MEAN GROWTH OF H^p FUNCTIONS

Daniel Girela and María Auxiliadora Márquez

Abstract __

A classical result of Hardy and Littlewood asserts that if 0 and <math>f is a function which is analytic in the unit disc and belongs to the Hardy space H^p , then, if $\lambda \geq p$ and $\alpha = \frac{1}{p} - \frac{1}{q}$, we have

$$\int_0^1 (1-r)^{\lambda\alpha-1} \left(\frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^q d\theta \right)^{\lambda/q} dr < \infty.$$

We prove that this result is sharp in a very strong sense. Indeed, we prove that if $p,\ q,\ \lambda$ and α are as above and φ is a positive, continuous and increasing function defined in $[0,\infty)$ with $\frac{\varphi(x)}{x^q}\to\infty$, as $x\to\infty$, then there exists a function $f\in H^p$ such that

$$\int_0^1 (1-r)^{\lambda\alpha-1} \left(\int_I \varphi\left(|f(re^{i\theta})| \right) \, d\theta \right)^{\lambda/q} \, dr = \infty,$$

for every non-degenerate interval $I \subset [0, 2\pi]$. We also prove a result of the same kind concerning functions f such that $f' \in H^p$, 0 .

1. Introduction and statement of results

Let Δ denote the unit disc $\{z \in \mathbb{C} : |z| < 1\}$ and \mathbb{T} the unit circle $\{\xi \in \mathbb{C} : |\xi| = 1\}$. For 0 < r < 1 and g analytic in Δ we set

$$M_p(r,g) = \left(\frac{1}{2\pi} \int_0^{2\pi} |g(re^{i\theta})|^p d\theta\right)^{1/p}, \quad 0$$

$$M_{\infty}(r,g) = \max_{|z|=r} |g(z)|.$$

 $^{1991\} Mathematics\ subject\ classifications:\ 30 D 55.$

This research has been supported in part by a D.G.I.C.Y.T. grant (PB94-1496) and by a grant from "La Junta de Andalucía".

For $0 the Hardy space <math>H^p$ consists of those functions g, analytic in Δ , for which

$$||g||_{H^p} = \sup_{0 \le r \le 1} M_p(r, g) < \infty.$$

Hardy and Littlewood proved in [6] (see also [2, Th. 5.9]) the following.

Theorem A. If $0 and <math>f \in H^p$, then

(1.1)
$$M_q(r,f) = o\left(\frac{1}{(1-r)^{\frac{1}{p}-\frac{1}{q}}}\right), \quad as \ r \to 1.$$

Considering the function $f(z) = \frac{1}{(1-z)^{\frac{1}{p}-\varepsilon}}$ for small $\varepsilon > 0$, we easily see that the exponent $\frac{1}{p} - \frac{1}{q}$ is best possible. Duren and Taylor proved in [3] (see also [8]) that the Hardy-Littlewood estimate (1.1) is sharp in a stronger sense. Namely, they proved the following result.

Theorem B. Let $0 , and let <math>\phi(r)$ be a positive and non-increasing function on $0 \le r < 1$, with $\phi(r) \to 0$, as $r \to 1$. Then there exists a function $f \in H^p$ such that

$$M_q(r,f) \neq \mathrm{O}\left(\frac{\phi(r)}{(1-r)^{\frac{1}{p}-\frac{1}{q}}}\right), \quad as \ r \to 1.$$

Although, as we have said, Theorem A is best possible in a strong sense, Hardy and Littlewood were able to sharpen it in one direction proving the following useful result (see [2, Th. 5.11]).

Theorem C. If $0 , <math>f \in H^p$, $\lambda \ge p$, and $\alpha = \frac{1}{p} - \frac{1}{q}$, then

(1.2)
$$\int_0^1 (1-r)^{\lambda\alpha-1} M_q(r,f)^{\lambda} dr < \infty.$$

The fact that (1.2) implies (1.1) is clear having in mind that $M_q(r, f)$ is an increasing function of r. Let us remark that Flett gave in [4] a proof of Theorem C based on the Marcinkiewicz interpolation theorem. Also, it is worth noticing that if we take $q < \infty$ and $\lambda = q$ then we obtain the following:

If $0 and <math>f \in H^p$,

then
$$\int_0^{2\pi} \int_0^1 (1-r)^{\frac{q}{p}-2} |f(re^{i\theta})|^q dr d\theta < \infty$$
.

Our first result in this paper shows that Theorem C is sharp in a very strong sense.

Theorem 1. Let $0 , <math>\lambda \ge p$, and $\alpha = \frac{1}{p} - \frac{1}{q}$. Let $\varphi : [0, \infty) \to [0, \infty)$ be a continuous and increasing function with

(1.3)
$$\frac{\varphi(x)}{x^q} \to \infty, \quad as \ x \to \infty.$$

Then, there exists a function $f \in H^p$ such that

(1.4)
$$\int_0^1 (1-r)^{\lambda\alpha-1} \left(\int_I \varphi\left(\left| f(re^{i\theta}) \right| \right) \ d\theta \right)^{\lambda/q} dr = \infty,$$

for every non-degenerate interval $I \subset [0, 2\pi]$.

In particular, if $0 and <math>\varphi : [0, \infty) \to [0, \infty)$ is as above, then there exists a function $f \in H^p$ such that

$$\int_{I} \int_{0}^{1} (1-r)^{\frac{q}{p}-2} \varphi\left(\left|f(re^{i\theta})\right|\right) dr d\theta = \infty,$$

for every non-degenerate interval $I \subset [0, 2\pi]$.

According to a classical result of Privalov [2, Th. 3.11], a function f analytic in Δ has a continuous extension to the closed unit disc $\overline{\Delta}$ whose boundary values are absolutely continuous on $\partial \Delta$ if and only if $f' \in H^1$. In particular,

$$(1.5) f' \in H^1 \Rightarrow f \in H^{\infty}.$$

This result has been shown to be sharp. Indeed, Yamashita proved in [9] that there exists a function f analytic in Δ with $f' \in H^p$ for all $p \in (0,1)$ but such that f is not even a normal function, and the first author has recently proved in [5] that no restriction on the growth of $M_1(r, f')$ other than its boundedness is enough to conclude that f is a normal function. We refer to [1] and [7] for the theory of normal functions. On the other hand, Hardy and Littlewood obtained the following generalization of (1.5) (see [2, Th. 5.12]).

Theorem D. Let f be a function which is analytic in Δ . If $0 and <math>f' \in H^p$ then $f \in H^q$, where q = p/(1-p).

Taking $f'(z) = (1-z)^{\varepsilon - \frac{1}{p}}$ for small $\varepsilon > 0$ shows that for each value of $p \in (0,1)$ the index q is best possible. Our next result proves the sharpness of Theorem D in a much stronger sense.

Theorem 2. Let 0 and <math>q = p/(1-p). Let $\varphi : [0, \infty) \to [0, \infty)$ be a continuous and increasing function satisfying (1.3). Then, there exists a function f analytic in Δ with $f' \in H^p$ such that

(1.6)
$$\int_{I} \varphi\left(\left|f(e^{i\theta})\right|\right) d\theta = \infty,$$

for every non-degenerate interval $I \subset [0, 2\pi]$.

Let us remark that if p and q are as in Theorem 2 and $f' \in H^p$, then, by Theorem D, $f \in H^q$ and, hence, f has a finite non-tangential limit $f(e^{i\theta})$ for almost every θ . Hence, the left hand side of (1.6) makes sense.

2. Proof of the results

The proofs of our results will be constructive. Let α and β be two positive real numbers, and let $\{\delta_k\}_{k=1}^{\infty}$ be a sequence of real numbers with

(2.1)
$$0 < \delta_k < 2^{-k}$$
, for all k .

For k = 1, 2, ..., and $j = 1, 2, ..., 2^k,$ define

(2.2)
$$\theta_j^k = \frac{2\pi(2j-1)}{2^{k+1}},$$

(2.3)
$$I_j^k = (\theta_j^k - \delta_k, \theta_j^k + \delta_k).$$

Notice that, for each k, the intervals I_j^k , $j=1,2,\ldots,2^k$, are pairwise disjoint. Set

$$(2.4) r_k = 1 - \delta_k, \quad k = 1, 2, \dots.$$

For $k = 1, 2, \ldots$, define

(2.5)
$$f_k(z) = \sum_{j=1}^{2^k} \frac{\delta_k^{\alpha}}{(1 - r_k e^{-i\theta_j^k} z)^{\beta}}, \quad z \in \Delta.$$

Let us remark that the functions f_k are in fact analytic in the closed unit disc $\overline{\Delta}$. Actually, the functions f_k depend on α , β and the sequence $\{\delta_k\}$, however, we shall not indicate this dependence explicitly. We believe that this will not cause any confusion.

We shall make use of some lemmas to deal with the functions f_k . The proofs are elementary and some of them will be omitted. First of all, let us recall that

$$(2.6) |1 - re^{i\theta}| \le 2|\theta|, \quad 0 < r \le 1, \ 1 - r \le |\theta| \le \pi,$$

(2.7)
$$|1 - re^{i\theta}| \ge \frac{|\theta|}{\pi}, \quad 0 < r \le 1, \, |\theta| \le \pi,$$

(2.8)
$$|1 - e^{i\theta}| \ge 2\frac{|\theta|}{\pi}, \quad |\theta| \le \pi.$$

Lemma 1. If $l \neq m$, then

$$|\theta_l^k - \theta_m^k| \ge \frac{\pi}{2^{k-1}}.$$

Lemma 2. If $\theta \in I_i^k$, then

$$(2.9) |e^{i\theta_j^k} - r_k e^{i\theta}| \le 2\delta_k$$

and

(2.10)
$$|e^{i\theta_l^k} - r_k e^{i\theta}| \ge \frac{1}{2^{k-1}}, \text{ for all } l \ne j.$$

Proof: Let $\theta \in I_i^k$, then $|\theta - \theta_i^k| < \delta_k$, which, with (2.6), implies

$$|e^{i\theta_j^k} - r_k e^{i\theta}| = |1 - r_k e^{i(\theta - \theta_j^k)}| \le |1 - r_k e^{i\delta_k}| \le 2\delta_k.$$

This is (2.9). Now, let $l \neq j$ and let φ_l^k be an angle such that $e^{i\varphi_l^k} = e^{i\theta_l^k}$ and $|\theta - \varphi_l^k| \leq \pi$. Then, using (2.4), (2.8), Lemma 1 and (2.1), we obtain

$$|e^{i\theta_l^k} - r_k e^{i\theta}| = |e^{i\varphi_l^k} - r_k e^{i\theta}| \ge |e^{i\varphi_l^k} - e^{i\theta}| - |e^{i\theta} - r_k e^{i\theta}|$$

$$= |e^{i\varphi_l^k} - e^{i\theta}| - \delta_k \ge 2 \frac{|\varphi_l^k - \theta|}{\pi} - \delta_k$$

$$\ge \frac{2}{\pi} (|\varphi_l^k - \theta_j^k| - |\theta_j^k - \theta|) - \delta_k \ge \frac{2}{\pi} (\frac{\pi}{2^{k-1}} - \delta_k) - \delta_k$$

$$\ge \frac{1}{2^{k-2}} - 2\delta_k \ge \frac{1}{2^{k-1}}.$$

Hence, (2.10) holds.

Lemma 3. If n < k, then

$$|\theta_l^n - \theta_j^k| \ge \frac{\pi}{2^k}$$
, for all l, j .

Lemma 4. If $\theta \in I_j^k$, n < k and $0 < r \le 1$, then

$$|e^{i\theta_l^n} - r_n r e^{i\theta}| \ge \frac{1}{2^{k+1}}, \quad \text{for all } l \in \{1, 2, \dots, 2^n\}.$$

Proof: Let $\theta \in I_j^k$ and let φ_l^n be defined as in the proof of Lemma 2. Then, using (2.7), Lemma 3, (2.3) and (2.1), we see that

$$|e^{i\theta_l^n} - r_n r e^{i\theta}| = |e^{i\varphi_l^n} - r_n r e^{i\theta}| \ge \frac{|\varphi_l^n - \theta|}{\pi}$$

$$\ge \frac{1}{\pi} (|\varphi_l^n - \theta_j^k| - |\theta_j^k - \theta|)$$

$$\ge \frac{1}{\pi} (\frac{\pi}{2^k} - \delta_k) > \frac{1}{2^{k+1}}. \blacksquare$$

We shall see that a suitable choice of the numbers α , β and the sequence $\{\delta_k\}$ will allow us to construct functions f analytic in Δ having the properties asserted in Theorems 1 and 2. Precisely, we can prove the following results.

Theorem 3. Let $0 , <math>\lambda \ge p$, and $\alpha = \frac{1}{p} - \frac{1}{q}$. Let $\varphi : [0, \infty) \to [0, \infty)$ be a continuous and increasing function satisfying (1.3). Then, there exist two positive numbers α and β , a sequence of real numbers $\{\delta_k\}_{k=1}^{\infty}$ which satisfies (2.1), and a sequence of positive numbers $\{c_k\}_{k=1}^{\infty}$, such that, if f is the function defined by

(2.11)
$$f(z) = \sum_{k=1}^{\infty} c_k f_k(z), \quad z \in \Delta,$$

then $f \in H^p$ and (1.4) holds for every non-degenerate interval $I \subset [0,2\pi]$.

Theorem 4. Let 0 and <math>q = p/(1-p). Let $\varphi : [0,\infty) \to [0,\infty)$ be a continuous and increasing function satisfying (1.3). Then, there exist two positive numbers α and β , a sequence of real numbers $\{\delta_k\}_{k=1}^{\infty}$ which satisfies (2.1), and a sequence of positive numbers $\{c_k\}_{k=1}^{\infty}$, such that, if f is the function defined by

(2.12)
$$f(z) = \sum_{k=1}^{\infty} c_k f_k(z), \quad z \in \Delta,$$

then f is analytic in Δ , $f' \in H^p$ and (1.6) holds for every non-degenerate interval $I \subset [0, 2\pi]$.

Clearly, Theorem 1 and Theorem 2 follow from Theorem 3 and Theorem 4 respectively.

Proof of Theorem 3: Let α be any positive number, and let

$$\beta = \alpha + \frac{1}{p}.$$

Let $\{\delta_k\}_{k=1}^{\infty}$ be a sequence of real numbers which satisfies (2.1) to be specified later. Set

$$c_k = 2^{-k\left(\frac{1}{p}+2\right)}, \quad k = 1, 2, \dots$$

Define the functions f_k , k = 1, 2, ..., as in (2.5), let $g_k = c_k f_k$ for all k and let f be defined as in (2.11). Hence,

$$f(z) = \sum_{k=1}^{\infty} g_k(z), \quad z \in \Delta.$$

Notice that

$$|g_k(z)| = |2^{-k(\frac{1}{p}+2)} f_k(z)| \le \frac{2^{-k} \delta_k^{\alpha}}{(1-|z|)^{\beta}} \le \frac{2^{-k}}{(1-|z|)^{\beta}}$$

for all $z \in \Delta$ and, hence, the series $\sum_{k=1}^{\infty} g_k(z)$ converges uniformly on every compact subset of Δ and then it defines a function f which is analytic in Δ . Now, having in mind the elementary inequality

$$(a_1 + a_2 + \dots + a_n)^p \le n^p (a_1^p + a_2^p + \dots + a_n^p),$$

 $p > 0, a_i \ge 0 \text{ for } i = 1, 2, \dots, n,$

and the fact that for each $\gamma>1$ there exists a constant $c=c_{\gamma}>0$ such that

(2.14)
$$\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|1 - re^{i\theta}|^{\gamma}} d\theta \le \frac{c}{(1 - r)^{\gamma - 1}}, \quad 0 < r < 1,$$

and using (2.4) and (2.13), we obtain that

$$||g_k||_{H^p}^p = ||g_k(e^{i\theta})||_{L^p}^p = \frac{1}{2\pi} \int_0^{2\pi} |g_k(e^{i\theta})|^p d\theta$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} c_k^p 2^{kp} \delta_k^{\alpha p} \sum_{j=1}^{2^k} \frac{1}{|1 - r_k e^{-i\theta_j^k} e^{i\theta}|^{\beta p}} d\theta$$

$$= (2^k c_k)^p \delta_k^{\alpha p} 2^k \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|1 - r_k e^{i\theta}|^{\beta p}} d\theta$$

$$\leq 2^{-kp} \delta_k^{\alpha p} \frac{c}{(1 - r_k)^{\beta p - 1}} = 2^{-kp} c,$$

where c is the positive constant which appears in (2.14) with $\gamma = \beta p > 1$. Thus, we have proved that

$$(2.15) ||g_k||_{H^p} \le 2^{-k} c^{1/p}, k = 1, 2, \dots,$$

which, clearly, implies that $f \in H^p$.

Next we turn to estimate the value of $|f(re^{i\theta})|$ when θ belongs to one of the intervals I_j^k given in (2.3), and 0 < r < 1, or at least when θ is in a suitable subset of I_j^k and r is close to 1, say $r_k < r < 1$.

Suppose that $\theta \in I_j^k$ and 0 < r < 1. Then

$$|f(re^{i\theta})| = \left| \sum_{n=1}^{\infty} g_n(re^{i\theta}) \right|$$

$$(2.16)$$

$$\geq |g_k(re^{i\theta})| - \sum_{n=1}^{k-1} |g_n(re^{i\theta})| - \sum_{n=k+1}^{\infty} |g_n(re^{i\theta})|.$$

We shall estimate each of these three terms separetely.

First, for $\theta \in I_i^k$ and 0 < r < 1,

$$|g_{k}(re^{i\theta})| = c_{k} \left| \sum_{l=1}^{2^{k}} \frac{\delta_{k}^{\alpha}}{(1 - r_{k}e^{-i\theta_{l}^{k}}re^{i\theta})^{\beta}} \right|$$

$$(2.17)$$

$$\geq c_{k} \left(\frac{\delta_{k}^{\alpha}}{|1 - r_{k}e^{-i\theta_{j}^{k}}re^{i\theta}|^{\beta}} - \sum_{\substack{l=1\\l\neq j}}^{2^{k}} \frac{\delta_{k}^{\alpha}}{|1 - r_{k}e^{-i\theta_{l}^{k}}re^{i\theta}|^{\beta}} \right).$$

If $r > r_k$, using (2.9) and (2.4), we see that

$$|1 - r_k e^{-i\theta_j^k} r e^{i\theta}| = |e^{i\theta_j^k} - r_k r e^{i\theta}| \le |e^{i\theta_j^k} - r_k e^{i\theta}| + |r_k e^{i\theta} - r_k r e^{i\theta}|$$

$$\le 2\delta_k + r_k (1 - r) \le 2\delta_k + (1 - r_k) = 3\delta_k.$$

If $l \neq j$ and $r > r_k$, (2.10), (2.4) and (2.1) give

$$|1 - r_k e^{-i\theta_l^k} r e^{i\theta}| = |e^{i\theta_l^k} - r_k r e^{i\theta}| \ge |e^{i\theta_l^k} - r_k e^{i\theta}| - |r_k e^{i\theta} - r_k r e^{i\theta}|$$
$$\ge \frac{1}{2^{k-1}} - r_k (1 - r) \ge \frac{1}{2^{k-1}} - (1 - r_k) = \frac{1}{2^{k-1}} - \delta_k \ge \frac{1}{2^k}.$$

Then, (2.17) implies that

$$|g_k(re^{i\theta})| \ge c_k \left(\frac{\delta_k^{\alpha}}{(3\delta_k)^{\beta}} - 2^k \delta_k^{\alpha} \left(2^k\right)^{\beta}\right)$$

$$= c_k \delta_k^{\alpha} \left(\frac{1}{(3\delta_k)^{\beta}} - 2^{k(1+\beta)}\right), \quad \theta \in I_j^k, \, r_k < r < 1.$$

Let us take the numbers δ_k so small that

(2.19)
$$2^{k(1+\beta)} < \frac{1}{2} \frac{1}{(3\delta_k)^{\beta}}, \quad k = 1, 2, \dots,$$

then, (2.18) and (2.13) give

$$(2.20) |g_k(re^{i\theta})| \ge \frac{1}{2 \cdot 3^{\beta}} c_k \, \delta_k^{-1/p}, \quad \theta \in I_j^k, \, r_k < r < 1.$$

Now we look at the second term of (2.16). Again, let $\theta \in I_j^k$ and 0 < r < 1. For all n < k, we have, using Lemma 4, that

$$|g_{n}(re^{i\theta})| \leq c_{n} \sum_{l=1}^{2^{n}} \frac{\delta_{n}^{\alpha}}{\left|1 - r_{n}e^{-i\theta_{l}^{n}}re^{i\theta}\right|^{\beta}}$$

$$= c_{n} \delta_{n}^{\alpha} \sum_{l=1}^{2^{n}} \frac{1}{\left|e^{i\theta_{l}^{n}} - r_{n}re^{i\theta}\right|^{\beta}}$$

$$\leq c_{n} \delta_{n}^{\alpha} 2^{n} \left(2^{k+1}\right)^{\beta} = 2^{-n\left(\frac{1}{p}+1\right)} \delta_{n}^{\alpha} 2^{(k+1)\beta} \leq 2^{-n} 2^{(k+1)\beta},$$

which shows that

$$\sum_{n=1}^{k-1} |g_n(re^{i\theta})| \le 2^{(k+1)\beta} \sum_{n=1}^{k-1} 2^{-n} \le 2^{(k+1)\beta} \sum_{n=1}^{\infty} 2^{-n} = 2^{(k+1)\beta}.$$

So we have found that

(2.21)
$$\sum_{n=1}^{k-1} |g_n(re^{i\theta})| \le 2^{(k+1)\beta}, \quad \theta \in I_j^k, \ 0 < r < 1.$$

Let us take the δ_k 's such that

(2.22)
$$\delta_k^{\alpha/\beta} < \frac{\pi}{2^k}, \quad \text{for all } k.$$

For $n = 1, 2, \ldots$, define

$$(2.23) J_l^n = (\theta_l^n - \delta_n^{\alpha/\beta}, \theta_l^n + \delta_n^{\alpha/\beta}), \quad l = 1, 2, \dots, 2^n.$$

Notice that (2.22) implies that, for each n, the intervals J_l^n $(l = 1, 2, ..., 2^n)$ are pairwise disjoint. Then, using (2.7), we easily obtain the following.

Lemma 5. Let
$$n > k$$
. If $\theta \in I_j^k \setminus \bigcup_{l=1}^{2^n} J_l^n$ and $0 < r < 1$, then

$$|e^{i\theta_l^n} - r_n r e^{i\theta}| \ge \frac{1}{\pi} \delta_n^{\alpha/\beta}, \quad \text{for all } l \in \{1, 2, \dots, 2^n\}.$$

Now we are able to estimate the third term of (2.16). Take θ and r as in Lemma 5. We have

$$|g_n(re^{i\theta})| \le c_n \sum_{l=1}^{2^n} \frac{\delta_n^{\alpha}}{\left|1 - r_n e^{-i\theta_l^n} r e^{i\theta}\right|^{\beta}}$$

$$= c_n \delta_n^{\alpha} \sum_{l=1}^{2^n} \frac{1}{\left|e^{i\theta_l^n} - r_n r e^{i\theta}\right|^{\beta}}$$

$$\le c_n \delta_n^{\alpha} 2^n \left(\frac{\pi}{\delta_n^{\alpha/\beta}}\right)^{\beta} = \pi^{\beta} 2^{-n\left(\frac{1}{p}+1\right)} \le \pi^{\beta} 2^{-n}.$$

Thus for $\theta \in I_j^k \setminus \bigcup_{n=k+1}^{\infty} \bigcup_{l=1}^{2^n} J_l^n$ and 0 < r < 1,

$$\sum_{n=k+1}^{\infty} |g_n(re^{i\theta})| \le \sum_{n=k+1}^{\infty} \pi^{\beta} 2^{-n} \le \pi^{\beta} \sum_{n=1}^{\infty} 2^{-n} = \pi^{\beta}.$$

For k = 1, 2, ..., let

(2.24)
$$E_j^k = I_j^k \setminus \bigcup_{n=k+1}^{\infty} \bigcup_{l=1}^{2^n} J_l^n, \quad j = 1, 2, \dots, 2^k.$$

So we have proved

(2.25)
$$\sum_{n=k+1}^{\infty} |g_n(re^{i\theta})| \le \pi^{\beta}, \quad \theta \in E_j^k, \ 0 < r < 1.$$

We conclude from (2.16), (2.20), (2.21) and (2.25), that

$$(2.26) |f(re^{i\theta})| \ge \frac{1}{2 \cdot 3^{\beta}} c_k \, \delta_k^{-1/p} - 2^{(k+1)\beta} - \pi^{\beta}, \quad \theta \in E_j^k, \, r_k < r < 1.$$

Take the δ_k 's so small that

(2.27)
$$2^{(k+1)\beta} + \pi^{\beta} < \frac{1}{4 \cdot 3^{\beta}} c_k \, \delta_k^{-1/p}.$$

Then (2.26) gives

$$(2.28) |f(re^{i\theta})| \ge \frac{1}{4 \cdot 3^{\beta}} c_k \, \delta_k^{-1/p}, \quad \theta \in E_j^k, \, r_k < r < 1.$$

From (1.3) it is clear that

$$\frac{\varphi(\lambda_0 x)}{x^q} \to \infty$$
, as $x \to \infty$,

for every constant $\lambda_0 > 0$. Taking

$$\lambda_k = \frac{1}{4 \cdot 3^{\beta}} c_k, \quad k = 1, 2, \dots,$$

for each k, we have

$$\left(\frac{\varphi(\lambda_k x)}{x^q}\right)^{\lambda/q} \to \infty, \text{ as } x \to \infty,$$

and hence there exists $\varepsilon_k > 0$ such that

$$\varepsilon^{\lambda/p} \varphi \left(\lambda_k \varepsilon^{-1/p} \right)^{\lambda/q} > k, \quad 0 < \varepsilon \le \varepsilon_k.$$

Let us choose the numbers δ_k satisfying

$$(2.29) 0 < \delta_k \le \varepsilon_k, \quad k = 1, 2, \dots.$$

Then it follows that

(2.30)
$$\delta_k^{\lambda/p} \varphi \left(\frac{1}{4 \cdot 3^{\beta}} c_k \, \delta_k^{-1/p} \right)^{\lambda/q} > k, \quad k = 1, 2, \dots.$$

Furthermore, we take the numbers δ_k so small that

(2.31)
$$\sum_{n=k+1}^{\infty} 2^{n+1} \delta_n^{\alpha/\beta} \le \delta_k, \quad k = 1, 2, \dots,$$

which implies

(2.32)
$$|E_j^k| \ge \delta_k, \quad j = 1, 2, \dots, 2^k,$$

for all $k=1,2,\ldots,$ where $|E_j^k|$ denotes the Lebesgue measure of the set $E_j^k.$

Now, if k is any positive integer, and $j \in \{1, 2, ..., 2^k\}$, using (2.28), the fact that φ is increasing, (2.30) and (2.32), we obtain

$$\int_{0}^{1} (1-r)^{\lambda\alpha-1} \left(\int_{I_{j}^{k}} \varphi\left(\left| f(re^{i\theta}) \right| \right) d\theta \right)^{\lambda/q} dr$$

$$\geq \int_{r_{k}}^{1} (1-r)^{\lambda\alpha-1} \left(\int_{E_{j}^{k}} \varphi\left(\left| f(re^{i\theta}) \right| \right) d\theta \right)^{\lambda/q} dr$$

$$\geq \int_{r_{k}}^{1} (1-r)^{\lambda\alpha-1} \left(\int_{E_{j}^{k}} \varphi\left(\frac{1}{4 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1/p} \right) d\theta \right)^{\lambda/q} dr$$

$$= \varphi\left(\frac{1}{4 \cdot 3^{\beta}} c_{k} \delta_{k}^{-1/p} \right)^{\lambda/q} |E_{j}^{k}|^{\lambda/q} \int_{r_{k}}^{1} (1-r)^{\lambda\alpha-1} dr$$

$$\geq k \delta_{k}^{-\lambda/p} \delta_{k}^{\lambda/q} \frac{(1-r_{k})^{\lambda\alpha}}{\lambda\alpha} = k \delta_{k}^{-\lambda\alpha} \frac{\delta_{k}^{\lambda\alpha}}{\lambda\alpha} = \frac{1}{\lambda\alpha} k.$$

Thus, we have seen that

$$(2.33) \quad \int_0^1 (1-r)^{\lambda\alpha-1} \left(\int_{I_j^k} \varphi\left(\left| f(re^{i\theta}) \right| \right) d\theta \right)^{\lambda/q} dr \ge \frac{1}{\lambda\alpha} k,$$

$$j = 1, 2, \dots, 2^k, k = 1, 2, \dots.$$

Now, if $I \subset [0, 2\pi]$ is a non-degenerate interval, then it is clear that there exists k_0 such that for every $k \geq k_0$ there exists $j_k \in \{1, 2, \dots, 2^k\}$ with $I_{j_k}^k \subset I$. Then, using (2.33), we see that

$$\int_{0}^{1} (1-r)^{\lambda\alpha-1} \left(\int_{I} \varphi\left(\left| f(re^{i\theta}) \right| \right) d\theta \right)^{\lambda/q} dr$$

$$\geq \lim_{k \to \infty} \int_{0}^{1} (1-r)^{\lambda\alpha-1} \left(\int_{I_{j_{k}}^{k}} \varphi\left(\left| f(re^{i\theta}) \right| \right) d\theta \right)^{\lambda/q} dr = \infty.$$

Hence, Theorem 3 is proved taking α , β and the sequence $\{c_k\}$ as above, and the δ_k 's satisfying (2.1), (2.19), (2.22), (2.27), (2.29) and (2.31), which is clearly possible.

Proof of Theorem 4: Let α be any positive number, and let

$$\beta = \alpha + \frac{1}{p} - 1.$$

Suppose that $\{\delta_k\}_{k=1}^{\infty}$ is a sequence of real numbers which satisfies (2.1). Set

$$c_k = 2^{-2k/p}, \quad k = 1, 2, \dots,$$

define the functions f_k , k = 1, 2, ..., as in (2.5), and let $g_k = c_k f_k$ for all k. Then,

$$g'_k(z) = c_k \sum_{j=1}^{2^k} \frac{\delta_k^{\alpha} \beta r_k e^{-i\theta_j^k}}{(1 - r_k e^{-i\theta_j^k} z)^{\beta+1}},$$

and

$$|g'_k(z)| \le c_k \beta \sum_{i=1}^{2^k} \frac{\delta_k^{\alpha}}{|1 - r_k e^{-i\theta_j^k} z|^{\beta+1}}.$$

Now, using the elementary inequality

$$(a_1 + a_2 + \dots + a_n)^p \le a_1^p + a_2^p + \dots + a_n^p, \quad a_i \ge 0 \text{ for } i = 1, 2, \dots, n,$$

which holds since $0 , (2.14) with <math>\gamma = (\beta + 1)p > 1$, (2.4) and (2.34), we have

$$\begin{split} \|g_k'\|_{H^p}^p &= \|g_k'(e^{i\theta})\|_{L^p}^p = \frac{1}{2\pi} \int_0^{2\pi} |g_k'(e^{i\theta})|^p \, d\theta \\ &\leq \frac{1}{2\pi} \int_0^{2\pi} c_k^p \, \beta^p \, \delta_k^{\alpha p} \sum_{j=1}^{2^k} \frac{1}{|1 - r_k e^{-i\theta_j^k} e^{i\theta}|^{(\beta+1)p}} \, d\theta \\ &= c_k^p \, \beta^p \, \delta_k^{\alpha p} \, 2^k \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|1 - r_k e^{i\theta}|^{(\beta+1)p}} \, d\theta \\ &\leq 2^{-k} \, \beta^p \, \delta_k^{\alpha p} \frac{c}{(1 - r_k)^{(\beta+1)p-1}} = 2^{-k} \beta^p \, c. \end{split}$$

So we have obtained that

$$(2.35) ||g_k'||_{H^p}^p \le 2^{-k}\beta^p c, k = 1, 2, \dots$$

Let us define f by (2.12). It is clear that f is analytic in Δ . Since

$$f'(z) = \sum_{k=1}^{\infty} g'_k(z),$$

using (2.35), we deduce that

$$||f'||_{H^p}^p \le \sum_{k=1}^{\infty} ||g_k'||_{H^p}^p \le \sum_{k=1}^{\infty} 2^{-k} \beta^p c = \beta^p c < \infty,$$

and, hence, $f' \in H^p$.

We shall argue as in the proof of Theorem 3. If $\theta \in I_j^k$, we have

$$|f(e^{i\theta})| = \left| \sum_{n=1}^{\infty} g_n(e^{i\theta}) \right|$$

$$\geq |g_k(e^{i\theta})| - \sum_{n=1}^{k-1} |g_n(e^{i\theta})| - \sum_{n=k+1}^{\infty} |g_n(e^{i\theta})|.$$

First, we apply Lemma 2 to get

$$|g_k(e^{i\theta})| = c_k \left| \sum_{l=1}^{2^k} \frac{\delta_k^{\alpha}}{(1 - r_k e^{-i\theta_l^k} e^{i\theta})^{\beta}} \right|$$

$$\geq c_k \left(\frac{\delta_k^{\alpha}}{|1 - r_k e^{-i\theta_j^k} e^{i\theta}|^{\beta}} - \sum_{\substack{l=1\\l \neq j}}^{2^k} \frac{\delta_k^{\alpha}}{|1 - r_k e^{-i\theta_l^k} e^{i\theta}|^{\beta}} \right)$$

$$\geq c_k \delta_k^{\alpha} \left(\frac{1}{(2\delta_k)^{\beta}} - 2^k 2^{(k-1)\beta} \right).$$

Notice that the sequence $\{\delta_k\}$ may be supposed to satisfy

$$2^k 2^{(k-1)\beta} < \frac{1}{2} \frac{1}{(2\delta_k)^{\beta}}, \quad k = 1, 2, \dots$$

Then,

$$|g_k(e^{i\theta})| \ge c_k \, \delta_k^{\alpha} \frac{1}{2} \frac{1}{(2\delta_k)^{\beta}} = \frac{1}{2 \cdot 2^{\beta}} c_k \, \delta_k^{\alpha-\beta} = \frac{1}{2^{\beta+1}} c_k \, \delta_k^{-1/q}.$$

So, we have proved that

$$(2.37) |g_k(e^{i\theta})| \ge \frac{1}{2\beta+1} c_k \, \delta_k^{-1/q}, \quad \theta \in I_j^k.$$

Next, take $\theta \in I_j^k$ and n < k. Using Lemma 4, we deduce that

$$|g_n(e^{i\theta})| \le c_n \sum_{l=1}^{2^n} \frac{\delta_n^{\alpha}}{|1 - r_n e^{-i\theta_l^n} e^{i\theta}|^{\beta}}$$

$$= c_n \delta_n^{\alpha} \sum_{l=1}^{2^n} \frac{1}{|e^{i\theta_l^n} - r_n e^{i\theta}|^{\beta}}$$

$$\le c_n \delta_n^{\alpha} 2^n (2^{k+1})^{\beta} = 2^{n(1 - \frac{2}{p})} \delta_n^{\alpha} 2^{(k+1)\beta} \le 2^{-n} 2^{(k+1)\beta}.$$

Hence,

(2.38)
$$\sum_{n=1}^{k-1} |g_n(e^{i\theta})| \le 2^{(k+1)\beta}, \quad \theta \in I_j^k.$$

For every positive integer n, define J_l^n , $l=1,2,\ldots,2^n$, by (2.23), and suppose, as in the proof of Theorem 3, that (2.22) is satisfied. Notice that Lemma 5 holds for every $r\in(0,1)$, and so it also does for r=1. Finally, define the sets E_j^k , for $k=1,2,\ldots$, by (2.24). Then, the same argument used in the proof of Theorem 3 shows that

(2.39)
$$\sum_{n=k+1}^{\infty} |g_n(e^{i\theta})| \le \pi^{\beta}, \quad \theta \in E_j^k.$$

It follows from (2.36), (2.37), (2.38) and (2.39), that

$$|f(e^{i\theta})| \ge \frac{1}{2^{\beta+1}} c_k \, \delta_k^{-1/q} - 2^{(k+1)\beta} - \pi^{\beta}, \quad \theta \in E_j^k,$$

and, taking the numbers δ_k sufficiently small, we have

$$(2.40) |f(e^{i\theta})| \ge \frac{1}{2^{\beta+2}} c_k \, \delta_k^{-1/q}, \quad \theta \in E_j^k.$$

For $k = 1, 2, \ldots$, let

$$\lambda_k = \frac{1}{2^{\beta+2}} \, c_k,$$

and notice that (1.3) implies

$$\frac{\varphi(\lambda_k x)}{x^q} \to \infty$$
, as $x \to \infty$,

and so there exists $\varepsilon_k > 0$ such that

$$\varepsilon \varphi \left(\lambda_k \varepsilon^{-1/q} \right) > k, \quad 0 < \varepsilon \le \varepsilon_k.$$

We may assume that the numbers δ_k also satisfy

$$0 < \delta_k \le \varepsilon_k, \quad k = 1, 2, \dots$$

Therefore,

(2.41)
$$\delta_k \varphi \left(\frac{1}{2^{\beta+2}} c_k \, \delta_k^{-1/q} \right) > k, \quad k = 1, 2, \dots$$

Also, as in the proof of Theorem 3, we can take the numbers δ_k small enough so that (2.31) holds, and then

$$(2.42) |E_i^k| \ge \delta_k, \quad j = 1, 2, \dots, 2^k,$$

for all k = 1, 2, ...

From (2.40), the fact that φ is increasing, (2.41) and (2.42), we conclude that, for each set E_j^k , we have

$$\int_{E_j^k} \varphi\left(\left|f(e^{i\theta})\right|\right) d\theta \ge \int_{E_j^k} \varphi\left(\frac{1}{2^{\beta+2}} c_k \, \delta_k^{-1/q}\right) d\theta$$

$$= \varphi\left(\frac{1}{2^{\beta+2}} c_k \, \delta_k^{-1/q}\right) |E_j^k|$$

$$\ge k \, \delta_k^{-1} \, \delta_k = k.$$

An argument similar to that used at the end of the proof of Theorem 3 shows that this implies that (1.6) holds for every non-degenerate interval $I \subset [0, 2\pi]$. This finishes the proof.

References

- J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.
- P. L. Duren, "Theory of H^p Spaces," Academic Press, New York, 1970.
- 3. P. L. DUREN AND G. D. TAYLOR, Mean growth and coefficients of H^p functions, *Illinois J. Math.* **14** (1970), 419–423.
- 4. T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, *Proc. London Math. Soc.* (3) **20** (1970), 749–768.
- D. GIRELA, On a theorem of Privalov and normal functions, Proc. Amer. Math. Soc. 125 (2) (1997), 433–442.
- 6. G. H. HARDY AND J. E. LITTLEWOOD, Some properties of fractional integrals, II, *Math. Z.* **34** (1932), 403–439.
- 7. Ch. Pommerenke, "Univalent Functions," Vandenhoeck und Ruprecht, Göttingen, 1975.
- 8. G. D. TAYLOR, A note on the growth of functions in H^p , Illinois J. Math. 12 (1968), 171–174.
- 9. S. YAMASHITA, A non-normal function whose derivative is of Hardy class H^p , 0 , Canad. Math. Bull.**23**(4) (1980), 499–500.

Departamento de Análisis Matemático Facultad de Ciencias Universidad de Málaga 29071 Málaga SPAIN

e-mail: Girela@anamat.cie.uma.es

 $e\text{-}mail: \ Marquez@anamat.cie.uma.es$

Rebut el 24 de febrer de 1997