge-Meeks formula (25) one
has:

1 = −χ(M
′
) +

r∑
i=1

(νi + 1),

which implies χ(M
′
) = r = 1 and ν1 = 1. So, Remark 1 leads to a

contradiction.

Claim 2. There are no complete nonorientable minimal surfaces with
total curvature −4π.
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We proceed once again by contradiction. If X ′ : M ′ → R
3 is a com-

plete nonorientable minimal surfaces with total curvature −4π, then
Jorge-Meeks formula (25) says:

2 = −χ(M
′
) +

r∑
i=1

(νi + 1).

As C(M ′)/(2π) ≡ −χ(M
′
)(mod 2) (Theorem 5.10), then we deduce

χ(M
′
) = 0, r = 1 and ν1 = 1, and so Remark 1 once again leads to

a contradiction.

Claim 3. The only complete minimal surface in R
3 with total curva-

ture −6π is Meeks’ minimal Möbius strip.

Let X ′ : M ′ → R
3 be a complete minimal surface in R

3 with total
curvature −6π. As C(M ′) is not a multiple of −4π, then M ′ is nonori-
entable. As in the above two claims, we use formula (25), Remark 1 and
Theorem 5.10 to obtain that χ(M

′
) = 1 and the number of ends r is

either one or two.

If r = 2, then (25) leads to ν1 = ν2 = 1. This kind of surface does not
exist by Theorem 5.12.

Hence r = 1, and from (25), ν1 = 3. Label (M, g, η, I) the Weierstrass
representation of X ′. Then, up to Möbius transformations, M = C−{0}
and I(z) = −1/z. After a rigid motion in R

3, we can assume that g has
a zero at 0 and a pole at ∞. Since C(M) = −6π, then deg(g) = 3.

We will distinguish three cases:

Case 1: The multiplicity of g at the ends is 3.

So, g = cz3 and η = B dz
z4 , c,B ∈ C − {0}. Since I∗(ηg) = ηg, then

cB ∈ iR. Thus, η g has real periods, which is impossible.

Case 2: The multiplicity of g at the ends is 2.

In this case g = cz2(z − b)/(z − a), where a, b, c ∈ C − {0}. After a
rotation of the coordinates of M , we may assume a ∈ R

+, and up to
a rotation in R

3, c ∈ R. Since g ◦ I = −1/g, b = −1/a and c = a.
On the other hand, taking (25) and (8) into account, it is clear that
η = i(z−a)2

z4 dz. Since Φ has no real periods, it is not hard to check that
a = 1. This corresponds to Meeks’ example.
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Case 3: The multiplicity of g at the ends is 1.
In this case, and as in the preceding one,

g = cz
(z + 1/a)(a + 1/b)

(z − a)(z − b)
, η = B

(z − a)2(z − b)2

z4
dz,

where a, c ∈ R
+, B ∈ iR. Since Φ has no real periods, then η, ηg and ηg2

are exact. Calculating the residues, one gets Residue(η, 0) = −2B(a+b),
and so a = −b. Thus, Residue(ηg, 0) = −cB(a2 + 1/a2) �= 0, which is
absurd.

Concerning to complete nonorientable minimal surfaces with total cur-
vature −8π, one has the following result:

Theorem 5.18 ([51]). The only complete nonorientable minimal sur-
face with total curvature −8π is, up to scaling and rigid motions, the
one-ended Klein bottle described in paragraph 5.3.1.

We omit the proof.
Next, we deal with the classification of complete orientable minimal

surfaces with total curvature −8π. From the formula of Jorge and Meeks,
there are three topological possibilities:

• The surface has genus zero, and the number of ends n is 1, 2 or
3. The sum of the weights of the ends is 6 − n. In this case, the
classification is merely an algebraic exercise. We refer to [50].

• The genus of the surface and the number of ends are 1. In this
case, the weight of the end is 3. See Theorem 5.19 below.

• The genus of the surface is 1 and the number of ends are 2. In
this case, both ends are embedded. From Theorem 5.16, there are
no such surfaces.

• The genus of the surface is 2 and the number of ends is 1. In this
case the end is embedded, which contradicts Remark 1.

Hence, we are going to restrict our interest to the genus one case, and
prove the following theorem:

Theorem 5.19 ([2], [50]). The only orientable complete minimal sur-
face of genus one with total curvature −8π is the Chen-Gackstatter ex-
ample.
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Proof: We sketch the proof of this theorem given in [50].
During the proof, we will use some basic results about compact Rie-

mann surfaces. We refer to [20] for a good setting.

Figure 19. Chen and Gackstatter’s surface of genus one.

Let X : M → R
3 be a conformal complete minimal immersion of a

genus one surface with total curvature −8π. Following Theorem 5.2,
M is conformally equivalent to a compact genus one Riemann surface
punctured in a finite set of points (the ends of the surface). Moreover,
if (g, η) is the Weierstrass representation of M , then the Gauss map g
is a meromorphic function of degree two on M , and the 1-forms Φj ,
j = 1, 2, 3, defined as in (4), are meromorphic on M . As we have men-
tioned above, the formula of Jorge and Meeks (Theorem 5.3) implies that
M has only one end, and so:

M = M − {P}.

After a suitable rigid motion, we assume that the normal vector at the
unique end is (0, 0, 1), i.e., g(P ) = ∞.

Recall that meromorphic 1-forms and functions on a torus have the
same number of zeroes and poles. Accordingly to the formula of Jorge
and Meeks, the weight of the end is 3, and so the meromorphic 1-form
η has either a double pole at P (if P is a regular point of g) or is
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holomorphic on M (if P is a ramification point of g). Furthermore, from
(3) and in the first case, η has a double zero at the other pole of g and
no more zeroes.

We will distinguish two cases:

1. P is a ramification point of g, and then the divisors [g] and [η]
satisfy (see [20]): [g] = Y Z

P 2 , [η] = 1, where Y,Z ∈M .

2. P is not a ramification point of g: [g] = Y Z
PQ , [η] = Q2

P 2 .

Suppose firstly that P is a ramification point of g. Since g has degree
two, the Riemann-Hurwitz formula (see [20]) implies that g has four
ramification points: P1, P2, P3, P4 = P . Label zi = g(Pi), i = 1, 2, 3, 4.
As the normal vector of X at the end is (0, 0, 1), then z4 = ∞. Clas-
sical theory of compact Riemann surfaces (see [20]) yields that M is
conformally equivalent to the algebraic curve:

{(z, w) ∈ C
2

: w2 = (z − z1)(z − z2)(z − z3)},

with its natural complex structure, and up to this identification,
P = (∞,∞) and g = z. As we mentioned, η is holomorphic on M ,
and thus

η = A
dz

w
,

where A ∈ C
∗. On the other hand, the transformation T : (z, w) $→

(z,−w) satisfies T ∗(φj) = −φj . Therefore, viewed on X(M) and up to
a translation, it is the restriction of the symmetry with respect to the
origin. The points Pi, i = 1, 2, 3 are points of M fixed by T , and so
X(Pi) = (0, 0, 0), i = 1, 2, 3, and so the origin is a triple point of the
surface x(M). However, the total weight of the immersion is 3, which
contradicts Theorem 5.6. This proves that the first case is impossible.

Consider the second one, and assume that P is a regular point of g.
As we have said above, we write Q as the other pole of g. In this case, η
has a double pole at P and a double zero at Q, i.e., [η] = Q2

P 2 . Label θ0

as a holomorphic nonzero 1-form on M and define z = η/θ0. It follows
that z is a degree two meromorphic function on M satisfying:

[z] =
Q2

P 2
.
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Label Q1 and Q2 as the two other ramification points of z, and put
z1 = z(Q1), z2 = z(Q2). Up to an affine Möbius transformation z →
a1z+a2, we can suppose that z1 = 1, z2 = −1. Hence, writing a = z(Q),
and up to biholomorphisms,

M = {(z, w) ∈ C : w2 = (z − a)(z2 − 1)},

P = (∞,∞) M = M − {P}.

Since [g] = Y Z
PQ and [η] = Q2

P 2 , Riemann-Roch Theorem implies easily
that

g = A
w

z − a
+ B, η = C

z − a

w
dz,

where A,B,C ∈ C, A,C �= 0. Note that a2 �= 1: otherwise, M would be
the Riemann sphere, which is absurd.

Claim 1. The constant B is equal to zero.

Let {γ1, γ2} be a canonical homology basis of H1(M,Z). We can
choose γ1 and γ2 as the closed curves given by the lifts to M of the slits
[−1, a] and [a, 1] in the z-plane. Define τ1 = z−a

w dz, τ2 = w
z−a dz, and

write:

fi =
1
2

∫
γi

τ1, gi =
1
2

∫
γi

τ2,

where i = 1, 2.
Up to a suitable choice of the orientation of γi, and using standard

bilinear relations (see [20]), we deduce

(29) f1g2 − f2g1 =
4πi
3

(1− a2).

On the other hand, the 1-forms Φj have no real periods, and so:

BCfi ∈ iR, Cfi = CB
2
f i + CA

2
gi,

where i = 1, 2. If B �= 0, the last equation gives

(1 + |B|2)fi =
−BA2

B
gi,

which contradicts (29) and the fact a2 �= 1. This proves the claim.
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Therefore, g = A w
z−a dz and η = C z−a

w dz. Then, Φ3 = AC dz is
exact. Since Φ1 and Φ2 have no real periods along γj , j = 1, 2, then

(30) f1g2 − f2g1 = 0.

To solve this equation, we have to carry out a careful analysis. Introduce
the following notation.

Consider the algebraic curve {(a, y) ∈ C
2

: y2 = a2 − 1}, and de-
note by Ω the region in a−1(C − ([∞,−1] ∪ [1,∞])) which contains
the point (0, i). Identify the points in Ω with the complex numbers
in a(Ω). Let Ω be the closure of Ω on the Riemann surface of the poly-
nomial y2 = a2 − 1. The boundary of Ω contains two copies of the real
segments [−∞,−1[∪]1,+∞], but a−1({1,−1}) contains only two points.
We shall denote ∞i, i = 1, 2, as the two points of ∂(Ω) lying in a−1(∞).

Straightforward arguments imply that the functions fi, gi, i = 1, 2,
are holomorphic on Ω and have continuous extensions to ∂(Ω) (taking
possibly infinite values on the set {∞1,∞2}). Furthermore,

• For i = 1, 2,

f ′
i(a) =

a

2(a2 − 1)
fi(a) +

3
4(1− a2)

gi(a)

g′i(a) =
1

1− a2
fi(a)−

3a
2(1− a2)

gi(a).

• f1(a) = f1(a), g1(a) = g1(a), f2(a) = if1(−a) and g2(a) =
−ig1(−a).

These analytical properties imply the following claims. The proof can
be found in [50].

Claim 2. The function f1g2
f2g1

is well defined, holomorphic and never
vanishes on Ω. Moreover, it has a continuous extension to Ω, satisfying:∣∣∣∣f1g2

f2g1

∣∣∣∣ (a) �= 0, 1, ∀ a ∈ ∂Ω− {∞1,∞2},

and
f1g2

f2g1
(∞i) = 1.

Claim 3. If a ∈ iR, then
∣∣∣ f1g2f2g1

∣∣∣ (a) = 1. Moreover, the only solution
of (30) on the imaginary axis is a = 0.
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Now we can conclude the proof of the theorem. Consider the function:

h
def= log

(∣∣∣∣f1g2

f2g1

∣∣∣∣) : Ω −→ R.

From Claim 2, h is well defined and continuous on Ω, and harmonic on
Ω.

The symmetries of the functions fi, gi, imply that the nodal set of
h; N = {a ∈ Ω : h(a) = 0}, is invariant under the transformations a →
a and a → −a. Moreover, it is easy to deduce that N contains the
set iR∪{∞1,∞2} (this is part of Claim 3). On the other hand, Claim 2
gives that N ∩ (∂(Ω)− {∞1,∞2}) = ∅.

Since h is nonconstant, the maximum principle for harmonic functions
implies that it is not possible to have compact domains in Ω bounded by
curves in N . Thus, taking into account the above arguments, it is not
hard to infer that N = iR ∪ {∞1,∞2}.

Since any solution of (30) lies in N−{∞1,∞2}, then a ∈ iR. Therefore,
Claim 3 yields a = 0, which corresponds to the Chen-Gackstatter genus
one example.

The Cheng-Gackstatter genus two surface also admits the following
uniqueness theorem:

Theorem 5.20 (López, Mart́ın, Rodŕıguez [57]). The Chen-
Gackstatter genus two surface is the only complete minimal immersion
in R

3 of genus two, total curvature −12π and eight symmetries.

A natural conjecture asserts that this theorem is true without any
symmetry assumption. In fact, Hoffman and Meeks proposed the follow-
ing:

Conjecture 3. The moduli space of complete, orientable, minimal
surfaces with genus k, k ∈ N, and total curvature −4π(k + 1) is discrete
(probably a unique point).

In the nonorientable case, the corresponding conjecture asserts:

Conjecture 4. The moduli space of complete, nonorientable, minimal
surfaces with genus m, m ∈ N, and total curvature −2π(m + 2) is also
discrete.
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6. Properly embedded minimal surfaces

Embedded minimal surfaces are more natural; they correspond to our
primitive notion of a surface, the boundary of a solid region. At the
beginning of the eighties, this theory gathered new speed. This is par-
ticularly thanks to C. Costa [15], D. Hoffman and W. H. Meeks [30],
[32] who disproved a longstanding conjecture which said that the only
complete embedded minimal surfaces in R

3 of finite topological type are
the plane, the catenoid and the helicoid. This conjecture turned out
to be false as there is a family of complete embedded minimal surfaces
defined on a genus k − 1 (k > 1) compact Riemann surface with three
points removed.

Figure 20. Costa’s surface.

A natural question is to decide under what conditions finite total cur-
vature is equivalent to finite topology. As the helicoid shows, this result
is false for properly embedded minimal surfaces in R

3 with only one end.
Furthermore, Hoffman, Karcher and Wei [28], [29] have recently discov-
ered an one-ended, genus one, properly embedded minimal surface with
infinite total curvature (see also Bobenko’s paper [3]).

Inspired in previous results by Meeks and Rosenberg [67], Collin
proved the following theorem:

Theorem 6.1 (Collin [9]). Let A be a properly embedded minimal
annulus whose boundary is a Jordan curve. Suppose that A is contained
in a half-space of R

3 and the boundary of A lies in the boundary of the
half-space. Then A has finite total curvature, and so, it is asymptotic to
either a plane or a half-catenoid.
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This theorem proves a classical conjecture by Nitsche. Using the main
result in [67], any annular end of a properly embedded minimal surface in
R

3 with more than one end lies in a half-space. Therefore, Theorem 6.1
implies that this end has finite total curvature. As a corollary,

Corollary 6.2 (Collin [9]). A properly embedded minimal surface in
R

3 with finite topology and more than one end has finite total curvature.

Note that from Theorem 5.1 the converse is also true.
Embedded minimal surfaces have some special properties. If X : M →

R
3 is an embedding then R

3 −X(M) consists of two connected compo-
nents. Outside of a sufficiently large compact set, the ends of M are
ordered from top to bottom. Therefore, up to a rotation, the normal
limit vector at the ends are (0, 0,±1) and they alternate from one end
to the next. Since the ends are embedded, they are either planar ends
or catenoid ends (see Definition 2). In particular the logarithmic growth
rates are also ordered: r1 ≤ r2 ≤ · · · ≤ rs, r1rs < 0. Furthermore, from
(52),

∑s
i=1 ri = 0. For details see [36], [73].

6.1. Examples with finite topology and more than one end.

Corollary 6.2 and Theorem 5.16 imply that the only properly embed-
ded minimal surface in R

3 with two ends is the catenoid. As we have
mentioned above, properly embedded minimal surfaces with three or
more ends have finite total curvature. Hoffman and Meeks in [33] (see
[27] for a complete discussion) constructed a one-parameter family Fk
of complete embedded minimal surfaces of genus k − 1 (k > 1) with
three ends and 2k symmetries. These surfaces are deformations of the
examples of Hoffman and Meeks in [32] (Costa’s example for k = 2). A
complete list of figures of these surfaces can be found in [27].

Today we have more families of examples for which only computational
evidences of embeddedness are known. We emphasize the family of four
ended examples with high topology, by Wohlgemuth [95], and the Weber-
Wolf family [93].

It is also remarkable Kapouleas’ work [38]. His method of construction
amounts to desingularizing the circles of intersection of a collection of
coaxial catenoids and planes. The desingularization process uses Scherk’s
singly periodic surfaces for an approximate construction which is sub-
sequently corrected by singular perturbation methods. So, this author
shows complete embedded minimal surfaces with arbitrarily many (at
least three) ends. The examples are highly symmetric, and the genus
takes arbitrarily high values.
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6.1.1. Properly embedded minimal surfaces with three ends:
Costa-Hoffman-Meeks and Hoffman-Meeks families.

In this subsection we deal with the period problem associated to the
Hoffman-Meeks family of embedded minimal surfaces with three ends.
This matter has been studied in depth by Hoffman and Karcher in [27].
Furthermore, in that work these authors have been able to give a unique-
ness theorem in terms of the symmetry (see Theorem 6.9).

The exposition of the period problem given here is different from the
one in [27].

Let Mk a, k ∈ N, k ≥ 2, a ∈ R − {0,−1}, be the compact Riemann
surface

Mk a =
{

(z, w) ∈ (C ∪ {∞})2 : wk =
(z + 1)(z − a)

z

}
.

Let P0 = (0,∞), P1 = (−1, 0), P2 = (∞,∞) and P3 = (a, 0), and define

Mk a = Mk a − {P1, P2, P3}.

Consider the conformal mappings of Mk a

J(z, w) = (z, θw), θ = e
2πi
k

S(z, w) = (z, w).

The group generated by J and S is the dihedral group D(k) with 2k
elements, it leaves Mk a invariant and fixes Pi, i = 0, 1, 2, 3.

It will be useful to construct a homology basis of Mk a. We distinguish
two cases:

• Suppose a > 0. Let βi(t), i = 1, 2, be the oriented simple closed
curves in the z-plane illustrated in Figure 21. We assume that
β1(0) ∈ R, β1(0) > a, β2(0) ∈ R, 0 < β2(0) < a. Let bi(t) be the
unique lift of βi(t) to Mk a, i = 1, 2, satisfying w(b1(0)) ∈ R+ and
Arg(w(b2(0))) = π

k .

• Suppose a<0. Write a0 =Minimum{a,−1}, a1 =Maximum{a,−1}
and let βi(t), i = 1, 2, the oriented closed curves in the z-plane
illustrated in the Figure 22. We assume that β1(0) ∈ R, β1(0) > 0,
β2(0) ∈ R, a1 < β2(0) < 0. Let bi(t) be the unique lift of βi(t) to
Mk a, i = 1, 2, satisfying w(b1(0)) ∈ R+, Arg(w(b2(0))) = π

k .
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β1β2

−1 0 a

Figure 21. β1 and β2 for a > 0.

β1β2

a0 a1 0

Figure 22. β1 and β2 for a < 0.

In the following, we identify d and its homology class [d], for any closed
curve d in Mk a. The desired homology basis of Mk a is:

B =
{
(Jh)∗(bi) : h ∈ {0, . . . , k − 2}, i ∈ {1, 2}

}
.

We leave the topological details to the reader.
Consider the following meromorphic data Mk a:

gm = A
zw

mz + 1
ηmgm = B

mz + 1
(z + 1)(z − a)

dz

where m ∈ R, A ∈ R− {0}, B ∈ C, |B| = 1. Define as in (4)

2Φm1 = (1− g2
m)ηm,

2Φm2 = i(1 + g2
m)ηm,

Φm3 = gmηm.

Let

Xm(P ) = Real
∫ P

P0

(Φm1 ,Φm2 ,Φm3 ) , P ∈Mk a.

In general Xm is a multivalued conformal minimal immersion.
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It is interesting to translate the period problem associated to Xm to
a simpler language. First observe that Φm3 has no real periods if and
only if ri(a,m) = Residue(Φm3 , Pi) ∈ R, i = 1, 2, 3. An easy computation
gives

(31)

r1(a,m) = Bk
m− 1
1 + a

,

r2(a,m) = −Bkm,

r3(a,m) = Bk
ma + 1
1 + a

and therefore Real(
∫

Φm3 ) is well defined if and only if B ∈ R, that is,
B ∈ {−1, 1}.

In what follows and up to rigid motions we will assume that B = 1.
It is clear that the residues of Φm1 and Φm2 vanish.

If we put Φm =
(

Φm
1

Φm
2

Φm
3

)
, then J∗(Φm) = R · Φm where R ∈ O(3) is

the matrix

R =

 cos( 2π
k ) − sin( 2π

k ) 0
sin( 2π

k ) cos( 2π
k ) 0

0 0 1

 .

Taking into account that B is a homology basis of Mk a and the last
equality, we deduce that Xm has no real periods if and only if

(32) Real
(∫

bi

Φmj

)
= 0, i, j = 1, 2.

Let τ1, τ2, τ3 be the following 1-forms on Mk a

τ1 =
dz

w
,

τ2 =
zdz

w
,

τ3 =
dz

wk−1

and observe that

ηmg2
m = Aτ3

ηm =
1
A

(
q0τ1 + q1τ2 − d

(c0 + c1z + c2z
2

w

))
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where

q0 =
(k + 1)(1− a)

2(2k − 1)
q1 +

(k − 1)m
a

, q1 =
2(2k − 1)(m− 1)(1 + am)

a(1 + a)2

c0 =
k

a
,

c1 =
k(−1 + a + 2m + 2a2m + am2 − a2m2)

a(1 + a)2
,

c2 =
2k(m− 1)(1 + am)

a(1 + a)2
.

Define on R− {0,−1} the following functions

f1(a) =
1
θ

∫
b1

τ1, g1(a) =
1
θ

∫
b1

τ2, h1(a) =
1
θ

∫
b1

τ3

f2(a) =
1
ξ

∫
b2

τ1, g2(a) = −1
ξ

∫
b2

τ2, h2(a) =
1
ξ

∫
b2

τ3

where θ = e
πi
k − e−

πi
k and ξ = e

2πi
k − 1.

Deforming the curves bi, i = 1, 2 on the real axis, an analytic contin-
uation argument gives:

• for a > 0

f1(a) =
∫ a

0

d z

|w| , g1(a) =
∫ a

0

zd z

|w| , h1(a) =
∫ a

0

d z

|w|k−1

f2(a) =
∫ 0

−1

d z

|w| , g2(a) =
∫ 0

−1

zd z

|w| , h2(a) =
∫ 0

−1

d z

|w|k−1

• for a < 0

f1(a) = −
∫ 0

a1

d z

|w| , g1(a) = −
∫ 0

a1

zd z

|w| , h1(a) = −
∫ 0

a1

d z

|w|k−1

f2(a) = −
∫ a1

a0

d z

|w| , g2(a) =
∫ a1

a0

zd z

|w| , h2(a) = −
∫ a1

a0

d z

|w|k−1
.

Notice that fi(a), gi(a), hi(a) ∈ R+ ∀ a > 0, i ∈ {1, 2}, and fi(a),
hi(a) ∈ R− ∀ a < 0, i ∈ {1, 2}, g1(a) ∈ R+, g2(a) ∈ R−, ∀ a < 0.
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From above definitions (32) becomes

(33) (−1)i+1q0fi + q1gi = −A2hi i = 1, 2.

Call Ω = {(a,m) ∈ R
2 : a �= 0,−1}, Ω+ = {(a,m) ∈ Ω : a > 0} and

Ω− = {(a,m) ∈ Ω : a < 0}.

Definition 3. Define by C the set of points of Ω for which there exists
A ∈ R − {0} such that (33) holds (i.e. Xm has no real periods). Label
C+ = C ∩ Ω+ and C− = C ∩ Ω−.

Remark 3. For any point (a,m) ∈ C, the conformal transforma-
tions J and S yield on Xm a rotation around the x3-axis by angle 2π

k
and a symmetry with respect to the plane x2 = 0, respectively.

Let π1(a,m) = a, π2(a,m) = m the two natural projections from the
(a,m)-plane into the a and m-axis, respectively.

Theorem 6.3 (Hoffman, Karcher [27]). The set C+ is a regular
curve in Ω+ and

π1|C+ : C+ −→]0,+∞[

is a diffeomorphism.

Proof: Let Λ = {(a,m) ∈ Ω+ : (m− 1)(ma + 1) < 0}.
Define ϕ : Ω+ −→ R by

ϕ = h2(q0f1 + q1g1) + h1(q0f2 − q1g2).

First, we observe that C+ ={(a,m) ∈ Λ : ϕ(a,m)=0}. If ϕ(a,m)=0 and
(a,m)∈Λ, then there exists λ∈R such that

(
(−1)i+1q0fi + q1gi

)
(a,m)=

λhi(a,m) i=1, 2. Hence (q1(g1f2 + g2f1)) (a,m) = λ(h1f2+h2f1)(a,m),
and then λq1(a,m) > 0. As q1 < 0 on Λ we deduce that λ < 0 and taking
A =

√
−λ ∈ R, (33) holds. Conversely, if (a,m) ∈ C+ then (33) implies:

ϕ(a,m) = 0 and (q1(g1f2 + g2f1)) (a,m) = −A2(h1f2 + h2f1)(a,m). In
particular q1(a,m) < 0 and thus (a,m) ∈ Λ.

For each a ∈]0,+∞[, we label La = (π1)−1(a).
We want to show that La meets C+ in a single point. It is clear that La

intersects the boundary of Λ in two points: (a,− 1
a ) and (a, 1). On the

other hand we have

ϕ(a, 1) =
k − 1
a

(h2(a)f1(a) + h1(a)f2(a)) > 0

ϕ

(
a,−1

a

)
= −k − 1

a2
(h2(a)f1(a) + h1(a)f2(a)) < 0.
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By an intermediate value argument the function ϕ vanishes at a point of
La ∩ Λ. Furthermore, since ϕ|.a is a polynomial function of m of degree
less than or equal to two it has only one root m(a) ∈ [− 1

a , 1] (counting
multiplicities).

Hence C+ = {(a,m(a)) : a ∈]0,∞[} is a graph on the positive a-axis
and it is not hard to check that the function a $−→ m(a) is continuous
on ]0,+∞[. We are going to prove that in fact it is differentiable. To see
this we note firstly that C+ does not meet the zero set S of q0f1 + q1g1:
if (a,m) ∈ C+ and (q0f1 + q1g1)(a,m) = 0 then (33) gives h1(a) = 0, a
contradiction. Therefore defining ρ : Ω+ − S −→ R by

ρ =
q0f2 − q1g2

q0f1 + q1g1
+

h2

h1

we have that C+ = {(a,m) ∈ Λ − S : ρ(a,m) = 0}. On the other hand
on Λ− S

∂ρ

∂m
= −2(k − 1)(2k − 1)(1 + am2)(f2g1 + f1g2)

(a(a + 1)(q0f1 + q1g1))2
< 0.

Hence applying the implicit function theorem the function a $−→ m(a) is
differentiable and so C+ is a regular curve in Ω+ which projects homeo-
morphically on the positive a-axis.

Define Σ = {(a,m) ∈ Ω+ : ((2 + a)m− 1)((2a + 1)m + 1) < 0}.

Remark 4. The involutive automorphism I on Ω defined by I(a,m)=
( 1
a ,−am) leaves Λ, Σ, C− and C+ invariant. Furthermore if (a,m) ∈ C

then the surfaces associated to (a,m) and (1/a,−am) are, up to change
of variables, scaling and rigid motions, the same.

An important fact is that, for any (a,m(a)) ∈ C+,

(34) r1(a,m(a)) < r2(a,m(a)) < r3(a,m(a)).

These inequalities easily follow from the theorem

Theorem 6.4 (Hoffman, Karcher [27]). The set C+ is contained
in Σ.

Proof: To prove that C+ ⊂ Σ we need to work harder than in Theo-
rem 6.3.

The boundary of Σ has two connected components µ1 = {(a, 1
2+a ) :

a > 0} and µ2 = {(a,− 1
2a+1 ) : a > 0}.
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We want to prove that ϕ|µ1 > 0 and ϕ|µ2 < 0, where ϕ was defined
in the proof of Theorem 6.3. Notice that from (ii) in Lemma 6.5 above
inequalities are equivalent to ψ|µ1 > 0 and ψ|µ2 < 0, where ψ = ϕf1/h1.

Firstly, we notice that µ1∩S = ∅, where S is the zero set of q0f1+q1f1,
as in Theorem 6.3. For, we define

h(a) = (q0f1 + q1f1)
(
a,

1
2 + a

)
=

(3ak + a− 4)f1(a) + 4(1− 2k)g1(a)
a(2 + a)2

.

Using (i) in Lemma 6.5 and substituting it is easy to see that

(35) h(a) = 0 =⇒ h′(a) =
(1− k)(16 + 8a + a2 + 8ak + 3a2k)f1(a)

4a2(1 + a)(2 + a)2k
< 0.

On the other hand, for a > 0 it is clear that

f1(a) =
∫ a

0

dz

|w| = a

∫ 1

0

√
[k]

t

(1 + at)(1− t)
dt

g1(a) =
∫ a

0

z dz

|w| = a2

∫ 1

0

t
√

[k]
t

(1 + at)(1− t)
dt.

Hence one obtains

lim
a→0+

f1(a)
a

=
π

k sin(π/k)
, lim

a→+∞
f1(a)a1/k−1 =

k

k − 1
(36)

lim
a→0+

g1(a)
a2

=
(k + 1)π

2k2 sin(π/k)
, lim
a→+∞

g1(a)a1/k−2 =
k2

(k − 1)(2k − 1)
.(37)

From (36) and (37) one has lim
a→0+

h(a) = − π

k sin(π/k)
. If h vanishes in

]0,+∞[ and a0 is the lowest root of h then the above limit says us that
h′(a0) ≥ 0, which is contrary to (35). Thus h(a) < 0 ∀ a ∈]0,+∞[ and
so µ1 ∩ S = ∅.

Now we observe that ρ|µ1 is negative, where ρ was defined in the proof
of Theorem 6.3. From (ii) in Lemma 6.5 it is obvious that

ρ =
f2

f1
+

q0f2 − q1g2

q0f1 + q1g1

and so

ρ

(
a,

1
2 + a

)
=

f2(a)
f1(a)

+
(4− a− 3ak)f2(a) + 4(1− 2k)g2(a)
(4− a− 3ak)f1(a) + 4(2k − 1)g1(a)

.
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In what follows we write u(a) = ρ
(
a, 1

2+a

)
. From (i) in Lemma 6.5 once

again, we obtain

u′(a) =
(2k − 1)(f1g2 + f2g1)
ka3(2 + a)4(a + 1)h2

(
(k − 1)((4 + a)2

+ak(8 + 3a))−
(
a(2 + a)2 h

f1

)2
)
.

Note that u′(a) > 0. To see this we define v :]0,+∞[−→ R by

v(a) =
√

(k − 1)((4 + a)2 + ak(8 + 3a)) + a(2 + a)2
h(a)
f1(a)

=
√

(k − 1)((4 + a)2 + ak(8 + 3a)) + 3ak + a−4 + 4(1− 2k)
g1(a)
f1(a)

.

It is clear that u′(a)/v(a) > 0. Taking into account the assertion (i) of
Lemma 6.5

(38)
d

da

(
g1(a)
f1(a)

)
=

k + 1
k(1 + a)

+
2a− 1
a(1 + a)

(
g1(a)
f1(a)

)

− 2k − 1
a(1 + a)k

(
g1(a)
f1(a)

)2

.

Using this equation and substituting, we deduce that v(a) = 0 implies

(39) v′(a)=
(k−1)[(a−4)(a+4)2+4(8−6a+a3)k+3a(8+4a+a2)k2]

2a(1 + a)k
√

(k − 1)((4 + a)2 + ak(8 + 3a))
>0.

On the other hand, from (36) and (37) we obtain that lim
a→0+

v(a) =

4(
√
k − 1−1) > 0. A similar discussion for the function h gives v(a) > 0

∀ a ∈ R+, and so u′(a) > 0, ∀ a ∈ R+.
From (36), (37) and the following formulae:

f1

(
1
a

)
= a

1−k
k f2(a), f2

(
1
a

)
= a

1−k
k f1(a),

g1

(
1
a

)
= a

1−2k
k g2(a), g2

(
1
a

)
= a

1−2k
k g1(a)
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we obtain lim
a→+∞

a · u(a) = − 2(k + 1)π
k2 sin(π/k)

. Hence u(a) is increasing and

so u(a) < 0 for all a > 0, i.e., ρ|µ1 < 0.
As h(a) < 0 ∀ a > 0 we obtain that ψ|µ1 > 0.
To estimate the sign of ψ|µ2 observe that the above formulae lead to:

(q0f1 + q1g1) ◦ I = −a
2k+1

k · (q0f2 − q1g2),

(q0f2 − q1g2) ◦ I = −a
2k+1

k · (q0f1 + q1g1)

and thus one gets
ψ ◦ I = −a

2+k
k ψ.

Therefore, using that I(µ1) = µ2 we deduce ψ|µ2 < 0. An intermediate
value argument yields C+ ⊂ Σ.

Remark 5. The minimal surfaces Xm(a), (a,m(a)) ∈ C+, form the
curve of embedded examples with three ends shown by Hoffman and
Meeks in [33]. The surface X0 associated to the point (1, 0) is just
Hoffman-Meeks genus k − 1 example in [32], and Xm(a) provides a
smooth deformation of this surface. Furthermore since (34) holds at
the point (1, 0) and the logarithmic growth rates are continuous func-
tions of a, Theorem 6.4 implies that the inequalities (34) hold at any
point of C+. This fact yields a good control of the logarithmic growth
rates of the ends along the deformation and together with the embed-
dedness of the Hoffman-Meeks surface, they have a strong influence on
the proof of the embeddedness of this family of surfaces. For details see
[32], [27] and [33].

If k = 2 and a = 1 (m(1) = 0) we obtain Costa’s example. For k = 2
and a ∈]0, 1[ we get the Hoffman-Meeks deformation of Costa surface,
[15].

6.1.2. Some analytical nonexistence and uniqueness theo-
rems.

In Paragraph 6.1.3 we will obtain a classification theorem for the fam-
ily Fk in terms of their symmetries, which generalizes that by Hoffman
and Karcher (Theorem 6.9). To do this, we will need some analytical
results of nonexistence and uniqueness.

Along this subsection we assume k > 2. The case k = 2 has been
treated extensively by Costa in [13]. We follow the notation established
in Paragraph 6.1.1. We start with the following technical lemma:
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Lemma 6.5. The functions fi, gi, hi, i = 1, 2, satisfy:

(i) For a ∈ R− {0,−1} and i ∈ {1, 2}

f ′
i(a) =

k − a

ka(a + 1)
fi(a) + (−1)i+1 2k − 1

ka(a + 1)
gi(a)

g′i(a) = (−1)i+1 k + 1
k(a + 1)

fi(a) +
2k − 1
k(a + 1)

gi(a).

(ii) For a > 0
(f1h2 − f2h1)(a) = 0.

Proof: Taking w = w(a) into account, one formally gets:

∂τ1
∂a

=
k − a

ka(a + 1)
τ1 +

2k − 1
ka(a + 1)

τ2 + d v

∂τ2
∂a

=
k + 1

k(a + 1)
τ1 +

2k − 1
k(a + 1)

τ2 + d (a v)

where v = − z(z+1)
a(a+1)w . Hence, using the definitions of fi, gi, i = 1, 2, (ii)

holds.
To obtain (iii) we need to compute the intersection matrix of the ho-

mology basis B. Given c1, c2 ∈ H1(Mk a,Z) we label c1 · c2 as the in-
tersection number of c1 and c2 (see [20]). If we write di = (J i−1)∗(b1),
ei = (J i−1)∗(b2), i = 1, . . . , k − 1, it is not hard to check that for
j, h ∈ {1, . . . , k − 1}:

dj · dh = 0, ej · eh = 0

dj · eh =


0 j − h < 0
0 j − h > 1
−1 j = h

1 j = h + 1

eh · dj = −dj · eh.

Hence arranging the basis B as follows

(d1, . . . , dk−1, e1, . . . , ek−1)

the intersection matrix DB is given by

DB =
(

0 G
−tG 0

)
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where G = (gj,h)1≤i, j≤k−1 is the matrix defined by:

gj,h =


0 j − h < 0
0 j − h > 1
−1 j = h

1 j = h + 1.

Classical bilinear relations of Riemann applied to the 1-forms τ1 and τ3
say:

−�v1 ·D−1
B ·t �v3 = 2πiResidue(fτ3, P2)

where

�v1 =

(∫
d1

τ1, . . . ,

∫
dk−1

τ1,

∫
e1

τ1, . . . ,

∫
ek−1

τ1

)

�v3 =

(∫
d1

τ3, . . . ,

∫
dk−1

τ3,

∫
e1

τ3, . . . ,

∫
ek−1

τ3

)

D−1
B =

(
0 −tG−1

G−1 0

)
and τ1 = df locally around P2. It is easy to see that k > 2 implies
Residue(fτ3, P2) = 0. Taking that J∗(τ1) = e−

2πi
k τ1, J∗(τ3) = e

2πi
k τ3

and the definitions of fi, hi, i = 1, 2, dj , ej , j = 1, . . . , k−1 into account,
(iii) holds.

The Hoffman-Meeks surface is the only element in C+ with a flat end.
This is a consequence of the following

Theorem 6.6. The function m(a) vanishes only at the point a = 1,
i.e. C+ ∩ π−1

2 (0) = {(1, 0)}.

Proof: Since I(C+) = C+, it suffices to prove that m(a) �= 0 ∀ a ∈]0, 1[.
Define f :]0, 1[→ R by f(a) = ρ(a, 0) where ρ was defined in the proof
of the Theorem 6.3. From (ii) in Lemma 6.5 we obtain that

f(a) =
(1− a)(k + 1)f2 + 2(1− 2k)g2

(1− a)(k + 1)f1 + 2(2k − 1)g1
+

f2

f1
.

Using the assertion (i) of Lemma 6.5, one has

f ′(a)=
(2k − 1)(f1g2+f2g1)[(1 + a)2(k2 − 1)f2

1 −((1 − a)(k + 1)f1 + 2(2k − 1)g1)2]

a(1 + a)kf2
1 ((1 − a)(k + 1)f1 + 2(2k − 1)g1)2

.
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If we define y(a) = (1 + a)
√
k2 − 1 − (1 − a)(k + 1) − 2(2k − 1) g1f1 it is

clear that f ′(a)/y(a) > 0. Using (38) and substituting one obtains that

(40) y(a) = 0 ⇒ y′(a) =
(a− 1)

√
k2 − 1

ak
< 0.

From (36) and (37) one has lim
a→0

y(a) =
√

k2 − 1−k−1 < 0. If y vanishes

in ]0, 1[ and a0 is the lowest root of y in this interval, then the above
limit says us that y′(a) ≥ 0, which is contrary to (40). Thus y(a) < 0
∀ a ∈]0, 1[ and hence f ′(a) < 0 in ]0, 1[. As m(1) = 0 then f(1) = 0 and
so f(a) > 0 ∀ a ∈]0, 1[.

Theorem 6.7. The set of points in C− providing embedded minimal
surfaces is void.

Proof: Take (a,m) a point of C−. From Remark 4 and without loss of
generality we can assume that a < −1.

The equation (33) implies

q1(a,m)(g1(a)f2(a) + f1(a)g2(a)) = −A2(h1(a)f2(a) + f1(a)h2(a)).

As A ∈ R then q1(a,m)(g1(a)f2(a) + f1(a)g2(a)) < 0.

We want to see that g1(a)f2(a) + f1(a)g2(a) is positive. Applying the
assertion (i) of Lemma 6.5, it is clear that

d

da
(f2g1 + f1g2) =

2ka + k − 2a
a(1 + a)k

(f2g1 + f1g2) .

Integrating the above ordinary differential equation, we obtain that

f2g1 + f1g2 = K · |a||a + 1| k−2
k , ∀ a ∈ R− {0,−1}

where K is constant on each connected component of R− {0,−1}.
We are going to find the value of K in the interval ]−∞,−1[. Observe

that

K = lim
a→−∞

f2g1 + f1g2

|a||a + 1| k−2
k

.
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From the definitions of fi, gi, i = 1, 2, for a < −1 we have:

f1(a) = −
∫ 0

−1

dz

|w| = −
∫ 1

0

√
[k]

t

(1− t)(−a− t)
dt

g1(a) = −
∫ 0

−1

z dz

|w| =
∫ 1

0

t
√

[k]
t

(1− t)(−a− t)
dt

f2(a) = −
∫ −1

a

dz

|w| = −|a + 1| k−2
k

∫ 1

0

√
[k]

(1 + a)t− a

t(1− t)
dt

g2(a) =
∫ −1

a

z dz

|w| = −|a + 1| k−2
k

∫ 1

0

((1 + a)t− a)
√

[k]
(1 + a)t− a

t(1− t)
dt.

Using these expressions

lim
a→−∞

|a| 1k f1(a) = − π

k sin(π/k)
, lim
a→−∞

|a| 1k g1(a) =
π(k + 1)

2k2 sin(π/k)

lim
a→−∞

|a| 1−k
k f2(a) = − k

k − 1
, lim

a→−∞
|a| 1−2k

k g2(a) = − k2

(k − 1)(2k − 1)

and so K =
πk

sin(π/k)(k − 1)(2k − 1)
. In particular, f2g1 + f1g2 > 0 in

]−∞,−1[.
Then we deduce that q1(a,m) < 0. Suppose Xm is an embedding. As

Mk a has three ends and g(P1) = g(P3) = 0 then P1 and P3 are the top
and the bottom ends (or viceversa) and P2 is the middle end of Mk a. In
particular their logarithmic growth rates satisfy r1(a,m) · r3(a,m) < 0
(see the beginning of Subsection 6.1). This implies that

q1(a,m) =
2(2k − 1)r1(a,m)r3(a,m)

ak2
> 0

which is a contradiction.

To finish this section we will prove an analytic uniqueness theorem for
the Hoffman-Meeks surface X0.

For r ∈]− 2, 2[ and k > 2, define

Mk r =
{

(u,w) ∈ (C ∪ {∞})2 : wk =
u2 + ru + 1

u

}
.

Let now P0 = (0,∞), P1 = (d(r), 0), P2 = (∞,∞) and P3 = (d(r), 0),
where d(r) = −r+i

√
4−r2

2 . Put Mk r = Mk r − {P1, P2, P3}.
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Consider on Mk r the following meromorphic data:

g = Auw ηg = B
du

u2 + ru + 1

where A ∈ R− {0} and B ∈ C, |B| = 1. Define Φj , j = 1, 2, 3, as in (4)
and let

X(P ) = Real
∫ P

P0

(Φ1,Φ2,Φ3), P ∈Mk r.

Theorem 6.8. The minimal immersion X has no real periods if and
only if r = 0. This case leads to Hoffman-Meeks genus k − 1 example.

Proof: Up to the change u $−→ −u, we will assume r > 0.
Suppose X has no real periods. In particular, Residue(Φ3, Pi) ∈ R,

i = 1, 2, 3 and so B ∈ iR, that is, B ∈ {−i, i}. In what follows and
without loss of generality we will suppose B = i.

Let γ1 and γ2 be the oriented closed curves in the u-plane illustrated
in Figure 23 below. We suppose γi(0), i = 1, 2, are the points indicated
in Figure 3.

γ1 γ2

d

γ1(0) 0 γ2(0)

d

Figure 23. γ1 and γ2.

Let ci, i = 1, 2, be the unique lifts of γi, i = 1, 2, to Mk r satisfy-
ing: Arg(w(c1(0))) = −πk , Arg(w(c2(0))) = 2π

k . Let τ1, τ2 denote the
following 1-forms

τ1 =
d u

(u2 + ru + 1)uw
, τ2 =

(1− k)u(2 + ru)w
(u2 + ru + 1)2

d u.
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Observe that η = i
Aτ1 and ηg2 = iAτ2 + d f , where:

f = k
u2w

u2 + ru + 1
.

Define

f1(r) =
1
θ

∫
c1

τ1, f2(r) = −1
ξ

∫
c2

τ1,

g1(r) = −1
θ

∫
c1

τ2, g2(r) =
1
ξ

∫
c2

τ2

where θ = e
−2πi

k − 1, ξ = e
3πi
k − e

πi
k . Deforming c1 and c2 on the real

axis, an analytic continuation argument gives:

f1(r) =
∫ +∞

0

d u

(u2 + ru + 1)u|w| ,

f2(r) = −
∫ 0

−∞

d u

(u2 + ru + 1)u|w|

(41)

g1(r) =
∫ +∞

0

(k − 1)u(2 + ru)|w|
(u2 + ru + 1)2

d u,

g2(r) =
∫ 0

−∞

(1− k)u(2 + ru)|w|
(u2 + ru + 1)2

d u.

(42)

As Φ1 and Φ2 have no real periods we deduce∫
ci

τ1 = −A2

∫
ci

τ2, i = 1, 2

and thus (g1f2 − g2f1)(r) = 0.

Assertion: The functions fi, gi satisfy:

f ′′
i (r) =

(2 + 3k)r
k(4− r2)

f ′
i(r) +

1 + 2k
k2(4− r2)

fi(r)(43)

g′′i (r) =
(−2 + 3k)r
k(4− r2)

g′i(r) +
1− 2k

k2(4− r2)
gi(r).(44)

To see this, note that w = w(r) and formally

∂2τ1
∂r2

=
(2 + 3k)r
k(4− r2)

∂τ1
∂r

+
1 + 2k

k2(4− r2)
τ1 + d j1

∂2(ηg2)
∂r2

=
(−2 + 3k)r
k(4− r2)

∂(ηg2)
∂r

+
1− 2k

k2(4− r2)
ηg2 + d (iAj2)
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where j1 and j2 are the meromorphic functions

j1 =
u2 − rku− 2k − 1

k(4− r2)(u2 + ru + 1)2w
, j2 =

u2((2k − 1)u2 + rku + 1)w
k(4− r2)(u2 + ru + 1)2

.

Now the assertion follows immediately.

As f1(r), g1(r) > 0 ∀ r ∈ [0, 2[, we can define the function ρ : [0, 2[→ R

ρ =
f2

f1
− g2

g1
.

We will observe that ρ is a increasing function. We obtain this by proving

that
(
f2
f1

)′
> 0 and

(
g2
g1

)′
< 0, that is, f ′

2f1 − f2f
′
1 > 0, g′2g1 − g2g

′
1 < 0.

From the above Assertion we have

(f ′
2f1 − f2f

′
1)

′ =
(2 + 3k)r
k(4− r2)

(f ′
2f1 − f2f

′
1),

(g′2g1 − g2g
′
1)

′ =
(−2 + 3k)r
k(4− r2)

(g′2g1 − g2g
′
1)

and then

f ′
2f1 − f2f

′
1 = C1(4− r2)−

3k+2
2k , g′2g1 − g2g

′
1 = C2(4− r2)

2−3k
2k .

To finish the proof it remains only to check that C1 > 0 and C2 < 0.
It is clear that fi(0) > 0, gi(0) > 0, i = 1, 2. On the other hand

∂τ1
∂r

= − k + 1
k(u2 + ru + 1)2w

du,
∂ηg2

∂r
= iA

(1− k)u2w

k(u2 + ru + 1)2
d u

and so

f ′
1(0) = −k + 1

k

∫ +∞

0

d u

(u2 + 1)2|w| < 0

f ′
2(0) =

k + 1
k

∫ 0

−∞

d u

(u2 + 1)2|w| > 0

g′1(0) =
k − 1
k

∫ +∞

0

u2|w|
u2 + 1

du > 0

g′2(0) = −k − 1
k

∫ 0

−∞

u2|w|
u2 + 1

du < 0.

This implies that C1 = 4
3k+2
2k (f ′

2f1−f2f
′
1)(0) > 0 and C2 = 4

3k−2
2k (g′2g1−

g2g
′
1)(0) < 0.

Since ρ(0) = 0 and ρ is increasing, ρ(r) > 0 ∀ r > 0 and then we
could solve the period problem only for r = 0, which corresponds to
Hoffman-Meeks example.
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6.1.3. Uniqueness results for embedded examples with three
ends.

The aim of this subsection is to characterize the minimal embeddings
Xm(a) : Mk a → R

3, k > 2, a > 0, described in Paragraph 6.1.1. They
are the unique surfaces of maximal symmetry among complete minimal
embeddings of genus k − 1 with three ends and finite total curvature.
For a �= 1 the symmetry group Sym(Mk a) is isomorphic to the dihedral
group with 2k elements D(k) and is generated by a rotation about the
x3-axis by angle 2π

k and a symmetry with respect to the (x1, x3)-plane.
Hoffman and Karcher have previously obtained the following unique-

ness theorem:

Theorem 6.9 (Hoffman, Karcher [27]). Let X : M → R
3 be a

complete embedded minimal surface of finite total curvature and three
catenoid ends. Suppose that M has genus k − 1 and k vertical planes
of symmetry intersecting in a common vertical line. Then, up to scaling
and rigid motion, X = Xm(a), for a suitable a ∈]0, 1[.

For a = 1, the immersion Xm(1) = X0 is the Hoffman-Meeks surface
of genus k − 1. The group Sym(Mk 1) is isomorphic to D(2k) and is
generated by a rotation about the x3-axis by angle π

k followed by a
symmetry with respect to the (x1, x2)-plane and a symmetry with respect
to the (x1, x3)-plane. The corresponding uniqueness theorem for this
surface was firstly obtained by Hoffman and Meeks.

Theorem 6.10 (Hoffman, Meeks [32]). Suppose X : M → R
3 is

a complete embedded minimal surface with finite total curvature,
genus k− 1, k > 1, and three ends. If the symmetry group of X(M) has
at least 4k elements, then, up to homothety and rigid motion, X = X0.

In the case of genus one, a more general theorem was proved by Costa:

Theorem 6.11 (Costa [13]). The only complete embedded minimal
surfaces of genus one and three ends are the surfaces {Xm(a) : M2 a →
R

3, a ∈]0, 1]}.

The following notes are due to the authors of this survey and D. Ro-
dŕıguez. We generalize Theorems 6.9 and 6.10 (see Corollary 6.13 and
Theorem 6.14). The fundamental ideas here are inspired in the unique-
ness part of the paper [32].
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Let X : M → R
3 be a complete embedded minimal surface of

genus k − 1, k > 2, with three ends and finite total curvature. We
assume that Sym(M) has at least 2k elements. From Theorem 5.1 M is
conformally equivalent to M − {P1, P2, P3}, where M is a compact Rie-
mann surface of genus k−1. The points removed correspond to the ends
and from Theorem 5.2 the Weierstrass data (g, η) of X extends mero-
morphically to M . Since the ends of M are parallel, we can suppose, up
to one rotation if necessary, g(Pi) ∈ {0,∞}, i = 1, 2, 3.

A symmetry of X(M) induces in a natural way a conformal auto-
morphism of M which extends to M leaving the set {P1, P2, P3} invari-
ant. Since the subgroup of holomorphic transformations has index either
one or two in Sym(M), then Hurwitz’s Theorem (see [20]) implies that
Sym(M) is finite. Thus after a suitable choice of the origin, Sym(M)
is a finite group G of orthogonal linear transformations. Furthermore,
since the normal vectors at the ends are vertical G leaves the x3-axis in-
variant. Basic topics on embedded minimal surfaces indicate that, up to
re-indexing the ends and without loss of generality, g(P1) = g(P3) = 0,
g(P2) = ∞, and that P1 is the highest end, P2 is the middle end and P3

is the lowest end (see Subsection 6.1).

In what follows we do not distinguish between T and T|X(M), the latter
being viewed as conformal transformation of M , ∀T ∈ G.

Observe that any symmetry in G leaves the set {P1, P3} invariant and
so it fixes the point P2. Let H be the subgroup of holomorphic transfor-
mations in G. If we take D a conformal disk centered at P2 invariant by
G then {T|D : T ∈ G} is a finite group of conformal automorphisms of the
disk fixing the origin. Hence this group is either cyclic (i.e. G = H) or
|H| = |G|/2 and is isomorphic to D(|H|). Since H has at least k elements
and k > 2, H is generated by J , where J is either a rotation around the
x3-axis or a rotation around the x3-axis followed by a symmetry with
respect to the (x1, x2)-plane. Moreover, if G is a dihedral group there
exists an antiholomorphic transformation S ∈ G satisfying J ◦S ◦J = S.
The isometry S corresponds to either a symmetry with respect to a plane
containing the x3-axis or a reflection around a straight line orthogonal
to the x3-axis and meeting this axis at the origin.

In the remaining part of this section, we assume that J is the generator
of H corresponding either to a rotation around the x3-axis by an angle
of 2π

ord(J) or a rotation around the x3-axis by an angle of 2π
ord(J) followed

by a symmetry with respect to the (x1, x2)-plane, where ord(J) is the
order of J and ord(J) = |H|. In the second case the number ord(J)
is even. Label J0 as the rotation around the x3-axis with the lowest
positive angle in H. Note that either J0 = J or J0 = J2.
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We have fixed the following notation: for Q ∈M we denote

I(Q) = {T ∈ H : T (Q) = Q}

as the isotropy group of Q in H and label µ(Q) = |I(Q)| as the cardinal
of I(Q). We also denote orb(Q) =

{
Q, J(Q), . . . , J |H|−1(Q)

}
as the

orbit of Q associated to H. Notice that orb(Q) has |H|
µ(Q) elements.

Label H0 = 〈J0〉 and define I0(Q), µ0(Q) and orb0(Q), for each Q ∈
M , as above.

Theorem 6.12 (López, Mart́ın, Rodŕıguez). If ord(J0) ≥ k then
there exists a ∈ R+ such that, up to conformal transformations and rigid
motions in R

3, M = Mk a and X = Xm(a).

Proof: Since J0 is a rotation around the x3-axis then J0(Pi) = Pi,
i = 1, 2, 3, and so the formula of Riemann-Hurwitz gives:

4− 2k = |H0|χ
(
M/H0

)
−

3|H0| − 3 +
∑
Q∈M

(µ0(Q)− 1)

 .

Hence

1− 2k + 3|H0|+
∑
Q∈M

(µ0(Q)− 1) = |H0|χ
(
M/H0

)
.

As |H0| ≥ k, the left hand side of this formula is positive and then
χ

(
M/H0

)
> 0, which implies that M/H0 is a sphere and χ

(
M/H0

)
= 2.

Therefore

(45) 1− 2k + |H0|+
∑
Q∈M

(µ0(Q)− 1) = 0.

Let orb0(Q1), . . . , orb0(Qs) be the different nontrivial orbits of H0 on
M (i.e., µ0(Qi) > 1, i = 1, . . . , s and if Q ∈ M − ∪si=1 orb0(Qi) then
µ0(Q) = 1). We label mi = |H0|

µ0(Qi)
, i = 1, . . . , s. Since J0

mi is a rotation

around the x3-axis that fixes J0
l(Qi), l = 0, . . . ,mi−1, then these points

are mapped by X into the x3 axis. Furthermore, as J0 is a rotation then
X(Qi) = X(J0

l(Qi)), l = 0, . . . ,mi − 1. Our embeddedness assumption
implies mi = 1, i = 1, . . . , s and then (45) becomes

1− 2k + |H0|+ s(|H0| − 1) = 0.
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Since |H0| ≥ k the last equation implies that either s = 0 and |H0| =
2k − 1 or s = 1 and |H0| = k.

If s = 0 then X(M) does not meet the x3-axis and so the number
of points in M with the same vertical normal vector is a multiple of
|H0| = 2k−1. (The rotation J0 maps a point with vertical normal vector
into another point with the same normal vector.) Since the ends P1 and
P3 have the same normal vector, we can deduce that the degree of the
Gauss map g is 2 + n(2k− 1), n > 0. This number is greater than k + 1
which contradicts the formula of Jorge-Meeks (Theorem 5.3).

Therefore s = 1 and |H0| = k. Let P0 be the unique fixed point of J0

in M . Since P0 is a point of M fixed by a conformal automorphism of
order k which corresponds to a rotation around the x3-axis by an angle of
2π
k , then the normal vector at this point is vertical and the multiplicity

of the Gauss map g at P0 is nk − 1, n > 0. Furthermore any other
point Q ∈M − {P0} with vertical normal vector does not lie on the x3-
axis and so J0

l(Q), l = 0, . . . , k− 1, are k different points with the same
vertical normal vector. Taking into account that g(P1) = g(P3) = 0,
g(P2) = ∞ and deg(g) = k + 1 we deduce that n = 1, g(P0) = 0 and
either g−1(∞) = {P2} or g−1(∞) = {P2, Q0, . . . , J0

k−1(Q0)}, where
Q0 ∈ M − {P0, P1, P3} is not a branch point of g. In other words the
divisor associated to g is

(46) [g] =
P1 · P3 · P k−1

0

P2 ·
∏k−1
i=0 J i0(Q0)

.

The mapping u : M −→ M/H0 is a k-fold cyclic branched cover-
ing of M/H0 = C ∪ {∞}. Without loss of generality we may choose
u(P0) = 0, u(P1) = −1, u(P2) = ∞. We also write u(P3) = a ∈ C

and u(Q0) = −1/m, m ∈ C (of course, m = 0 means u(Q0) = ∞).
If we define N = M − P0 then u|N : N → C − {0,−1, a} is a k-fold
unbranched cyclic covering. Moreover, the conformal structure of N
determines the conformal structure of M . We may determine u|N as
follows. Remember that J0 is the generator of H0 corresponding to a
counterclockwise rotation around the x3-axis by an angle of 2π

k . Let
αi, i = 1, 2, 3 be a counterclockwise circuit around 0, a and −1 respec-
tively, and α̃i its lift to N . The end points of α̃i will differ by a deck
transformation of the form Jki

0 , 0 ≤ ki ≤ k − 1, i = 1, 2, 3. The choice
of J0 and the fact that we have oriented M with downward-pointing
normal vectors at P0, P1 and P3 implies that J0 has rotation num-
ber 2π/k at P1 and P3 and rotation number −2π/k at P0 and P2. Hence
k2 ≡ k3 ≡ 1 mod(k) and k1 ≡ −1 mod(k). The numbers k1, k2 and
k3 determine the induced map from Π1(C − {0,−1, a}) onto Zk whose
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kernel corresponds to u∗(Π1(N)) ⊂ Π1(C−{0,−1, a}). Any k-fold cyclic
covering of C−{0,−1, a} is equivalent to u|N if the associated represen-
tation has the same kernel. In particular the cyclic covering defined by
the z-projection of{

(z, w) ∈ (C− {0,−1, a})× (C− {0}) : wk =
(z + 1)(z − a)

z

}
is equivalent to u|N . The extension of this covering to the Riemann
surface

Mk a =
{

(z, w) ∈ (C ∪ {∞})2 : wk =
(z + 1)(z − a)

z

}
is conformally equivalent to u. In particular M = Mk a, u = z and
J0(z, w) = (z, e

2πi
k w).

Furthermore from (46) and taking into account that the ends are em-
bedded (i.e. νi = 1, i = 1, 2, 3, see Theorem 5.3) we have up to rigid
motions and scaling:

(47) g = A
zw

mz + 1
, ηg = B

mz + 1
(z + 1)(z − a)

d z

where A ∈ R and B ∈ C, |B| = 1.
We distinguish two cases: J0 = J2 and J0 = J .
In the first case J is a rotation followed by a symmetry and then

J(P1) = P3, J(P3) = P1, J(P2) = P2 and since J0 has only a fixed
point P0 in M , then J(P0) = P0. The conformal transformation J can be
induced on M/H0 = C∪{∞} giving a nontrivial involutive holomorphic
automorphism of C ∪ {∞} fixing 0 and ∞. This automorphism must
be z $→ −z and then a = 1. Furthermore, since J maps points with
vertical normal vector into other points with vertical normal vector we
deduce that J2l+1(Q0) l = 0, . . . , k − 1 are points which appear in the
divisor associated to g. Moreover it is clear that J(Q0) �= P0, P1, P3 and
so Q0 = P2, i.e. m = 0. Hence the Weierstrass data in (47) correspond
to the Hoffman-Meeks surface.

Suppose now J0 = J , i.e., J is a rotation around the x3-axis. In
this case H0 = H and |G| = 2k. Let S be a symmetry in G − H.
From the definition of H, S is an antiholomorphic transformation on M
fixing P2 which corresponds to either a symmetry with respect to a plane
containing the x3-axis or a reflection about a straight line orthogonal to
the x3-axis and meeting it at the origin. Since J ◦ S ◦ J = S and P0 is
the unique point fixed by J = J0 on M , S fixes P0 too. Inducing S on
M/H0 we obtain an antiholomorphic involution in C ∪ {∞} which fixes
0 and ∞. This implies that z ◦ S = θz, where |θ| = 1.
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If S is a symmetry with respect to a plane containing the x3-axis
then S fixes P1 and P3, and so the function z $→ θz fixes −1 and a,
which implies θ = 1 and a ∈ R − {0,−1}. In particular and without
loss of generality S(z, w) = (z, w). Furthermore, since S maps points
with vertical normal vector into other points with vertical normal vector
then it leaves invariant orb(Q0) and so m ∈ R. Thus Theorem 6.3 and
Theorem 6.7 leads to X = Xm(a).

If S is a reflection about a straight line orthogonal to the x3-axis
then S(P1) = P3 and P2 is a flat end. This implies that m = 0,
θ = −a and without loss of generality S(z, w) = (−az,

√
[k]−aw). Mak-

ing u = z/
√
−a, we obtain M = Mk : r where r = 2 Real(

√
−a) and the

Weierstrass data (47) are, up to natural transformations, those studied
in Theorem 6.8. This theorem leads to Hoffman-Meeks surface which
has 4k symmetries, which is a contradiction.

If P1, P2 and P3 are catenoid ends then Sym(M) does not contain any
rotation followed by a symmetry, i.e. J0 = J . Hence we get the following

Corollary 6.13 (López, Mart́ın, Rodŕıguez). If X : M → R
3 has

three catenoid ends and Sym(M) contains 2k elements or more then, up
to natural transformations, X = Xm(a), a ∈ R+ − {1}.

In the end, we are going to obtain a new characterization of the
Hoffman-Meeks surface which improves on the one by Hoffman and
Meeks in [30].

Theorem 6.14 (López, Mart́ın, Rodŕıguez). If M has 2k + 3
symmetries or more then X is the Hoffman-Meeks surface X0.

Proof: First we observe that J0 = J2. If J0 = J then Sym(M) con-
tains a rotation about the x3-axis of order greater than k + 1 and then
Theorem 6.12 leads to X = Xm(a) for a suitable a > 0. No such surfaces
contain a rotation of this order, which is a contradiction.

Hence J0 = J2 and H is generated by a rotation followed by a sym-
metry. We deduce that P2 is a flat end, P1 and P3 are catenoid ends,
J(P2) = P2, J(P1) = P3 and J(P3) = P1. From the Riemann-Hurwitz
formula we obtain

4− 2k = |H|χ
(
M/H

)
−

2|H| − 3 +
∑
Q∈M

(µ(Q)− 1)

 .
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Since |H| ≥ k we deduce χ
(
M/H

)
> 0 and so M/H is a sphere and

χ
(
M/H

)
= 2. Substituting in the above formula χ

(
M/H

)
for 2, we get

(48)
∑
Q∈M

(µ(Q)− 1) = 2k − 1.

Let orb(Q1), . . . , orb(Qs) be the different nontrivial orbits of H on M
(i.e., µ(Qi) > 1, i = 1, . . . , s and if Q ∈ M − ∪si=1 orb(Qi) then
µ(Q) = 1). If we label mi = |H|

µ(Qi)
, i = 1, . . . , s, then (48) gives

(49)
s∑
i=1

(|H| −mi) = 2k − 1.

Since |H| is even then at least one of the numbers mi is odd. On the other
hand, if mi is odd then Jmi is a rotation around the x3-axis followed by
a symmetry with respect to the (x1, x2)-plane and it fixes only the origin
of R

3. As X is an embedding, there is at most one point of M mapped
by X into the origin, and so there exists a unique odd number mi and
mi = 1. Up to re-indexing we can assume that m1 = 1.

Therefore mi is even, i ≥ 2, and Jmi is a rotation, i ≥ 2. If mi > 2,
i ∈ {2, . . . , s}, then Qi and J2(Qi) are two different points lying in
orb(Qi). Since Jmi is a rotation around the x3-axis then X(Qi) and
X(J2(Qi)) lie in the x3-axis. Moreover J2 is a rotation around the x3-
axis too, and thus X(Qi) = X(J2(Qi)), which contradicts the fact that
X is an embedding. Hence mi = 2 ∀ i ≥ 2 and (49) becomes

|H|+ (s− 1)(|H| − 2) = 2k.

Since |H| ≥ k + 2 we get s = 1 and |H| = 2k.
In particular ord(J0) = k. Using Theorem 6.12 we obtain X = Xm(a),

a ∈ R+. Taking into account that the unique surface of the family, which
has more than 2k symmetries, is the Hoffman-Meeks example, then the
theorem holds.

A standing conjecture asserts that:

Conjecture 5. The moduli space of properly embedded minimal
surfaces in R

3 with finite topology and three ends consists of the fam-
ily {Xm(a)(Mk a), a ∈]0, 1], k ∈ N}.

As we have mentioned before, Costa’s theorem (Theorem 6.11) proves
that the conjecture is true for k = 1.
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This conjecture suggest a more general question: the study of the
moduli space of embedded complete minimal surfaces in R

3, up to ho-
motheties, with finite total curvature and fixed topology. In this sense,
they are remarkable the works by Ros [84] and by Pérez and Ros [77],
[78]. So, in the first paper, it is proved that if the genus is one and the
number of ends is five or more then the moduli space above is compact in
strong sense. In the other two papers, and under suitable conditions of
nondegeneration, it is proved that this moduli space is a real analytical
sub-manifold of a finite dimensional Euclidean complex space.

6.2. Properly embedded minimal surfaces of genus zero.
It gradually became a question of increasing interest to classify the

properly embedded minimal planar domains.
In case of finite topology, Corollary 6.2 and Theorem 6.15 below show

that the only such surface with two or more ends is the catenoid. For
simply connected properly embedded minimal surfaces, it is still open
the following conjecture:

Conjecture 6 (Osserman, Meeks). The only properly embedded,
simply connected, nonflat, minimal surface in R

3 is the helicoid.

Partial answers to this conjecture can be found in [66], [97], [98], [83].
A more general conjecture asserts:

Conjecture 7 (Meeks). The only properly embedded genus zero
minimal surfaces are the plane, the catenoid, the helicoid and Riemann’s
minimal examples.

Riemann’s minimal examples will be described in Paragraph 6.2.2. As
we will comment in Theorem 6.19, Meeks, Pérez and Ros have proved
that Conjecture 7 is true if, in addition, we suppose that the surface has
infinitely many symmetries.

6.2.1. Properly embedded minimal surfaces with vertical
flux.

Let X : M → R
3 be a minimal immersion. Given γ a closed curve in

M , we define the flux of X along γ as

Flux(γ) = Im
(∫

γ

Φ
)
,

where Φ = (Φ1,Φ2,Φ3) are the Weierstrass data of X. From the defini-
tion, it is clear that Flux(γ) only depends on the homology class of γ in
H1(M,Z).
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On the other hand, if n(s) represents the conormal vector of X along
the curve γ, then it is straightforward to check that

Flux(γ) =
∫
γ

n(s) ds.

Furthermore, the following assertions are equivalent:

1. Flux(γ) = 0, ∀ γ ∈ H1(M,Z).
2. Φ1, Φ2 and Φ3 are exact.
3. η, g η and g2 η are exact.
4. The conjugate immersion X∗ = Im

(∫
Φ

)
is well defined.

For any λ > 0, we consider on M the Weierstrass data gλ
def= λ g and

ηλ
def= 1

λ η. They define in general a multivalued unbranched minimal
immersion Xλ : M → R

3, given by

(50) Xλ(P ) = Real
∫ P

P0

1
λ

(
1
2
(1− λ2g2),

i

2
(1 + λ2g2), λg

)
η.

If all the fluxes of X are vertical vectors, we easily conclude that Φ1 and
Φ2 are exact, and we can check that this fact occurs if and only if Xλ
is well defined, ∀λ > 0. If the deformation {Xλ}λ>0 exists on M , it is
obviuous that the third coordinate function of Xλ is independent on λ.

Suppose A is an annulus, A homeomorphic to D
∗
, and consider X :

A → R
3 a minimal immersion. We define the flux of the minimal

end X(A) as Flux(γ), where γ is any curve in A generating H1(A,Z). If
X : M → R

3 is a complete minimal immersion with finite topology, and
we label Ei, i = 1, . . . , r, as the topological ends of M , then

(51)
r∑
i=1

fi = 0,

where fi is the flux of the end Ei (i.e., the flux of the minimal end X(Di),
where Di is a neighborhood of Ei homeomorphic to D

∗
,) i = 1, . . . , r.

This result is an easy consequence of Stokes’ Theorem.
In particular, if X has finite total curvature, the sum of the fluxes of

the ends is zero, and in this sense, the surface is balanced. If P is an
embedded end of M with limit normal vector vP , then the flux of P is

Residue(ΦtvP )aP ,
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where aP is the logarithmic growth of P . So, if all the ends P1, . . . , Pr
are embedded and parallel, one has

(52)
r∑
i=1

aPi = 0.

Other balancing formulae for minimal surfaces can be found in [76].

Remark 6. Any annular embedded end with finite total curvature
and vertical limit normal vector at the end has vertical flux.

Thus, any properly embedded minimal surface with finite total cur-
vature, genus zero, and vertical normal vectors at the ends, has vertical
flux. So, the above deformation exists for these kinds of surfaces.

Theorem 6.15 (López, Ros [59]). Let X : M → R
3 be a complete,

genus zero, embedded minimal surface with finite total curvature. Then
X(M) is the catenoid or the plane.

Proof: As we have mentioned above, any embedded genus zero mini-
mal surface has vertical flux. In fact, we are going to prove that:

The only complete, properly embedded, minimal surfaces with finite
total curvature and vertical flux are the plane and the catenoid.

The presentation here of this result follows that of Pérez and Ros [79].
Suppose that X(M) is not a plane. Then, by Theorems 5.1, 5.2 and

5.3, M is conformally equivalent to M − {P1, . . . , Pr}, where M is a
compact Riemann surface, the Weierstrass data (g, η) extends meromor-
phically to M , and the ends are asymptotic to planes or half-catenoids.

As X(M) has vertical flux, then the deformation Xλ : M → R
3, λ > 0,

given in (50), is well defined. It is clear that Xλ is complete, has finite
total curvature and embedded ends.

Claim 1. Let X : M → R
3 be a complete nonflat minimal immersion

with vertical flux. Consider P ∈ M satisfying g(P ) ∈ {0,∞}, then for
all conformal disc centered at P , D(P ), there is λ > 0 such that Xλ|D(P )

is not an embedding.

Firstly, observe that the set g−1
λ ({0,∞}) does not depend on λ. Sup-

pose that X(M) is not a plane, and consider P ∈M a point with vertical
normal vector. Up to a rigid motion, we can assume that g(P ) = 0. Take
(D(ε), z) a local coordinate centered at P , in such a way that:

g(z) = zk, η = (a + z h(z)) dz,
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where k ∈ N, k > 0, a ∈ C − {0}, h is a holomorphic function on
D(ε) = {z ∈ C/|z| < ε}. If we consider (D(λ1/kε), ζ = λ1/kz), then the
Weierstrass data of Xλ can be locally expressed as:

gλ(ζ) = ζk, ηλ =
1

λ1+1/k

(
a +

ζ

λ1/k
h

(
ζ

λ1/k

))
dζ.

Thus, the homothetic shrinking X̃λ = λ1+1/kXλ is another complete
minimal immersion. As λ → ∞, X̃λ converges uniformly over compact
subsets of C to a minimal immersion X̃∞ whose Weierstrass representa-
tion is:

g∞(ζ) = ζk, η∞ = a dζ.

This minimal immersion is complete, but not embedded. Therefore, if λ
is large enough Xλ is not an embedding. This proves the claim.

In order to prove the next claim, we need some previous results.
Consider X : D(ε)∗ → R

3 be an embedded end with well defined limit
normal vector (i.e. g is well defined at 0, and so the total curvature is
finite), and assume that X(D(ε)∗) is not a planar domain. Up to a rigid
motion, we suppose that g(0) = 0. By Theorem 5.4, the Weierstrass
data of the end are:

(53) g(z) = zk, η =
( a

z2
+ h(z)

)
dz, a ∈ C− {0},

where h is holomorphic and k is a positive integer. If k = 1, then a must
be real, and so we have a catenoid end with logarithmic growth a. If
k > 1 the end is flat. The flux of X either vanishes (flat end) or is vertical
(catenoid end). Hence, Xλ is well defined on D(ε)∗. Furthermore, if X
is a catenoid end (resp. flat end) then Xλ is a catenoid end (resp. flat
end).

We obtain from (53) that
(54) Xλ(z) = φλ(z) + F (z, λ),
where φλ : D(ε)∗ → R

3 denotes either a parametrization of the end of
the (x1, x2)-plane or a parametrization of an end of the vertical catenoid
symmetric respect to the origin with logarithmic growth a, and F is a
finite-valued smooth function on D(ε)×]0,+∞[.

Claim 2. Let X : D(ε)∗ → R
3 be a planar end with finite total cur-

vature. If X(D(ε)∗) is not a planar domain, then there is λ > 0 such
that Xλ is not an embedding.

As in Claim 1, we consider the conformal coordinate (D(λ1/kε)∗, ζ =
λ1/kz). Then, taking (53) into account, the Weierstrass data of Xλ are:

gλ(ζ) = ζk, ηλ =
1

λ1+1/k

(
a

ζ2
+

1
λ2/k

h

(
ζ

λ1/k

))
dζ.



436 F. J. López, F. Mart́ın

Thus, the homothetical shrinking X̃λ = λ1+1/kXλ is another complete
minimal immersion. As λ → ∞, X̃λ converges uniformly over compact
subsets of C − {0} to a minimal immersion X̃∞ : C − {0} → R

3 whose
Weierstrass representation is:

g∞(ζ) = ζk, η∞ =
a

ζ2
dζ.

As k ≥ 2, this surface has an embedded end at 0 and a nonembedded
one at ∞. So, for λ large enough, Xλ is not an embedding.

Claim 3. Xλ is an embedding, ∀λ > 0.

Let B = {λ > 0/Xλ is an embedding}. Observe that 1 ∈ B, and so
B �= ∅. If λ0 ∈ B, then, using Theorem 1.6, one has that the distance
between two ends of Xλ0 is positive. So, from (54), this distance is either
infinite, for all λ > 0, or a continuous function on λ. Then, there exists
ε, R > 0 such that Xλ(M) ∩ (R3 − B(0, R)) is embedded, ∀λ ∈]λ0 −
ε, λ0 + ε[. If Xλ were not injective for some λ ∈]λ0 − ε, λ0 + ε[, then self-
intersections of Xλ(M) would be in B(0, R), and so we would arrive to a
contradiction, by using the classical maximum principle (Theorem 1.5).
Hence, ]λ0 − ε, λ0 + ε[⊂ B which implies that B is open.

Now take {λn}n∈N a sequence in B converging to λ0 > 0. Assume
that Xλ0 is not injective. Then, there are two points x, y ∈ M sat-
isfying Xλ0(x) = Xλ0(y). The convergence of {Xλn

}n∈N to Xλ0 uni-
formly over compact subsets of M and Theorem 1.5 insure that there
exist neighborhoods N(x), N(y), of x and y, respectively, such that
Xλ0(N(x)) = Xλ0(N(y)). So, the image set Xλ0(M) is an embedded
minimal surface with finite total curvature and

Xλ0 : M −→ Xλ0(M)

is a finitely sheeted covering map. By Theorem 1.6, there exists an
embedded tubular neighborhood of Xλ0(M) in R

3. Label π : U →
Xλ0(M), and d : U → R the orthogonal projection and the oriented
distance, respectively. From (54), it is clear that Xλn(M) ⊂ U , for
n ∈ N large enough. Hence,

π ◦Xλn : M −→ Xλ0(M)

is a proper local diffeomorphism, i.e., a finitely sheeted covering map. As
Xλn

is an embedding, then d ◦Xλn
is a continuous map which separates

the points in the fiber (π◦Xλn
)−1({P}), ∀P ∈ Xλ0(M). So, π◦Xλn

has
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only one sheet. As {π ◦Xλn
}n∈N converges to π ◦Xλ0 = Xλ0 uniformly

over compact subsets of M , we deduce that Xλ0 is injective, which is
contrary to our assumption. This contradiction proves that B is closed.

Thus, an elementary connectedness argument gives that B =]0,+∞[,
which concludes the claim.

Claim 4. The surface X(M) is a catenoid.

Taking into account Claims 1, 2 and 3, we deduce that X has neither
planar ends nor points with vertical normal vector. Hence, the third
coordinate function X3 is proper and has no critical points. So, M is an
annulus and Theorems 5.3 and 5.15 imply that X(M) is a catenoid.

6.2.2. Properly embedded minimal cylinders with planar
ends.

The first examples of periodic minimal surfaces with more than one end
were discovered by B. Riemann [82] in 1867. Riemann constructed a one-
parametric family of properly embedded minimal surfaces, {Rλ : λ > 0},
which are invariant under a translation, Tλ. He proved also that every
minimal surface expressible as a union of circles in parallel planes is
either a subset of some Rλ or a subset of the catenoid. Furthermore,
Enneper obtained the same conclusion without assuming that the planes
of the folitation are parallel.

Let us introduce the Riemann minimal examples. Consider, for each
λ > 0, the compact genus one Riemann surface

Mλ = {(z, w) ∈ C
2

: w2 = z(z − λ)(λz + 1)},

with its natural complex structure. Define

Mλ = Mλ − {(0, 0), (∞,∞)}

g = z, ηg = B dz/w,

where B ∈ R. Let [α] be the homology class of the closed curve in Mλ

obtained by lifting the slit [0, λ]. We suppose that α is an element of [α]
lying in Mλ.

Let p : Nλ → Mλ be the conformal covering determined by:
p∗(H1(Nλ,Z)) = {m[α] : m ∈ Z}. Up to conformal transformations,
Nλ = C

∗. We label M̃λ = p−1(Mλ), and observe that M̃λ is conformally
equivalent to C

∗ punctured in a sequence of points diverging to 0 and
∞. We write g̃ = g ◦ p, and η̃ = p∗(η). We also label α̃ as a lift of the
curve α in M̃λ.
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Consider the minimal immersion Yλ : M̃λ → R
3 given by:

Yλ(P ) = Real
∫ P

P0

(Φ̃1, Φ̃2, Φ̃3),

where Φ̃j , j = 1, 2, 3, were defined in (4), and P0 ∈ M̃λ. It is clear that
the 1-forms η, ηg2 and ηg have no residues at the ends of Mλ, and so
the same holds for their pull-backs at the ends of M̃λ. Furthermore,∫
α
ηg =

∫
α̃
η̃g̃ ∈ iR, and so the map Y is well defined (i.e., it has no real

periods) if and only if ∫
α̃

η̃ =
∫
α̃

η̃g̃2,

which is equivalent to

(55)
∫
α

η =
∫
α

ηg2.

The transformation I(z, w) = (−1/z, w/z2) satisfies I∗α = −α and
I∗η = −ηg2. Therefore, (55) trivially holds.

The arising family of surfaces R = {Rλ = Yλ(M̃λ)} are the so called
Riemann minimal examples. These surfaces are invariant under the
translation Tλ defined by the vector

�vλ = Real

(∫
[β]

(Φ1,Φ2,Φ3)

)
,

where [β] is the homology class of a lift to Mλ of the slit [−1/λ, 0].

The ends of Rλ are embedded and planar, and the quotient Rλ/〈Tλ〉
is a genus one, embedded minimal surface in R

3/〈Tλ〉 with two ends and
total curvature −8π. F. J. López, M. Ritoré and F. Wei [58] have charac-
terized Riemann’s examples as the only embedded minimal tori with two
planar ends in R

3/Tλ. From this point of view, and very recently, Meeks,
Pérez and Ros [64] have obtained the best possible theorem, generalizing
the last result for a finite arbitrary number of ends. See Theorem 6.17
below.
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Figure 24. A fundamental piece of R1.

We first include here the following classical theorem.

Theorem 6.16 (Riemann [82]). A nonflat minimal surface foliated
by pieces of circles or lines in parallel planes is, up to scaling and rigid
motions, a piece of either some Rλ, λ > 0, the catenoid or the helicoid.

Proof: Let X : M → R
3 be a surface satisfying the hypotheses in the

theorem. Take (D, z) a conformal disk in M such that ηg = dz. The
level curve x3 = c, c ∈ R, corresponds in D to the curve zc(y) = c + iy.
Therefore, it is straightforward to check that

kc(y) =
[ |g|
1 + |g|2 Real

(
g′

g

)]
|z=zc(y),

where kc is the planar curvature of the curve X ◦ zc. In what follows,
we write k(c, y) = kc(y), and observe that from our assumptions, this
function just depends on c. In particular,

∂k

∂y
= 0.

By a straightforward computation, this equality is equivalent to

(56) Im

(
3
2

(
g′(z)
g(z)

)2

− g′′(z)
g(z)

− 1
1 + |g(z)|2

(
g′(z)
g(z)

)2
)

= 0.
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If we define

f1(z) =
1
2

(
g′(z)
g(z)

)2

− g′′(z)
g(z)

, f2(z) = g(z)

(
g′′(z)
g(z)

− 3
2

(
g′(z)
g(z)

)2
)
,

then (56) becomes

(57) Im(f1) = Im(gf2).

This implies that Im(gf2) is harmonic. Since g and f2 are meromorphic,
it is not hard to deduce that

f2 = r1g + a,

where r1 ∈ R and a ∈ C. By using (57), one has

f1 + ag − r2 = 0,

where r2 ∈ R.
These two equations imply that r1 = r2 = r ∈ R and

(58) g′(z)2 = g(z)
(
ag(z)2 − 2rg(z)− a

)
.

If a = 0, then g′(z) = ±i
√

2rg(z), and so, g(z) = Ae±i
√

2rz, A ∈ C
∗.

If r < 0, we get a piece of a catenoid. When r > 0, we obtain a
piece of the helicoid. Remember that Catalan in [7] obtained a previous
characterization of the helicoid as the only ruled minimal surface in R

3.
Assume that a �= 0. Up to a rotation about the x3-axis (i.e., the

change g $−→ eitg, where a = |a|eit), we can suppose that a ∈]0,+∞[.
Moreover, up to the change z = µ−1ζ, where µ4 − a2 + 2rµ2 = 0, (58)
becomes

g′(ζ)2 = g(ζ)(g(ζ)− λ)(λg(ζ) + 1),

where λ = a/µ2. Up to scaling and rigid motions, this surface corre-
sponds to a piece of Rλ.

The Meeks-Pérez-Ros uniqueness theorem asserts:

Theorem 6.17 (Meeks, Pérez, Ros [64]). Let M be a properly
embedded minimal surface in R

3/T of genus one and a finite number of
planar ends, T being a nontrivial translation. Then, M is a quotient of
a Riemann example.
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Sketch of the Proof: Let S denote the space of properly embedded
minimal (oriented) tori in a quotient of R

3 by a translation T , which
depends on the surface, with 2n horizontal planar (ordered) ends. In
S we consider the uniform topology on compact subsets of R

3. By the
maximum principle at infinity (Theorem 1.6), the ends are separated
by a positive distance. Furthermore, embeddedness insures that, up
to a rotation, the normal limit vector at the ends are (0, 0,±1) and
they alternate from one end to the next. Note that if we rotate around
the x3-axis a M ∈ S, we get a different element of S. The allowed
orders for the ends with normal vector (0, 0,−1), P1, . . . , Pn, and for the
ends with normal vector (0, 0, 1), Q1, . . . , Qn, will be those in which the
list (P1, Q1, P2, Q2, . . . , Pn, Qn) corresponds to consecutive ends in the
quotient space. We will indentify in S two surfaces which differ by a
translation that preserves both orientation and the order of the above
list of ends.

A surface M ∈ S cuts transversally any horizontal plane nonasymp-
totic to its ends in a compact Jordan curve γ. We will orient γ in
such a way that Flux(γ) has positive third coordinate. As the flux van-
ishes around the ends (they are planar ends), it follows that Flux(γ)
does not depend on the height of the plane. Results in [79] say us that
Flux(γ) = (Flux(γ)1,Flux(γ)2,Flux(γ)3) is not vertical. We will rescale
our surfaces so that Flux(γ)3 = 1. We define the Flux map:

F : S −→ R
2 − {0}

F (M) = (Flux(γ)1,Flux(γ)2) .

Denote by R the subset of S consisting of the Riemann examples and
their rotations around the x3-axis. The set R is open and closed in S.
Indeed, it is proved in [75] that any small deformation of a Riemann
example must be another Riemann example. This gives the openness of
R. Remember that Riemann examples are characterized by the fact of
being foliated by circles and lines in horizontal planes (Theorem 6.16).
So, if a sequence of Riemann examples converges to a surface M ∈ S,
then horizontal sections on M will de circles or lines and, thus, M ∈ R.

The theorem is a consequence of the following three facts:

1. The map F is proper.
2. The map F is open.
3. There exists ε > 0 such that if M ∈ S satisfies |F (M)| < ε, then

M ∈ R.

The proof of these assertions can be found in [64].
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Indeed, suppose S ′ def= S − R �= ∅. As S ′ is open and closed in S and
F is proper and open, it follows that its restriction to S ′ is also an open
and proper map. So, F (S ′) = R

2 − {0}. This contradicts assertion 3,
and completes the proof.

This theorem has the following consequences:

Theorem 6.18 (Meeks, Pérez, Ros [64]). If M is a properly em-
bedded periodic minimal planar domain in R

3 with two limit ends, then
M is one of the Riemann examples.

Proof: Since every periodic minimal surface with more than one end
has a top and bottom limit end, it follows that the middle ends are
simple ends, which in the case of finite genus means annular ends (see
[21]). The structure theorem in [6] implies the existence of a nontrivial
screw motion or a translation Λ which preserves the surface and such
that the quotient surface M/〈Λ〉 has genus one and finitely many planar
parallel ends. In particular, M/〈Λ〉 has finite total curvature. By a
result of Pérez and Ros [79] we have that Λ must be a translation. From
Theorem 6.17 we conclude the proof.

Theorem 6.19 (Meeks, Pérez, Ros [64]). Let M be a properly em-
bedded minimal surface in R

3 with genus zero. If the symmetry group of
M is infinite, then M is one the following surfaces: a plane, a catenoid,
a helicoid or a Riemann example.

Proof: Recently, Kusner, Meeks and Rosenberg have proved that an
embedded genus zero minimal surface that is not the plane or the helicoid
must have exactly two limit ends. Then, the theorem is a consequence
of Theorem 6.18.

This theorem has the following corollary:

Corollary 6.20 (Meeks, Pérez, Ros [64]). A properly embedded
minimal surface of R

3 with genus zero has infinite symmetry group if
and only if it is foliated by circles and/or lines in parallel planes.
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N. Nadirashvili des conjectures de Hadamard et Calabi-Yau,
Bull. Sci. Math. (2) 123 (1999), 1–13.

11. J. B. Conway, “Functions of One Complex Variable I,” Second
Edition, Graduate Texts in Math. 11, Springer Verlag, New York,
1992.

12. C. Cosin and A. Ros, A Plateau problem at infinity for properly
immersed minimal surfaces with finite total curvature, Preprint.

13. C. J. Costa, Uniqueness of minimal surfaces embedded in R
3 with

total curvature 12π, J. Differential Geom. 30(3) (1989), 597–618.

14. C. J. Costa, Complete minimal surfaces with genus one and four
planar ends, Proc. Amer. Math. Soc. 119(4) (1993), 1279–1287.

15. C. J. Costa, Example of a complete minimal immersion in R
3

of genus one and three embedded ends, Bol. Soc. Brasil. Mat. 15
(1984), 47–54.
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76. J. Pérez, Riemann bilinear relations on minimal surfaces, Math.
Ann. 310 (1998), 307–332.
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