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ON EXPONENTIAL GROWTH RATES
FOR FREE GROUPS

Malik Koubi

Abstract
Let Fp be a free group of rank p ≥ 2. It is well-known that, with
respect to a p-element generating set, that is, a basis, the expo-
nential growth rate of Fp is 2p− 1. We show that the exponential
growth rate τ of a group G with respect to a p-element generating
set X is 2p− 1 if and only if G is free on X; otherwise τ < 2p− 1.
We also prove that, for any finite generating set X of Fp which
is disjoint from X−1, the exponential growth rate τ of Fp with
respect to X is 2p− 1 if and only if X is a basis of Fp; otherwise
τ > 2p− 1.

1. Introduction

We begin by recalling the basic concepts about exponential growth
rate. For details and more information, see the survey article and prob-
lem list by R. Grigorchuk and P. de la Harpe [1], and the articles they
cite.

Definitions 1.1. Let G be a finitely generated group, and let X be
a finite generating set of G. For g ∈ G, the X-word length of g, |g|X , is
the least non-negative integer m such that g is the product of a sequence
of m elements of X ∪X−1. For each non-negative integer n, β(G,X)(n)
(resp. σ(G,X)(n)) denotes the number of those g ∈ G such that |g|X ≤ n
(resp. |g|X = n); the letter β (resp. σ) refers to the ball (resp. sphere) of
radius n centred at 1. The exponential growth rate of the pair (G,X) is
defined as

τ(G,X) = lim
n→∞

n

√
β(G,X)(n).

Keywords. Free group, exponential growth rate.
1991 Mathematics subject classifications: Primary: 20E05; Secondary: 20F06.



500 M. Koubi

We say that G has exponential growth if τ(G,X) > 1, a condition which
is independent of the choice of finite generating set X.

Notice that it is natural to assume that X ∩X−1 consists of elements
of order two, since we are free to remove elements from X to achieve this
condition, without affecting any of the numerical values involved.

Throughout, let p denote an integer such that p ≥ 2, and Fp a free
group of rank p. It is straightforward to show that if X is a basis of Fp
then β(Fp,X)(n) = p(2p−1)n−1

p−1 and τ(Fp, X) = 2p − 1; in particular, Fp
has exponential growth.

In Section 3, we bound the exponential growth rate from above.

Proposition 1.2. For p ≥ 2, if X is a p-element generating set of a
group G, then τ(G,X) ≤ 2p − 1, and equality holds if and only if G is
free on X.

This is reminiscent of the result of Kesten [2], [3], see [1, Section G],
that the spectral radius µ(G,X) of the simple random walk on the Cay-
ley graph of (G,X) is at least

√
2p−1
p , and equality holds if and only if G

is free on X. Although it is known that µ(G,X) ≥ 1
τ(G,X) , see [1, Sec-

tion G], it seems to be easier to prove Proposition 1.3 directly, rather
than try to derive it from Kesten’s result.

Let X be a finite generating set of Fp which is disjoint from X−1. We
shall be interested in τ(Fp, X). An elementary argument, which we recall
below, shows that τ(Fp, X) ≥ 2p− 1. Our main result is that equality is
achieved if and only if X is a basis of Fp.

Theorem 1.3. For p ≥ 2, if X is a finite generating set of Fp which
is disjoint from X−1, then τ(Fp, X) ≥ 2p− 1, and equality holds if and
only if X is a basis of Fp.

This will be proved in Section 4. In fact, it suffices to consider the
case where X has p+1 elements, and we distinguish two cases according
to whether X contains a basis of Fp or not, and these are dealt with in
Lemmas 4.1 and 4.3, respectively.

2. Preliminaries

We now recall the standard results about finitely generated free groups
that we shall use.
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Theorem 2.1. Let n be a non-negative integer, and Fn a free group
of rank n.

(i) (J. Nielsen, 1921) Every finite subset of a free group generates a
free subgroup.

(ii) (O. Schreier, 1927) If H is a subgroup of finite index m in Fn
then the rank of H is mn−m+ 1.

(iii) (J. Nielsen, 1921) Every n-element generating set of Fn is a basis,
so every generating set of Fn has at least n elements.

(iv) (folklore) Every generating set of Fn contains n independent ele-
ments whose images in the abelianization of Fn are Z-independ-
ent.

(v) (M. Hall, 1949) Every subgroup of Fn is a free factor of some
subgroup of finite index of Fn.

Proof: For (i), (ii), (iii), and (v), see Propositions I.2.6, I.3.9, I.2.7,
and I.3.10 of [4], respectively.

To see (iv), suppose that X is a generating set of a free group G of
rank n. Then the image X̄ of X in the abelianization Ḡ is a generating
set. But Ḡ is free abelian of rank n, so, by linear algebra, X contains
an n-element subset Y such that Ȳ generates a free abelian subgroup H̄
of rank n in Ḡ. Now Y generates a free subgroup H of G, by (i). The
abelianization of H is free abelian of rank at least n, since it maps onto
H̄, so the rank of H is at least n. But Y has n elements, so, by (iii), Y
is independent.

In (iv), it would be reasonable to pass from free abelian groups to
vector spaces over the field of two elements, but there is no vocabulary
to compete with abelianization.

We will find it useful to have a broader scope for the notation given
in Definitions 1.1.

Definitions 2.2. Let G be a group and X a finite subset of G.
For g ∈ G, we define |g|X to be the least non-negative integer m

such that g is the product of a sequence of m elements of X ∪ X−1,
and ∞ if no such m exists. For each non-negative integer n, B(G,X)(n)
(resp. S(G,X)(n)) denotes the set of those g ∈ G such that |g|X ≤ n
(resp. |g|X = n). We write Card to denote the cardinality of a set. As
in Definitions 1.1, we set β(G,X)(n) = Card(B(G,X)(n)), σ(G,X)(n) =
Card(S(G,X)(n)), and

τ(G,X) = lim
n→∞

n

√
β(G,X)(n).
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Clearly τ(G,X) = τ(〈X〉, X), where 〈X〉 denotes the subgroup of G
generated by X.

The following is immediate from the definition.

Lemma 2.3. Let X be a finite subset of a group G, and let Y be a
subset of X. Then τ(G, Y ) ≤ τ(G,X).

Proposition 2.4. If n is a non-negative integer, and X is a finite
generating set of Fn, then τ(Fn, X) ≥ 2n− 1.

Proof: We may assume that n ≥ 1. By Theorem 2.1(iv), X contains
an n-element independent subset Y , so τ(Fn, Y ) = 2n − 1, and, by
Lemma 2.3, τ(Fn, X) ≥ τ(Fn, Y ) = 2n− 1.

3. Bounding exponential growth rate from above

We now prove our first result stated in the introduction.

Proposition 1.2. For p ≥ 2, if X is a p-element generating set of a
group G, then τ(G,X) ≤ 2p − 1, and equality holds if and only if G is
free on X.

Proof: We may assume that G is not free on X, and it remains to
show that τ(G,X) < 2p− 1.

Thus there is a non-trivial reduced X-word r in the free group on X,
such that r is equal to 1 in G. Let l be the X-word length of r in the
free group on X, so l ≥ 1.

Consider any positive integer n.
We claim that

(1) σ(G,X)(n+ l) ≤ [(2p− 1)l − 1] σ(G,X)(n).

To see this, notice that each h ∈ S(G,X)(n+ l) has at least one expression
in the form h = gk where g ∈ S(G,X)(n) and k ∈ S(G,X)(l), and here there
can be no X-cancellation. Moreover k cannot be a cyclic permutation of
r or r−1. Hence, for each g ∈ S(G,X)(n), there are at most (2p− 1)l − 1
distinct k ∈ S(G,X)(l) such that gk ∈ S(G,X)(n+ l). This proves that (1)
holds.

For any positive integer m, we have

β(G,X)(lm)− 1 =
lm∑
i=1

σ(G,X)(i) ≤
m−1∑
q=0

l∑
k=1

[(2p− 1)l − 1]qσ(G,X)(k).
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Now letting M = max
1≤k≤l

σ(G,X)(k), we see that

β(G,X)(lm)− 1 ≤ lM
m−1∑
q=0

[(2p− 1)l − 1]q =
Ml([(2p− 1)l − 1]m − 1)

(2p− 1)l − 2
.

Taking mlth roots of boths sides, and letting m tend to ∞, we find that
τ(G,X) ≤ l

√
(2p− 1)l − 1 < l

√
(2p− 1)l = 2p− 1, as desired.

Remark 3.1. In the above proof we obtained the upper bound
l
√

(2p− 1)l − 1 ≥ τ(G,X) in terms of p and the length l of a non-trivial
reduced relator in G. It is not difficult to show that one can improve
this bound replacing l with the greatest integer in l

2 + 1. Notice that
lim
l→∞

l
√

(2p− 1)l − 1 = 2p − 1, which means that we do not obtain any

upper bound independent of l better than 2p− 1.

4. Bounding exponential growth rate from below

In this section we prove Theorem 1.3. The case where X contains a
basis of Fp will be given by the following result.

Lemma 4.1. Let p ≥ 2. Suppose that X = {x1, . . . , xp+1} is a
generating set of Fp such that Y = {x1, . . . , xp} is a basis of Fp and
xp+1 6∈ Y ∪ Y −1 ∪ {1}. Then τ(Fp, X) > 2p− 1.

Proof: Let a = xp+1, let l = |a|Y , so l ≥ 2, and let

γ =
1

4p(2p− 1)l−1
,

so 1 > γ > 0.
Consider any non-negative integer n which is a multiple of the integer

γ−1.
Let En = S(Fp,Y )(nl), so a ∈ E1 and

(2) Card(En) = 2p(2p− 1)nl−1.

Consider any w ∈ En. Thus w is a reduced Y -word of length nl, so is a
product of n reduced Y -words of length l, that is, w = w(1)w(2) · · ·w(n),
with each w(i) ∈ E1.
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Let E′n be the set of those elements w of En such that at least γn of
the i’s in {1, . . . , n} are such that w(i) = a, that is, a “occurs” at least
γn times in w. Let E′′n be the complement of E′n in En, so a occurs at
most γn times in each element of E′′n. Since a occurs at most n times in
each element of E′n, we see that

(3)
∑
w∈En

n∑
i=1

δa,w(i) ≤ nCard(E′n) + γnCard(E′′n),

where δx,y is the Kronecker delta function, which is 1 if x = y, and 0
otherwise.

For a fixed i,
∑

w∈En
δa,w(i) is the number of reduced Y -words of length nl

which have l of the letters fixed, which is easily seen to be (2p− 1)nl−l.
Hence, the left-hand side of (3) is n(2p− 1)nl−l.

Notice that the right-hand side of (3) can be expressed as

(n− γn) Card(E′n) + γnCard(En),

and this is (n− γn) Card(E′n) + n
2 (2p− 1)nl−l by (2) and the definition

of γ.
Hence (3) becomes n

2 (2p − 1)nl−l ≤ (n − γn) Card(E′n), and we have
(2p−1)nl−l

2−2γ ≤ Card(E′n).

Observe that each element of E′n can be expressed as a product which
has a occurring γn times, together with (1 − γ)n reduced Y -words of
length l; such an expression has X-word length γn+nl− γnl, so E′n lies
in B(Fp,X)(γn+ nl − γnl). Hence

β(Fp,X)(γn+ nl − γnl) ≥ Card(E′n) ≥
(2p− 1)nl−l

2− 2γ
.

Since 2− 2γ > 0, taking γn+ nl − γnl roots of boths sides, and letting
n tend to ∞, we see that

τ(Fp, X) ≥ (2p− 1)
l

γ+l−γl = (2p− 1)(1−γ(1− 1
l ))−1

> (2p− 1).

Remark 4.2. In the above proof we obtained the lower bound
τ(Fp, X) ≥ (2p− 1)α(l), where

α(l) =
(

1− γ
(

1− 1
l

))−1

=
(

1− 1− 1
l

4p(2p− 1)(l−1)

)−1

,

and l is the Y -length of xp+1. Since lim
l→∞

α(l) = 1, we do not obtain any

lower bound independent of l better than 2p− 1.
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Lemma 4.3. Let p ≥ 2, and suppose X = {x1, . . . , xp+1} is a gener-
ating set of Fp, and that Y = {x1, . . . , xp} is independent but is not a
basis of Fp. Then τ(Fp, X) > 2p− 1.

Proof: Here 〈Y 〉 is free of rank p, and is a proper subgroup of Fp. By
Theorem 2.1(ii), 〈Y 〉 has infinite index in Fp. By Theorem 2.1(v), 〈Y 〉
is a proper free factor of a subgroup of Fp. In particular, we can extend
Y to an independent set Z = {x1, . . . , xp, a} in Fp. Let l = |a|X . Since
Z is independent, a 6∈ Y ±1, and since X is not independent, a 6= x±1

p+1.
Hence l ≥ 2.

Consider any non-negative integer n.
Let En denote the set of reduced Z-words such that the number of

occurrences of each element of Y ±1 plus l times the number of occurences
of a±1 is nl. Notice En ⊆ B(Fp,X)(nl).

For example, E1 = S(Fp,Y )(l)∪{a±1}, so Card(E1) = 2p(2p−1)l−1+2.
We will now show that

(3) Card(En) ≥ [(2p− 1)l + 2]n.

Notice that (3) holds for n = 0 and n = 1, so we may assume that n ≥ 2,
and that (3) holds for n−1. It suffices to show that each reduced Z-word
w ∈ En−1 can be extended in (2p − 1)l + 2 ways to the right to get an
element of En without any Z-cancellation. If w ends in an element of
Y ±1, we can extend w in (2p − 1)l ways with elements of S(Fp,Y )(l),
and in 2 ways with a±1; this is (2p − 1)l + 2 ways. If w ends in aε,
with ε ∈ {±1}, we can extend w in 2p(2p− 1)l−1 ways with elements of
S(Fp,Y )(l), and in 1 way with aε; here the number of ways is

2p(2p− 1)l−1 + 1 = (2p− 1)l + (2p− 1)l−1 + 1 ≥ (2p− 1)l + 2.

Hence (3) holds.
Since En ⊆ B(Fp,X)(nl), (3) implies that

β(Fp,X)(nl) ≥ [(2p− 1)l + 2]n.

Hence τ(Fp, X) ≥ l
√

(2p− 1)l + 2 > l
√

(2p− 1)l = 2p− 1.

Remark 4.4. In the above proof we obtained the lower bound
τ(Fp, X) ≥ l

√
(2p− 1)l + 2, where l is the X-length of an element a

independent of Y . We do not know if there exists a lower bound entirely
in terms of p which is greater than 2p− 1.

We now prove our main result.
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Theorem 1.3. For p ≥ 2, if X is a finite generating set of Fp which
is disjoint from X−1, then τ(Fp, X) ≥ 2p− 1, and equality holds if and
only if X is a basis of Fp.

Proof: We may assume that X is not a basis of Fp, and it remains to
prove that τ(Fp, X) > 2p− 1.

By Theorem 2.1(iv), X contains a p-element independent subset Y
whose image in the abelianization of Fp is Z-independent. By hypothesis
X 6= Y , so there exists a (p + 1)-element subset Z of X which contains
Y .

It suffices to show that τ(〈Z〉, Z) > 2p−1, for then, by Proposition 2.4,

τ(Fp, X) ≥ τ(Fp, Z) = τ(〈Z〉, Z) > 2p− 1.

We know that 〈Z〉 has rank at most p + 1, and it maps onto a free
abelian group of rank p, so has rank at least p.

If 〈Z〉 has rank p+ 1 then τ(〈Z〉, Z) = 2p+ 1 > 2p− 1. Thus we may
assume that 〈Z〉 has rank p.

If 〈Y 〉 = 〈Z〉 then, since X is disjoint from X−1, Lemma 4.1 implies
that τ(〈Z〉, Z) > 2p − 1. Thus we may assume that Y is not a basis
of 〈Z〉. Here, by Lemma 4.3, τ(〈Z〉, Z) > 2p − 1. This completes the
proof.
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