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MEAN GROWTH OF Hp FUNCTIONS

Daniel Girela and Maŕıa Auxiliadora Márquez

Abstract
A classical result of Hardy and Littlewood asserts that if 0 < p <
q < ∞ and f is a function which is analytic in the unit disc and
belongs to the Hardy space Hp, then, if λ ≥ p and α = 1

p
− 1
q
, we

have ∫ 1

0

(1− r)λα−1

(
1

2π

∫ 2π

0

|f(reiθ)|q dθ
)λ/q

dr <∞.

We prove that this result is sharp in a very strong sense. Indeed,
we prove that if p, q, λ and α are as above and ϕ is a posi-
tive, continuous and increasing function defined in [0,∞) with
ϕ(x)
xq
→ ∞, as x → ∞, then there exists a function f ∈ Hp such

that ∫ 1

0

(1− r)λα−1

(∫
I

ϕ
(
|f(reiθ)|

)
dθ

)λ/q
dr =∞,

for every non-degenerate interval I ⊂ [0, 2π]. We also prove a
result of the same kind concerning functions f such that f ′ ∈ Hp,
0 < p < 1.

1. Introduction and statement of results

Let ∆ denote the unit disc {z ∈ C : |z| < 1} and T the unit circle
{ξ ∈ C : |ξ| = 1}. For 0 < r < 1 and g analytic in ∆ we set

Mp(r, g) =
(

1
2π

∫ 2π

0

∣∣g(reiθ)∣∣p dθ)1/p

, 0 < p <∞,

M∞(r, g) = max
|z|=r

|g(z)|.
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For 0 < p ≤ ∞ the Hardy spaceHp consists of those functions g, analytic
in ∆, for which

‖g‖Hp = sup
0<r<1

Mp(r, g) <∞.

Hardy and Littlewood proved in [6] (see also [2, Th. 5.9]) the following.

Theorem A. If 0 < p < q ≤ ∞ and f ∈ Hp, then

(1.1) Mq(r, f) = o

(
1

(1− r) 1
p− 1

q

)
, as r → 1.

Considering the function f(z) = 1

(1−z)
1
p
−ε for small ε > 0, we easily

see that the exponent 1
p − 1

q is best possible. Duren and Taylor proved
in [3] (see also [8]) that the Hardy-Littlewood estimate (1.1) is sharp in
a stronger sense. Namely, they proved the following result.

Theorem B. Let 0 < p < q ≤ ∞, and let φ(r) be a positive and
non-increasing function on 0 ≤ r < 1, with φ(r) → 0, as r → 1. Then
there exists a function f ∈ Hp such that

Mq(r, f) 6= O

(
φ(r)

(1− r) 1
p− 1

q

)
, as r → 1.

Although, as we have said, Theorem A is best possible in a strong
sense, Hardy and Littlewood were able to sharpen it in one direction
proving the following useful result (see [2, Th. 5.11]).

Theorem C. If 0 < p < q ≤ ∞, f ∈ Hp, λ ≥ p, and α = 1
p − 1

q , then

(1.2)
∫ 1

0

(1− r)λα−1Mq(r, f)λ dr <∞.

The fact that (1.2) implies (1.1) is clear having in mind that Mq(r, f)
is an increasing function of r. Let us remark that Flett gave in [4] a
proof of Theorem C based on the Marcinkiewicz interpolation theorem.
Also, it is worth noticing that if we take q <∞ and λ = q then we obtain
the following:

If 0 < p < q <∞ and f ∈ Hp,

then
∫ 2π

0

∫ 1

0

(1− r)
q
p−2|f(reiθ)|q dr dθ <∞.

Our first result in this paper shows that Theorem C is sharp in a very
strong sense.
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Theorem 1. Let 0 < p < q < ∞, λ ≥ p, and α = 1
p − 1

q . Let
ϕ : [0,∞)→ [0,∞) be a continuous and increasing function with

(1.3)
ϕ(x)
xq
→∞, as x→∞.

Then, there exists a function f ∈ Hp such that

(1.4)
∫ 1

0

(1− r)λα−1

(∫
I

ϕ
(∣∣f(reiθ)

∣∣) dθ)λ/q dr =∞,

for every non-degenerate interval I ⊂ [0, 2π].
In particular, if 0 < p < q < ∞ and ϕ : [0,∞) → [0,∞) is as above,

then there exists a function f ∈ Hp such that∫
I

∫ 1

0

(1− r)
q
p−2ϕ

(∣∣f(reiθ)
∣∣) dr dθ =∞,

for every non-degenerate interval I ⊂ [0, 2π].

According to a classical result of Privalov [2, Th. 3.11], a function f
analytic in ∆ has a continuous extension to the closed unit disc ∆ whose
boundary values are absolutely continuous on ∂∆ if and only if f ′ ∈ H1.
In particular,

(1.5) f ′ ∈ H1 ⇒ f ∈ H∞.

This result has been shown to be sharp. Indeed, Yamashita proved in [9]
that there exists a function f analytic in ∆ with f ′ ∈ Hp for all p ∈ (0, 1)
but such that f is not even a normal function, and the first author has
recently proved in [5] that no restriction on the growth of M1(r, f ′) other
than its boundedness is enough to conclude that f is a normal function.
We refer to [1] and [7] for the theory of normal functions. On the other
hand, Hardy and Littlewood obtained the following generalization of
(1.5) (see [2, Th. 5.12]).

Theorem D. Let f be a function which is analytic in ∆. If 0 < p < 1
and f ′ ∈ Hp then f ∈ Hq, where q = p/(1− p).

Taking f ′(z) = (1 − z)ε− 1
p for small ε > 0 shows that for each value

of p ∈ (0, 1) the index q is best possible. Our next result proves the
sharpness of Theorem D in a much stronger sense.
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Theorem 2. Let 0 < p < 1 and q = p/(1−p). Let ϕ : [0,∞)→ [0,∞)
be a continuous and increasing function satisfying (1.3). Then, there
exists a function f analytic in ∆ with f ′ ∈ Hp such that

(1.6)
∫
I

ϕ
(∣∣f(eiθ)

∣∣) dθ =∞,

for every non-degenerate interval I ⊂ [0, 2π].

Let us remark that if p and q are as in Theorem 2 and f ′ ∈ Hp, then,
by Theorem D, f ∈ Hq and, hence, f has a finite non-tangential limit
f(eiθ) for almost every θ. Hence, the left hand side of (1.6) makes sense.

2. Proof of the results

The proofs of our results will be constructive. Let α and β be two
positive real numbers, and let {δk}∞k=1 be a sequence of real numbers
with

(2.1) 0 < δk < 2−k, for all k.

For k = 1, 2, . . . , and j = 1, 2, . . . , 2k, define

θkj =
2π(2j − 1)

2k+1
,(2.2)

Ikj = (θkj − δk, θkj + δk).(2.3)

Notice that, for each k, the intervals Ikj , j = 1, 2, . . . , 2k, are pairwise
disjoint. Set

(2.4) rk = 1− δk, k = 1, 2, . . . .

For k = 1, 2, . . . , define

(2.5) fk(z) =
2k∑
j=1

δαk

(1− rke−iθ
k
j z)β

, z ∈ ∆.

Let us remark that the functions fk are in fact analytic in the closed unit
disc ∆. Actually, the functions fk depend on α, β and the sequence {δk},
however, we shall not indicate this dependence explicitely. We believe
that this will not cause any confusion.
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We shall make use of some lemmas to deal with the functions fk. The
proofs are elementary and some of them will be omitted. First of all, let
us recall that

|1− reiθ| ≤ 2|θ|, 0 < r ≤ 1, 1− r ≤ |θ| ≤ π,(2.6)

|1− reiθ| ≥ |θ|
π
, 0 < r ≤ 1, |θ| ≤ π,(2.7)

|1− eiθ| ≥ 2
|θ|
π
, |θ| ≤ π.(2.8)

Lemma 1. If l 6= m, then

|θkl − θkm| ≥
π

2k−1
.

Lemma 2. If θ ∈ Ikj , then

|eiθkj − rkeiθ| ≤ 2δk(2.9)

and

|eiθkl − rkeiθ| ≥
1

2k−1
, for all l 6= j.(2.10)

Proof: Let θ ∈ Ikj , then |θ − θkj | < δk, which, with (2.6), implies

|eiθkj − rkeiθ| = |1− rkei(θ−θ
k
j )| ≤ |1− rkeiδk | ≤ 2δk.

This is (2.9). Now, let l 6= j and let ϕkl be an angle such that eiϕ
k
l = eiθ

k
l

and |θ−ϕkl | ≤ π. Then, using (2.4), (2.8), Lemma 1 and (2.1), we obtain

|eiθkl − rkeiθ| = |eiϕ
k
l − rkeiθ| ≥ |eiϕ

k
l − eiθ| − |eiθ − rkeiθ|

= |eiϕkl − eiθ| − δk ≥ 2
|ϕkl − θ|

π
− δk

≥ 2
π

(
|ϕkl − θkj | − |θkj − θ|

)
− δk ≥

2
π

( π

2k−1
− δk

)
− δk

≥ 1
2k−2

− 2δk ≥
1

2k−1
.

Hence, (2.10) holds.
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Lemma 3. If n < k, then

|θnl − θkj | ≥
π

2k
, for all l, j.

Lemma 4. If θ ∈ Ikj , n < k and 0 < r ≤ 1, then

|eiθnl − rnreiθ| ≥
1

2k+1
, for all l ∈ {1, 2, . . . , 2n}.

Proof: Let θ ∈ Ikj and let ϕnl be defined as in the proof of Lemma 2.
Then, using (2.7), Lemma 3, (2.3) and (2.1), we see that

|eiθnl − rnreiθ| = |eiϕ
n
l − rnreiθ| ≥

|ϕnl − θ|
π

≥ 1
π

(
|ϕnl − θkj | − |θkj − θ|

)
≥ 1
π

( π
2k
− δk

)
>

1
2k+1

.

We shall see that a suitable choice of the numbers α, β and the se-
quence {δk} will allow us to construct functions f analytic in ∆ having
the properties asserted in Theorems 1 and 2. Precisely, we can prove the
following results.

Theorem 3. Let 0 < p < q < ∞, λ ≥ p, and α = 1
p − 1

q . Let
ϕ : [0,∞) → [0,∞) be a continuous and increasing function satisfying
(1.3). Then, there exist two positive numbers α and β, a sequence of
real numbers {δk}∞k=1 which satisfies (2.1), and a sequence of positive
numbers {ck}∞k=1, such that, if f is the function defined by

(2.11) f(z) =
∞∑
k=1

ckfk(z), z ∈ ∆,

then f ∈ Hp and (1.4) holds for every non-degenerate interval I ⊂
[0, 2π].
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Theorem 4. Let 0 < p < 1 and q = p/(1−p). Let ϕ : [0,∞)→ [0,∞)
be a continuous and increasing function satisfying (1.3). Then, there
exist two positive numbers α and β, a sequence of real numbers {δk}∞k=1

which satisfies (2.1), and a sequence of positive numbers {ck}∞k=1, such
that, if f is the function defined by

(2.12) f(z) =
∞∑
k=1

ckfk(z), z ∈ ∆,

then f is analytic in ∆, f ′ ∈ Hp and (1.6) holds for every non-degenerate
interval I ⊂ [0, 2π].

Clearly, Theorem 1 and Theorem 2 follow from Theorem 3 and Theo-
rem 4 respectively.

Proof of Theorem 3: Let α be any positive number, and let

(2.13) β = α+
1
p
.

Let {δk}∞k=1 be a sequence of real numbers which satisfies (2.1) to be
specified later. Set

ck = 2−k(
1
p+2), k = 1, 2, . . . .

Define the functions fk, k = 1, 2, . . . , as in (2.5), let gk = ckfk for all k
and let f be defined as in (2.11). Hence,

f(z) =
∞∑
k=1

gk(z), z ∈ ∆.

Notice that

|gk(z)| = |2−k(
1
p+2)fk(z)| ≤

2−kδαk
(1− |z|)β ≤

2−k

(1− |z|)β

for all z ∈ ∆ and, hence, the series
∑∞
k=1 gk(z) converges uniformly on

every compact subset of ∆ and then it defines a function f which is
analytic in ∆. Now, having in mind the elementary inequality

(a1 + a2 + · · ·+ an)p ≤ np(ap1 + ap2 + · · ·+ apn),
p > 0, ai ≥ 0 for i = 1, 2, . . . , n,
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and the fact that for each γ > 1 there exists a constant c = cγ > 0 such
that

(2.14)
1
2π

∫ 2π

0

1
|1− reiθ|γ dθ ≤

c

(1− r)γ−1
, 0 < r < 1,

and using (2.4) and (2.13), we obtain that

‖gk‖pHp = ‖gk(eiθ)‖pLp =
1
2π

∫ 2π

0

|gk(eiθ)|p dθ

≤ 1
2π

∫ 2π

0

cpk 2kp δαpk

2k∑
j=1

1

|1− rke−iθ
k
j eiθ|βp

dθ

= (2kck)p δ
αp
k 2k

1
2π

∫ 2π

0

1

|1− rkeiθ|βp
dθ

≤ 2−kp δαpk
c

(1− rk)βp−1
= 2−kpc,

where c is the positive constant which appears in (2.14) with γ = βp > 1.
Thus, we have proved that

(2.15) ‖gk‖Hp ≤ 2−kc1/p, k = 1, 2, . . . ,

which, clearly, implies that f ∈ Hp.

Next we turn to estimate the value of |f(reiθ)| when θ belongs to one
of the intervals Ikj given in (2.3), and 0 < r < 1, or at least when θ is in
a suitable subset of Ikj and r is close to 1, say rk < r < 1.

Suppose that θ ∈ Ikj and 0 < r < 1. Then

(2.16)

|f(reiθ)| =
∣∣∣∣∣
∞∑
n=1

gn(reiθ)

∣∣∣∣∣
≥ |gk(reiθ)| −

k−1∑
n=1

|gn(reiθ)| −
∞∑

n=k+1

|gn(reiθ)|.

We shall estimate each of these three terms separetely.
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First, for θ ∈ Ikj and 0 < r < 1,

(2.17)

|gk(reiθ)| = ck

∣∣∣∣∣∣
2k∑
l=1

δαk
(1− rke−iθ

k
l reiθ)β

∣∣∣∣∣∣
≥ ck

 δαk

|1− rke−iθ
k
j reiθ|β

−
2k∑
l=1
l 6=j

δαk
|1− rke−iθ

k
l reiθ|β

 .

If r > rk, using (2.9) and (2.4), we see that

|1− rke−iθ
k
j reiθ| = |eiθkj − rkreiθ| ≤ |eiθ

k
j − rkeiθ|+ |rkeiθ − rkreiθ|

≤ 2δk + rk(1− r) ≤ 2δk + (1− rk) = 3δk.

If l 6= j and r > rk, (2.10), (2.4) and (2.1) give

|1− rke−iθ
k
l reiθ| = |eiθkl − rkreiθ| ≥ |eiθ

k
l − rkeiθ| − |rkeiθ − rkreiθ|

≥ 1
2k−1

− rk(1− r) ≥
1

2k−1
− (1− rk) =

1
2k−1

− δk ≥
1
2k
.

Then, (2.17) implies that

(2.18)

|gk(reiθ)| ≥ ck
(

δαk
(3δk)β

− 2kδαk
(
2k
)β)

= ck δ
α
k

(
1

(3δk)β
− 2k(1+β)

)
, θ ∈ Ikj , rk < r < 1.

Let us take the numbers δk so small that

(2.19) 2k(1+β) <
1
2

1
(3δk)β

, k = 1, 2, . . . ,

then, (2.18) and (2.13) give

(2.20) |gk(reiθ)| ≥
1

2 · 3β ck δ
−1/p
k , θ ∈ Ikj , rk < r < 1.
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Now we look at the second term of (2.16). Again, let θ ∈ Ikj and
0 < r < 1. For all n < k, we have, using Lemma 4, that

|gn(reiθ)| ≤ cn
2n∑
l=1

δαn∣∣1− rne−iθnl reiθ∣∣β
= cnδ

α
n

2n∑
l=1

1∣∣eiθnl − rnreiθ∣∣β
≤ cnδαn 2n

(
2k+1

)β
= 2−n(

1
p+1)δαn 2(k+1)β ≤ 2−n2(k+1)β ,

which shows that

k−1∑
n=1

|gn(reiθ)| ≤ 2(k+1)β
k−1∑
n=1

2−n ≤ 2(k+1)β
∞∑
n=1

2−n = 2(k+1)β .

So we have found that

(2.21)
k−1∑
n=1

|gn(reiθ)| ≤ 2(k+1)β , θ ∈ Ikj , 0 < r < 1.

Let us take the δk’s such that

(2.22) δ
α/β
k <

π

2k
, for all k.

For n = 1, 2, . . . , define

(2.23) Jnl = (θnl − δα/βn , θnl + δα/βn ), l = 1, 2, . . . , 2n.

Notice that (2.22) implies that, for each n, the intervals Jnl
(l = 1, 2, . . . , 2n) are pairwise disjoint. Then, using (2.7), we easily
obtain the following.

Lemma 5. Let n > k. If θ ∈ Ikj \
2n⋃
l=1

Jnl and 0 < r < 1, then

|eiθnl − rnreiθ| ≥
1
π
δα/βn , for all l ∈ {1, 2, . . . , 2n}.
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Now we are able to estimate the third term of (2.16). Take θ and r as
in Lemma 5. We have

|gn(reiθ)| ≤ cn
2n∑
l=1

δαn∣∣1− rne−iθnl reiθ∣∣β
= cnδ

α
n

2n∑
l=1

1∣∣eiθnl − rnreiθ∣∣β
≤ cnδαn 2n

(
π

δ
α/β
n

)β
= πβ2−n(

1
p+1) ≤ πβ2−n.

Thus for θ ∈ Ikj \
∞⋃

n=k+1

2n⋃
l=1

Jnl and 0 < r < 1,

∞∑
n=k+1

|gn(reiθ)| ≤
∞∑

n=k+1

πβ2−n ≤ πβ
∞∑
n=1

2−n = πβ .

For k = 1, 2, . . . , let

(2.24) Ekj = Ikj \
∞⋃

n=k+1

2n⋃
l=1

Jnl , j = 1, 2, . . . , 2k.

So we have proved

(2.25)
∞∑

n=k+1

|gn(reiθ)| ≤ πβ , θ ∈ Ekj , 0 < r < 1.

We conclude from (2.16), (2.20), (2.21) and (2.25), that

(2.26) |f(reiθ)| ≥ 1
2 · 3β ck δ

−1/p
k − 2(k+1)β − πβ , θ ∈ Ekj , rk < r < 1.

Take the δk’s so small that

(2.27) 2(k+1)β + πβ <
1

4 · 3β ck δ
−1/p
k .

Then (2.26) gives

(2.28) |f(reiθ)| ≥ 1
4 · 3β ck δ

−1/p
k , θ ∈ Ekj , rk < r < 1.



312 D. Girela, M. A. Márquez

From (1.3) it is clear that

ϕ(λ0x)
xq

→∞, as x→∞,

for every constant λ0 > 0. Taking

λk =
1

4 · 3β ck, k = 1, 2, . . . ,

for each k, we have

(
ϕ(λkx)
xq

)λ/q
→∞, as x→∞,

and hence there exists εk > 0 such that

ελ/pϕ
(
λkε
−1/p

)λ/q
> k, 0 < ε ≤ εk.

Let us choose the numbers δk satisfying

(2.29) 0 < δk ≤ εk, k = 1, 2, . . . .

Then it follows that

(2.30) δ
λ/p
k ϕ

(
1

4 · 3β ck δ
−1/p
k

)λ/q
> k, k = 1, 2, . . . .

Furthermore, we take the numbers δk so small that

(2.31)
∞∑

n=k+1

2n+1δα/βn ≤ δk, k = 1, 2, . . . ,

which implies

(2.32) |Ekj | ≥ δk, j = 1, 2, . . . , 2k,

for all k = 1, 2, . . . , where |Ekj | denotes the Lebesgue measure of the set
Ekj .
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Now, if k is any positive integer, and j ∈ {1, 2, . . . , 2k}, using (2.28),
the fact that ϕ is increasing, (2.30) and (2.32), we obtain

∫ 1

0

(1− r)λα−1

(∫
Ik
j

ϕ
(∣∣f(reiθ)

∣∣) dθ)λ/q dr
≥
∫ 1

rk

(1− r)λα−1

(∫
Ek
j

ϕ
(∣∣f(reiθ)

∣∣) dθ)λ/q dr
≥
∫ 1

rk

(1− r)λα−1

(∫
Ek
j

ϕ

(
1

4 · 3β ck δ
−1/p
k

)
dθ

)λ/q
dr

= ϕ

(
1

4 · 3β ck δ
−1/p
k

)λ/q
|Ekj |λ/q

∫ 1

rk

(1− r)λα−1 dr

≥ k δ−λ/pk δ
λ/q
k

(1− rk)λα
λα

= kδ−λαk

δλαk
λα

=
1
λα

k.

Thus, we have seen that

(2.33)
∫ 1

0

(1− r)λα−1

(∫
Ik
j

ϕ
(∣∣f(reiθ)

∣∣) dθ)λ/q dr ≥ 1
λα

k,

j = 1, 2, . . . , 2k, k = 1, 2, . . . .

Now, if I ⊂ [0, 2π] is a non-degenerate interval, then it is clear that
there exists k0 such that for every k ≥ k0 there exists jk ∈ {1, 2, . . . , 2k}
with Ikjk ⊂ I. Then, using (2.33), we see that

∫ 1

0

(1− r)λα−1

(∫
I

ϕ
(∣∣f(reiθ)

∣∣) dθ)λ/q dr
≥ lim
k→∞

∫ 1

0

(1− r)λα−1

(∫
Ik
jk

ϕ
(∣∣f(reiθ)

∣∣) dθ)λ/q dr =∞.

Hence, Theorem 3 is proved taking α, β and the sequence {ck} as above,
and the δk’s satisfying (2.1), (2.19), (2.22), (2.27), (2.29) and (2.31),
which is clearly possible.
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Proof of Theorem 4: Let α be any positive number, and let

(2.34) β = α+
1
p
− 1.

Suppose that {δk}∞k=1 is a sequence of real numbers which satisfies (2.1).
Set

ck = 2−2k/p, k = 1, 2, . . . ,

define the functions fk, k = 1, 2, . . . , as in (2.5), and let gk = ckfk for
all k. Then,

g′k(z) = ck

2k∑
j=1

δαk β rk e
−iθkj

(1− rke−iθ
k
j z)β+1

,

and

|g′k(z)| ≤ ck β
2k∑
j=1

δαk

|1− rke−iθ
k
j z|β+1

.

Now, using the elementary inequality

(a1 + a2 + · · ·+ an)p ≤ ap1 + ap2 + · · ·+ apn, ai ≥ 0 for i = 1, 2, . . . , n,

which holds since 0 < p < 1, (2.14) with γ = (β + 1)p > 1, (2.4) and
(2.34), we have

‖g′k‖pHp = ‖g′k(eiθ)‖pLp =
1
2π

∫ 2π

0

|g′k(eiθ)|p dθ

≤ 1
2π

∫ 2π

0

cpk β
p δαpk

2k∑
j=1

1

|1− rke−iθ
k
j eiθ|(β+1)p

dθ

= cpk β
p δαpk 2k

1
2π

∫ 2π

0

1

|1− rkeiθ|(β+1)p
dθ

≤ 2−k βp δαpk
c

(1− rk)(β+1)p−1
= 2−kβp c.

So we have obtained that

(2.35) ‖g′k‖pHp ≤ 2−kβp c, k = 1, 2, . . . .
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Let us define f by (2.12). It is clear that f is analytic in ∆. Since

f ′(z) =
∞∑
k=1

g′k(z),

using (2.35), we deduce that

‖f ′‖pHp ≤
∞∑
k=1

‖g′k‖pHp ≤
∞∑
k=1

2−kβp c = βp c <∞,

and, hence, f ′ ∈ Hp.

We shall argue as in the proof of Theorem 3. If θ ∈ Ikj , we have

(2.36)

|f(eiθ)| =
∣∣∣∣∣
∞∑
n=1

gn(eiθ)

∣∣∣∣∣
≥ |gk(eiθ)| −

k−1∑
n=1

|gn(eiθ)| −
∞∑

n=k+1

|gn(eiθ)|.

First, we apply Lemma 2 to get

|gk(eiθ)| = ck

∣∣∣∣∣∣
2k∑
l=1

δαk
(1− rke−iθ

k
l eiθ)β

∣∣∣∣∣∣
≥ ck

 δαk

|1− rke−iθ
k
j eiθ|β

−
2k∑
l=1
l 6=j

δαk
|1− rke−iθ

k
l eiθ|β


≥ ck δαk

(
1

(2δk)β
− 2k2(k−1)β

)
.

Notice that the sequence {δk} may be supposed to satisfy

2k2(k−1)β <
1
2

1
(2δk)β

, k = 1, 2, . . . .

Then,

|gk(eiθ)| ≥ ck δαk
1
2

1
(2δk)β

=
1

2 · 2β ck δ
α−β
k =

1
2β+1

ck δ
−1/q
k .
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So, we have proved that

(2.37) |gk(eiθ)| ≥
1

2β+1
ck δ
−1/q
k , θ ∈ Ikj .

Next, take θ ∈ Ikj and n < k. Using Lemma 4, we deduce that

|gn(eiθ)| ≤ cn
2n∑
l=1

δαn∣∣1− rne−iθnl eiθ∣∣β
= cnδ

α
n

2n∑
l=1

1∣∣eiθnl − rneiθ∣∣β
≤ cnδαn 2n

(
2k+1

)β
= 2n(1− 2

p )δαn 2(k+1)β ≤ 2−n2(k+1)β .

Hence,

(2.38)
k−1∑
n=1

|gn(eiθ)| ≤ 2(k+1)β , θ ∈ Ikj .

For every positive integer n, define Jnl , l = 1, 2, . . . , 2n, by (2.23), and
suppose, as in the proof of Theorem 3, that (2.22) is satisfied. Notice
that Lemma 5 holds for every r ∈ (0, 1), and so it also does for r = 1.
Finally, define the sets Ekj , for k = 1, 2, . . . , by (2.24). Then, the same
argument used in the proof of Theorem 3 shows that

(2.39)
∞∑

n=k+1

|gn(eiθ)| ≤ πβ , θ ∈ Ekj .

It follows from (2.36), (2.37), (2.38) and (2.39), that

|f(eiθ)| ≥ 1
2β+1

ck δ
−1/q
k − 2(k+1)β − πβ , θ ∈ Ekj ,

and, taking the numbers δk sufficiently small, we have

(2.40) |f(eiθ)| ≥ 1
2β+2

ck δ
−1/q
k , θ ∈ Ekj .

For k = 1, 2, . . . , let

λk =
1

2β+2
ck,
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and notice that (1.3) implies

ϕ(λkx)
xq

→∞, as x→∞,

and so there exists εk > 0 such that

εϕ
(
λkε
−1/q

)
> k, 0 < ε ≤ εk.

We may assume that the numbers δk also satisfy

0 < δk ≤ εk, k = 1, 2, . . . .

Therefore,

(2.41) δkϕ

(
1

2β+2
ck δ
−1/q
k

)
> k, k = 1, 2, . . . .

Also, as in the proof of Theorem 3, we can take the numbers δk small
enough so that (2.31) holds, and then

(2.42) |Ekj | ≥ δk, j = 1, 2, . . . , 2k,

for all k = 1, 2, . . . .

From (2.40), the fact that ϕ is increasing, (2.41) and (2.42), we con-
clude that, for each set Ekj , we have

∫
Ek
j

ϕ
(∣∣f(eiθ)

∣∣) dθ ≥ ∫
Ek
j

ϕ

(
1

2β+2
ck δ
−1/q
k

)
dθ

= ϕ

(
1

2β+2
ck δ
−1/q
k

)
|Ekj |

≥ k δ−1
k δk = k.

An argument similar to that used at the end of the proof of Theorem 3
shows that this implies that (1.6) holds for every non-degenerate interval
I ⊂ [0, 2π]. This finishes the proof.
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