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ON THE HARDY-TYPE
INTEGRAL OPERATORS

IN BANACH FUNCTION SPACES

Elena Lomakina and Vladimir Stepanov

Abstract
Characterization of the mapping properties such as boundedness,
compactness, measure of non-compactness and estimates of the
approximation numbers of Hardy-type integral operators in Ba-
nach function spaces are given.

1. Introduction

Let X and Y be two Banach spaces of measurable functions defined
on R+. We consider the Hardy-type integral operator K : X → Y given
by

(1.1) Kf(x) = ϕ(x)
∫ x

0

k(x, y)ψ(y)f(y) dy, x > 0,

where the real functions ϕ(x) and ψ(x) (weights) are measurable and
finite almost everywhere on R+, and the kernel k(x, y) ≥ 0, satisfies

(1.2) D−1(k(x, z) + k(z, y)) ≤ k(x, y)
≤ D(k(x, z) + k(z, y)), x ≥ z ≥ y ≥ 0,
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where the constant D ≥ 1 does not depend on x, y, z. Typical examples

of such a kernel are (x−y)α, α ≥ 0; logβ
(
x

y

)
, β ≥ 0; or

(∫ x

y

h(s) ds
)γ

,

γ ≥ 0 with nonnegative h(s), and their various combinations. Introduced
by R. Oinarov [13], [14] the condition (1.2) extends in some sense the
well-known ∆2-condition for convex functions [10] used in [12], [18]
for convolution operators and thus, (1.2) seems to be a balance point
between generality of conditions imposed on a kernel and implicitness of
a criterion for the boundedness of the Hardy-type operators. A survey
of the mapping properties of operators (1.1) with Oinarov’s kernel in
Lebesgue and Lorentz spaces can be found in [19].

The paper is devoted to operators of the form (1.1) acting in Banach
spaces of Lebesgue-measurable functions on R+ (see Definition 1 be-
low). Investigation in this area was recently initiated by E. Berezhnoi [2],
[3], who, in particular, characterized weak-type estimates for the opera-
tor (1.1) with the kernel k(x, y) ≥ 0 increasing with respect to the first
variable and also strong estimates, when k(x, y) = 1 and the spaces X
and Y satisfy an `-condition (see Definition 3 below). E. Berezhnoi [3]
has also obtained some necessary and/or sufficient conditions for the
boundedness of operators (1.1) with restrictions on k(x, y) ≥ 0, stronger
than (1.2).

Sections 2 and 3 contain definitions and the statement of the main
results and further comments, respectively. Our first result characterizes
the boundedness of the operator (1.1) with kernel satisfying (1.2) in the
spaces X and Y satisfying an `-condition (Theorem 1). This leads to a
characterization of the compactness (Theorem 2) and measure of non-
compactness (Theorem 3) of the operator. Upper and lower estimates
for the behaviour of the approximation numbers of operators (1.1), when
k(x, y) = 1, are given in Theorems 6 and 7. Sections 4 and 5 provide the
proofs.

2. Definitions

Definition 1 [1]. A real normed linear space X = {f : ‖f‖X <∞}
is called a Banach function space (BFP) if in addition to the usual norm
axioms ‖f‖X satisfies the following conditions:

(1) ‖f‖X is defined for every Lebesgue-measurable function f on R+,
and f ∈ X if, and only if, ‖f‖X < ∞; ‖f‖X = 0 if, and only if,
f = 0 almost everywhere (a.e.);

(2) ‖f‖X = ‖ |f | ‖X for all f ∈ X;
(3) if 0 ≤ f ≤ g a.e., then ‖f‖X ≤ ‖g‖X ;



     

Hardy operators in Banach function spaces 167

(4) if 0 ≤ fn ↑ f a.e., then ‖fn‖X ↑ ‖f‖X ;
(5) if mesE <∞, then ‖χE‖X <∞;

(6) if mesE <∞, then
∫
E

f(x) dx ≤ CE‖f‖X .

Given a BFS X, its associate space X ′ is defined by

X ′ =
{
g :
∫ ∞

0

|fg| <∞ for all f ∈ X
}
,

and endowed with the associate norm

(2.1) ‖g‖X′ = sup
{∫ ∞

0

|fg| : ‖f‖X ≤ 1
}
.

X ′ is also a Banach function space satisfying axioms (1)-(6) and, more-
over, X ′ is a norm fundamental subspace of the dual space X∗, that is
the equality

(2.2) ‖f‖X = sup
{∫ ∞

0

|fg| : ‖g‖X′ ≤ 1
}

holds for all f ∈ X [1].
The spaces X, X ′ are complete normed linear spaces and X ′′ = X [1].
The Hölder inequality∣∣∣∣∫ ∞

0

fg

∣∣∣∣ ≤ ‖f‖X‖g‖X′
holds for all f ∈ X and g ∈ X ′ and is sharp in both directions on the
strength of (2.1) and (2.2). The relationships (2.1) and (2.2) give rise to
the following

Principle of duality. T : X → Y is a bounded linear operator, that
is ‖Tf‖Y ≤ C‖f‖X for all f ∈ X with a finite positive constant C, if
and only if

(i) ‖T ′g‖X′ ≤ C‖g‖Y ′ for all g ∈ Y ′, where the conjugate opera-
tor T ′ : Y ′ → X ′ is defined by the formulae∫ ∞

0

(Tf)g =
∫ ∞

0

f(T ′g),

or

(ii)
∣∣∣∣∫ ∞

0

(Tf)g
∣∣∣∣ ≤ C‖f‖X‖g‖Y ′ for all f ∈ X and g ∈ Y ′, with

the same constant C. The least possible constant C defines the
norm ‖T‖ and, thus ‖T‖X→Y = ‖T ′‖Y ′→X′ .
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X has absolutely continuous norm (AC-norm), if for all f ∈ X,
‖fχEn‖X → 0 for every sequence of sets {En} ⊂ R+ such, that
χEn(x) → 0 a.e. We assume throughout the paper that X ′ and Y have
AC-norms.

Let ` be a Banach sequence space (BSS), what means that
axioms (1)-(6) are satisfied with respect to the count measure and let
{ek} denote the standard basis in `.

Definition 2 [3]. Given a BFS X and a BSS `, X is said to be
`-concave, if for any sequence of disjoint intervals {Jk} such that⋃
Jk = R+, and for all f ∈ X

(2.3)

∥∥∥∥∥∑
k

ek‖χJkf‖X

∥∥∥∥∥
`

≤ d1‖f‖X ,

where d1 is a finite positive constant independent of f ∈ X and {Jk}.
Analogously, BFS Y is said to be `-convex, if for any sequence of disjoint
intervals {Ik}, such that

⋃
Ik = R+ and for all g ∈ Y

(2.4) ‖g‖Y ≤ d2

∥∥∥∥∥∑
k

ek‖χIkg‖Y

∥∥∥∥∥
`

for a finite positive constant d2 > 0, independent of g ∈ Y and {Ik}.

Definition 3 [3]. (The Berezhnoi `-condition). We say, that Ba-
nach function spaces X and Y satisfy an `-condition, if there exists a
Banach sequence space ` such that X is `-concave and Y is `-convex
simultaneously.

Let `′ denote the associate space. We need the following

Lemma 1 [3]. Let Y be an `-convex BFS and suppose (2.4) holds.
Then Y ′ is an `′-concave BFS and

(2.5)

∥∥∥∥∥∑
k

ek‖χIkf‖Y ′
∥∥∥∥∥
`′

≤ d2‖f‖Y ′ ,

for all f ∈ Y ′ and {Ik}, such that
⋃
Ik = R+.

Throughout the paper the expressions of the form 0 · ∞, 0/0, ∞/∞
are taken equal to zero, the inequality A ¿ B means A ≤ cB, where c
depends only on D, and possibly on the constants d1 and d2 of Defini-
tion 2; however the relationship A ≈ B is interpreted as A ¿ B ¿ A
or A = cB. χE denotes the characteristic function (indicator) of a set
E ⊂ R+.



      

Hardy operators in Banach function spaces 169

3. Statement of the main results

Put for all t ≥ 0

A0 = sup
t>0

A0(t) = sup
t>0

∥∥χ[t,∞]ϕ
∥∥
Y

∥∥χ[0,t](·)k(t, ·)ψ(·)
∥∥
X′
,(3.1)

A1 = sup
t>0

A1(t) = sup
t>0

∥∥χ[t,∞](·)k(·, t)ϕ(·)
∥∥
Y

∥∥χ[0,t]ψ
∥∥
X′

(3.2)

and let A = max(A0, A1). Note, that A0 = A1, if k(x, y) = 1.

Theorem 1. Let X and Y be BFS satisfying the Berezhnoi `-condi-
tion and let K be an integral operator of the form (1.1) with the kernel
k(x, y) ≥ 0 satisfying (1.2). Then K : X → Y is bounded, if and only if,
A <∞. Moreover,

(3.3) D−1A ≤ ‖K‖X→Y ≤ d1d2γ(D)A,

where γ(D) depends only on D.

Remark 1. (i) The boundedness of K was characterized in [14], [19]
(for Lebesgue spaces) and in [11] (for Lorentz spaces.) The case k(x, y)=1
has been intensively studied for the last few decades by many authors
and has led to further developments (sf. [15], [19]).

(ii) The Bereznoi `-condition corresponds to the case p ≤ q in the
Lp − Lq setting and to the case max(r, s) ≤ min(p, q) in the Lo-
rentz Lrs − Lpq setting, see [6], [11]. If no `-condition holds, then the
lower bound in (3.3) is nevertheless valid. Moreover, there exists an
operator, for which (3.3) is valid for spaces with no `-condition [17].

Theorem 2. Let the assumptions of Theorem 1 be fulfilled and sup-
pose the spaces X ′ and Y have AC-norms. Then K : X → Y is compact,
if and only if A <∞ and

(3.4) lim
t→ai

Ai(t) = lim
t→bi

Ai(t) = 0; i = 0, 1,

where

(3.5) ai = inf{t > 0 : Ai(t) > 0}, bi = sup{t > 0 : Ai(t) > 0}; i = 0, 1.

Remark 2. In fact, it follows from the proof of Theorem 2 below,
that a0 = a1, b0 = b1.
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The condition (3.4) has been formulated by many authors only for
a0 = a1 = 0, b0 = b1 = ∞. However, it is easy to find a formal coun-
terexample, for which A < ∞ and (3.4) is valid with a0 = a1 = 0,
b0 = b1 = ∞, but K is non-compact. The matter is, that the condi-
tion (3.4) has to be formulated for the end-points of the “real” interval
of action of operator K (see Remark 4 below for further details).

In the non-compact case we estimate the measure of non-compactness
of the operator K (or, equivalently, the distance of K from the set of
finite rank operators) defined by

α(K) = inf{‖K − P‖; rankP <∞}.

To this end we need additional notation; put for all 0 < a < z < b <∞:

(3.6)

J0
L(a) = sup

0<t<a

∥∥χ[t,a]ϕ
∥∥
Y

∥∥χ[0,t](·)k(t, ·)ψ(·)
∥∥
X′
,

J1
L(a) = sup

0<t<a

∥∥χ[t,a](·)k(·, t)ϕ(·)
∥∥
Y

∥∥χ[0,t]ψ
∥∥
X′
,

JL(z) = max(J0
L(z), J1

L(z)), JL = lim
z→a0

JL(z);

J0
R(b) = sup

b<t<∞

∥∥χ[t,∞]ϕ
∥∥
Y

∥∥χ[b,t](·)k(t, ·)ψ(·)
∥∥
X′
,

J1
R(b) = sup

b<t<∞

∥∥χ[t,∞](·)k(·, t)ϕ(·)
∥∥
Y

∥∥χ[b,t]ψ
∥∥
X′
,

JR(z) = max(J0
R(z), J1

R(z)), JR = lim
z→b0

JR(z);

J = max(JL, JR).

Theorem 3. Let the assumptions of Theorem 2 be valid and K :X→Y
be bounded. Then

(3.7) D−1J ≤ α(K) ≤ d2
1d

2
2γ(D)J.

Utilizing the scheme from [11] we estimate from above and below the
approximation numbers of the Hardy operator of the form

(3.8) Hf(x) = ϕ(x)
∫ x

0

ψ(y)f(y) dy.

This part of the paper has been initiated by D. E. Edmunds,
W. D. Evans and D. J. Harris in the work [5]. Afterwards the extention
for convolution operators with the polynomial kernel was given in [7]
and for the Hardy operator in Lorentz spaces in [11]. The statement of
the results and proofs of this part are given in Section 5.
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4. Boundedness, compactness
and measure of non-compactness

We begin with an alternative proof of the criterion for the boundedness
of the Hardy operator due to E. Berezhnoi. Then we establish the proof
for case in which the kernel satisfies Oinarov’s condition. The basic idea
is to apply the principle of duality to obtain the upper bound instead of
using direct estimates.

Theorem 4 [3]. Let X and Y be BFS satisfying the `-condition, and
let operator H be defined by (3.8). Then H : X → Y is bounded if, and
only if

(4.1) A = sup
t>0

A(t) = sup
t>0

∥∥χ[t,∞]ϕ
∥∥
Y

∥∥χ[0,t]ψ
∥∥
X′

<∞.

Moreover,
A ≤ ‖H‖X→Y ≤ 4d1d2A.

Proof: Necessity: For the lower bound we repeat the Berezhnoi argu-
ment [3]. If H : X → Y is bounded, then using axioms (2) and (3) of
BFS we find for arbitrary t > 0 and for all f ∈ X such that f(y)ψ(y) ≥ 0

‖H‖X→Y ‖f‖X ≥ ‖Hf‖Y =
∥∥∥∥ϕ(x)

∫ x

0

f(y)ψ(y) dy
∥∥∥∥
Y

≥
∥∥∥∥χ[t,∞)(x)ϕ(x)

∫ x

0

f(y)ψ(y) dy
∥∥∥∥
Y

≥
∥∥χ[t,∞)(x)ϕ(x)

∥∥
Y

∫ t

0

f(y)ψ(y) dy

=
∥∥χ[t,∞)ϕ

∥∥
Y

∫ ∞
0

χ[0,t](y)f(y)ψ(y) dy.

Consequently, applying (2.1), we have ‖H‖X→Y ≥ A(t) for all t > 0 and
it follows that ‖H‖X→Y ≥ A.

Sufficency: It follows from the principle of duality that for the upper
bound it is sufficient to prove the estimate

J ≡
∣∣∣∣∫ ∞

0

ϕFg

∣∣∣∣¿ A‖f‖X‖g‖Y ′
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for all f ∈ X and g ∈ Y ′, where

F (x) =
∫ x

0

f(y)ψ(y) dy.

Suppose, that f(y)ψ(y) 6= 0 on a set of positive measure, then we can
choose a sequence {xk} ⊂ R+ such, that∫ xk

0

|f(y)ψ(y)| dy = 2k, −∞ < k ≤ N ≤ ∞,

where N = sup{k : Ik = [xk−1, xk) 6= ∅}. Then, applying Hölder’s
inequality, (2.3), (2.5) and (4.1), we get

J ≤
∫ ∞

0

|ϕFg| ≤
∑
k≤N

2k+1

∫
Ik+1

|ϕg|

= 4
∑
k≤N

∫
Ik

|fψ|
∫
Ik+1

|ϕg|

≤ 4
∑
k≤N
‖χIkf‖X‖χIkψ‖X′‖χIk+1ϕ‖Y ‖χIk+1g‖Y ′

≤ 4A
∑
k≤N
‖χIkf‖X‖χIk+1g‖Y ′

≤ 4A

∥∥∥∥∥∑
k

ek‖χIkf‖X

∥∥∥∥∥
`

∥∥∥∥∥∑
k

ek‖χIk+1g‖Y ′
∥∥∥∥∥
`′

≤ 4Ad1d2‖f‖X‖g‖Y ′ .
Consequently, ‖H‖X→Y ≤ 4d1d2A.

We shall need the following modification of Theorem 4.

Theorem 5. Let X and Y be BFS satisfying the `-condition and

Hωf(x) = ϕ(x)
∫ ω(x)

0

ψ(y)f(y) dy,

where y = ω(x) is a differentiable increasing function on R+ such that
ω(0) = 0, ω(∞) =∞ and, thus, the inverse function x = ω−1(y) exists.
Then

(4.2) Aω ≤ ‖Hω‖X→Y ≤ 4d1d2Aω,

where

Aω = sup
t>0

∥∥χ[0,t]ψ
∥∥
X′

∥∥χ[ω−1(t),∞)ϕ
∥∥
Y

= sup
t>0

∥∥χ[0,ω(t)]ψ
∥∥
X′

∥∥χ[t,∞)ϕ
∥∥
Y
.
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Proof of Theorem 5: Is similar to the proof of Theorem 4. We omit
details.

Proof of Theorem 1: Necessity: Note that the Oinarov condition (1.2)
implies

(4.3) k(x, y) ≥ D−1k(t, y) for all x ≥ t ≥ y ≥ 0.

Consequently, applying (4.3), we obtain for all f ∈ X such that
f(y)ψ(y) ≥ 0

‖K‖X→Y ‖f‖X ≥
∥∥∥∥ϕ(x)

∫ x

0

k(x, y)f(y)ψ(y) dy
∥∥∥∥
Y

≥ D−1
∥∥χ[t,∞)ϕ

∥∥
Y

∫ t

0

k(t, y)f(y)ψ(y) dy

and arguing as in the necessity part of Theorem 4 we find, that
‖K‖X→Y ≥ D−1A0. By the principle of duality ‖K‖X→Y = ‖K ′‖Y ′→X′ ,
where

K ′g(y) = ψ(y)
∫ ∞
y

k(x, y)ϕ(x)g(x) dx.

Applying the above argument to the operator K ′, we find ‖K ′‖X→Y ≥
D−1A1 and, thus,

‖K‖X→Y ≥ D−1A.

For sufficiency we need the following two lemmas.

Lemma 2. Let k0(x, y) ≥ 0, x ≥ y ≥ 0 be nondecreasing and contin-
uous with respect to x. Assume that

k0(x, y) ≤ D0(k0(x, z) + k0(z, y)), x ≥ z ≥ y ≥ 0

with D0 ≥ 1 independent of x, z, y. Let f(y) be locally integrable, ψ(y)
be bounded and compactly supported and f(y)ψ(y) ≥ 0. Let G0(x) =∫ x

0

k0(x, y)ψ(y)f(y) dy be such, that 0 < G0(x) < ∞ for some x > 0.

For a fixed number δ > 0 we define ∆k =
{
x > 0 : G0(x) ≥ (δ + 1)k

}
,

k ∈ Z, N = max
∆k 6=∅

k; xk = inf ∆k, k ≤ N , xN+1 = ∞ if N < ∞. If

δ ≥ D0, then 0 < · · · < xk−1 < xk < · · · < xN <∞ and the inequality

(4.4) (δ + 1)k−1

≤
∫ xk

xk−1

k0(xk, y)f(y)ψ(y) dy +D0k0(xk, xk−1)
∫ xk−1

0

f(y)ψ(y) dy

holds for all k ≤ N .
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Proof of Lemma 2: Using the definition of {xk} and exploiting the
property of k0(x, y), we find

(δ + 1)k−1 = (δ + 1)k − δ(δ + 1)k−1 ≤ G0(xk)− δ(δ + 1)k−1

=
∫ xk

0

k0(xk, y)f(y)ψ(y) dy − δ(δ + 1)k−1

=
∫ xk−1

0

k0(xk, y)f(y)ψ(y) dy

+
∫ xk

xk−1

k0(xk, y)f(y)ψ(y) dy − δ(δ + 1)k−1

≤
∫ xk

xk−1

k0(xk, y)f(y)ψ(y) dy

+D0k0(xk, xk−1)
∫ xk−1

0

f(y)ψ(y) dy

+D0

∫ xk−1

0

k0(xk−1, y)f(y)ψ(y) dy − δ(δ + 1)k−1.

Now,

D0

∫ xk−1

0

k0(xk−1, y)f(y)ψ(y) dy − δ(δ + 1)k−1

= D0G0(xk−1)− δ(δ + 1)k−1 ≤ 0

provided δ ≥ D0, and lemma is proved.

Remark 3. It follows from Lemma 2, that

G0(x) ≤ (δ + 1)k, x ∈ [xk−1, xk), k ≤ N.

Lemma 3. Let k(x, y) ≥ 0 satisfy (1.2) with D ≥ 1 and let k(x, y),
ϕ(x) and ψ(y) be bounded functions such that suppϕ = suppψ ⊂ (0, b),
b < ∞. Then there exists kh(x, y) ≥ 0, 0 < h < 1, satisfying Lemma 2
with Dh = max(2, D2) such that k(x, y) ≤ kh(x, y), 0 < h < 1 and,
moreover, if A0,h, A1,h be defined by (3.1), (3.2) with kh(x, y) instead of
k(x, y), then

Ai ≤ lim
h→+0

Ai,h ≤ DAi, i = 0, 1.
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Proof of Lemma 3: Put

(4.5) k(x, y) = sup
y≤t≤x

k(t, y).

Obviously, k(x, y) is nondecreasing with respect to x and nonincreasing
with respect to y and k(x, y) ≤ k(x, y). Moreover, (4.3) implies, that
k(x, y) ≤ Dk(x, y). Hence,

(4.6) k(x, y) ≤ k(x, y) ≤ Dk(x, y)

and

(4.7)
1
2
(
k(x, z) + k(z, y)

)
≤ k(x, y), x ≥ z ≥ y ≥ 0.

From the right hand side of (1.2) and (4.6) we have

(4.8)
k(x, y) ≤ D2 (k(x, z) + k(z, y))

≤ D2
(
k(x, z) + k(z, y)

)
, x ≥ z ≥ y ≥ 0.

Consequently, k(x, y) satisfies Oinarov’s condition with the cons-
tant D = max(2, D2). Define

(4.9) kh(x, y) =
1
h

∫ x+h

x

k(t, y) dt, 0 < h < 1.

Obviously, kh(x, y) is continuous and nondecreasing with respect to x
and nonincreasing in y and

(4.10) k(x, y) ≤ k(x, y) ≤ kh(x, y).

Hence, applying (4.8) we find

(4.11)
kh(x, y) ≤ D

h

∫ x+h

x

(
k(t, z) + k(z, y)

)
dt = D

2 (
kh(x, z) + k(z, y)

)
≤ D2

(kh(x, z) + kh(z, y)) , x ≥ z ≥ y ≥ 0.

Consequently, kh(x, y) satisfies Oinarov’s condition with the cons-
tant Dh = D.
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Let A0,h(t), A1,h(t) be determined by (3.1) and (3.2) with kh instead
of k, respectively. Then applying (4.6) and (4.10) we find

A0(t) ≤ A0,h(t)=
∥∥(χ[t+h,∞)−χ[t+h,∞)+χ[t,∞))ϕ

∥∥
Y

∥∥χ[0,t]kh(t, ·)ψ(·)
∥∥
X′

≤ D
∥∥χ[t+h,∞)ϕ

∥∥
Y

∥∥χ[0,t+h](·)k(t+ h, ·)ψ(·)
∥∥
X′

(4.12)

+ ‖ϕ‖∞‖k‖∞‖ψ‖∞‖χ[0,b]‖X′‖χ[t,t+h]χ[0,b]‖Y .

It implies

(4.13) A0 ≤ A0,h ≤ DA0 + C sup
t>0
‖χ[t,t+h]χ[0,b]‖Y

with a finite constant C. Since A0,h decreases, when h → +0, and
‖χ[t,t+h]χ[0,b]‖Y is continuous in t and compactly supported the result
for A0,h follows from (4.13) by letting h → +0. The argument for A1,h

is analogous. Lemma 3 is proved.
Now we continue with the sufficient part of Theorem 1. By the prin-

ciple of duality it is sufficient to show, that

J ≡
∣∣∣∣∫ ∞

0

ϕGg

∣∣∣∣¿ A‖f‖X‖g‖Y ′

for all compactly supported f ∈ X and g ∈ Y ′, where

G(x) =
∫ x

0

k(x, y)f(y)ψ(y) dy.

Assume that ϕ(x) and ψ(y) are bounded compactly supported functions.
Because of (4.10) we have

J ≤
∫ ∞

0

|ϕGg| ≤
∫ ∞

0

|ϕGhg| := Jh,

where

Gh(x) =
∫ x

0

kh(x, y)f(y)ψ(y) dy

and without loss of generality we take f(y)ψ(y) ≥ 0. Hence, we may and
shall apply Lemma 2 with D0 = max(2, D2), δ = D0 and the sequence
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of intervals Ik = [xk−1, xk) with (4.4) holding. By Remark 2 we obtain

Jh ≤
∑
k≤N

∫ xk+1

xk

|ϕGhg| ≤
∑
k≤N

(δ + 1)k+1

∫ xk+1

xk

|ϕg|

≤ (δ + 1)2
∑
k≤N

(δ + 1)k−1

∫
Ik+1

|ϕg|

≤ (δ + 1)2

∑
k≤N

∫
Ik

kh(xk, y)ψ(y)f(y) dy
∫
Ik+1

|ϕg|

+D0

∑
k≤N

kh(xk, xk−1)
∫ xk−1

0

ψ(y)f(y) dy
∫
Ik+1

|ϕg|


:= (δ + 1)2[J1,h +D0J2,h].

Using the Hölder inequality, the `-condition with Lemma 1 and (4.13),
we find

(4.14)

J1,h =
∑
k≤N

∫
Ik

kh(xk, y)ψ(y)f(y) dy
∫
Ik+1

|ϕg|

≤
∑
k≤N
‖χIkf‖X‖χIk(·)kh(xk, ·)ψ(·)‖X′‖χIk+1ϕ‖Y ‖χIk+1g‖Y ′

≤
∑
k≤N
‖χIkf‖X‖χ[0,xk](·)kh(xk, ·)ψ(·)‖X′‖χ[xk,∞)ϕ‖Y ‖χIk+1g‖Y ′

≤ A0,h

∑
k≤N0

‖χIkf‖X‖χIk+1g‖Y ′ ≤ d1d2A0,h‖f‖X‖g‖Y ′ .

For the term J2,h we write

(4.15) J2,h =
∑
k≤N

kh(xk, xk−1)
[∫ xk−2

0

ψ(y)f(y) dy

+
∫ xk−1

xk−2

ψ(y)f(y) dy

]∫
Ik+1

|ϕg| := J
(1)
2,h + J

(2)
2,h.

The estimate for J (2)
2,h is analogous to that for J1,h. Applying the above

scheme for estimating J1,h and using that kh(x, y) is non-increasing with
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respect to y, we get,

(4.16)

J
(2)
2,h =

∑
k≤N

kh(xk, xk−1)
∫ xk−1

xk−2

ψ(y)f(y) dy
∫
Ik+1

|ϕg|

≤
∑
k≤N

∫
Ik−1

kh(xk, y)ψ(y)f(y) dy
∫
Ik+1

|ϕg|

≤
∑
k≤N
‖χIk−1f‖X‖χIk−1(·)kh(xk, ·)ψ(·)‖X′‖χIk+1ϕ‖Y ‖χIk+1g‖Y ′

≤
∑
k≤N
‖χIk−1f‖X‖χ[0,xk](·)kh(xk, ·)ψ(·)‖X′‖χ[xk,∞)ϕ‖Y‖χIk+1g‖Y ′

≤ d1d2A0,h‖f‖X‖g‖Y ′ .

For the term J
(1)
2,h we obtain

J
(1)
2,h =

∑
k≤N

kh(xk, xk−1)
∫ xk−2

0

ψ(y)f(y) dy
∫
Ik+1

|ϕg|

=
∫ ∞

0

(∫ Ω(x)

0

f(y)ψ(y) dy

)∑
k≤N

kh(xk, xk−1)χIk+1(x)|ϕ(x)g(x)| dx,

where
Ω(x) =

∑
k≤N

xk−2χIk+1(x).

Let y = ω(x) be a function that satisfies the hypothesis of Theorem 5
and such that ω(xk) = xk−2, k ≤ N ; Ω(x) ≤ ω(x) ≤ x, x > 0. Then

J
(1)
2,h ≤

∫ ∞
0

(∫ ω(x)

0

f(y)ψ(y) dy

)
Q(x)g(x) dx,

where

Q(x) =

∑
k≤N

k0(xk, xk−1)χIk+1(x)

ϕ(x).

Applying Hölder’s inequality and the upper bound in (4.2) of Theorem 5
we obtain∫ ∞

0

(∫ ω(x)

0

f(y)ψ(y) dy

)
Q(x)g(x) dx ≤ 4d1d2Aω‖f‖X‖g‖Y ′ ,
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where

(4.17) Aω = sup
t>0

∥∥χ[0,t]ψ
∥∥
X′

∥∥χ[ω−1(t),∞)Q
∥∥
Y
.

For a fixed number t ∈ (0,∞) there exists a union of disjoint intervals
such that

[ω−1(t),∞) ⊆
⋃

k0≤k≤N
Ik+1.

It is easy to see from the definition of the function ω(x), that ω−1(t) ∈
Ik+1 if and only if t ∈ Ik−1 and for any x ∈ [ω−1(t),∞) we have two
choices

(i) t < xk0−1 < xk0 ≤ ω−1(t) < x < xk0+1,

when
x ∈ [ω−1(t),∞)

⋂
[xk0 , xk0+1);

or

(ii) t < xk−1 < xk ≤ x < xk+1,

when
x ∈ Ik+1, k > k0.

Since kh(x, y) is nondecreasing with respect to x and nonincreasing with
respect to y we have in both cases

kh(xk, xk−1)χIk+1(x) ≤ kh(x, t), k ≥ k0.

Consequently,∥∥χ[ω−1(t),∞)Q
∥∥
Y
≤
∥∥χ[t,∞)(·)kh(·, t)ϕ(·)

∥∥
Y
.

Using this and (4.17) we obtain that

Aω ≤ A1,h.

Thus,

(4.18) J
(1)
2,h ≤ d1d2A1,h‖f‖X‖g‖Y ′ .

Combining the estimates (4.12)-(4.18) and using Lebesgue’s dominated
convergence theorem we get the upper bound

(4.19) J ≤ d1d2γ(D)A‖f‖X‖g‖Y ′



       

180 E. Lomakina, V. Stepanov

where

(4.20) γ(D) = D
(
1 + max(2, D2)

)2 (
1 + 2 max(2, D2)

)
.

By Fatou’s theorem we obtain (4.19) for f, g, ϕ, ψ with no restriction.
Theorem 1 is proved.

Remark 4. (i) There are three natural analogues of Theorem 1. The
first is a restriction to an interval of real axis, the second deals with the
associate operator and the third is concerned the non-Volterra case if the
kernel is symmetric with respect to x and y. We omit details.

(ii) Note, that if k(x0, y0) = ∞ for some ∞ > x0 ≥ y0 > 0, then
Oinarov’s condition implies

k(x, y) =∞, x ≥ x0 ≥ y0 ≥ y > 0.

Consequently, the convention 0 · ∞ = 0 yields, that A < ∞ is possible,
only if ∥∥χ[x0,∞)ϕ

∥∥
Y

+
∥∥χ[0,y0]ψ

∥∥
X′

= 0.

Thus, such an operator K is actually reduced to the interval [y0, x0],
where it coincides with

K0f(x) = ϕ(x)
∫ x

y0

k(x, y)ψ(y)f(y) dy, y0 ≤ x ≤ x0,

being the null-operator outside of the interval. Thus we may and shall
assume the kernel to be bounded k(x, y) ≤ cτ < ∞ on every domain of
the form

Ωτ = {(x, y) : ∞ > τ ≥ x ≥ y ≥ 0} .

Proof of Theorem 2: Necessity: That A = max(A0, A1) < ∞ follows
from Theorem 1. If f ∈ X, f(y)ψ(y) ≥ 0 then exploiting Oinarov’s
condition, we find

∞ > A‖f‖X À ‖Kf‖Y ≥
∥∥χ[t,∞)Kf

∥∥
Y

≥ D−1
∥∥χ[t,∞)ϕ

∥∥
Y

∫ t

a0

k(t, y)ψ(y)f(y) dy.

Now, by the principle of duality for an arbitrary fixed γ ∈ (0, 1) we may
find a function ft, such that supp ft ⊆ [a0, t], ft(y)ψ(y) ≥ 0, ‖ft‖X = 1
and

(4.21) ∞ > AÀ ‖Kft‖Y ≥ γD−1
∥∥χ[t,∞)ϕ

∥∥
Y

∥∥χ[a0,t]k(t, ·)ψ(·)
∥∥
X′
.
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Given G ∈ X ′ the Hölder inequality and absolute continuity of the norm
in X ′ yield

(4.22)
∣∣∣∣∫ ∞

0

ftG

∣∣∣∣ ≤ ∥∥χ[a0,t]G
∥∥
X′
→ 0, t→ a0.

Since K ′ : Y ′ → X ′ is also a compact operator, for any given ε > 0 there
exists a finite number of functions G1, G2, . . . , Gnε such that

(4.23) min
1≤n≤nε

‖K ′g −Gn‖X′ ≤ ε

for every g ∈ Y ′, ‖g‖Y ′ ≤ 1. Given ε > 0 and ft with ‖ft‖X = 1 we find
by the principle of duality and (4.23) g ∈ Y ′, ‖g‖Y ′ ≤ 1 and Gn, such
that

‖Kft‖Y ≤ (1− ε)
∣∣∣∣∫ ∞

0

Kftg

∣∣∣∣
and

‖K ′g −Gn‖X′ ≤ ε,
respectively, and using (4.21) we obtain

‖Kft‖Y ≤ (1− ε)
∣∣∣∣∫ ∞

0

ftK
′g

∣∣∣∣
≤ (1− ε)ε+ (1− ε)

∣∣∣∣∫ ∞
0

ftGn

∣∣∣∣ ≤ ε, t→ a0.

Consequently, ‖Kft‖Y → 0, t → a0, and a part of (3.4), namely
lim
t→a0

A0(t) = 0, now follows from (4.21). Analogously, begining with

the inequality

∞ > AÀ ‖Kf‖Y ≥
∥∥χ[t,∞)Kf

∥∥
Y

≥ D−1
∥∥χ[t,∞)(·)ϕ(·)k(·, t)

∥∥
Y

∫ t

a1

ψ(y)f(y) dy,

we prove, that lim
t→a1

A1(t) = 0. The dual assertions on infinity follows

from the similar observations for the associate operator. For proving
sufficiency we need the following result.

Lemma 4. Let X and Y be BFS on a separable σ-finite measure
space and T : X → Y be an integral operator of the form Tf(α) =∫
T (α, β)f(β) dβ. If both X ′ and Y have AC-norms and

(4.24) AT =
∥∥∥‖T (α, ·)‖X′

∥∥∥
Y
<∞,

then T is compact.
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Proof of Lemma 4: It is sufficient to establish, that the set of the
functions of the form

i0∑
i=1

µi(α)ηi(β)

is dense in the space Y [X ′] with the norm defined by the right side of
(4.24), where µi ∈ Y and ηi ∈ X ′. On the strength of ([9, Chapter XI,
Lemma 2]) it is true if the both spaces X ′ and Y are “order continu-
ous”. This is fulfilled, when X ′ and Y have AC-norms, because of ([1,
Chapter 1, Proposition 3.5]), and so the Lemma is proved.

We continue the proof of the sufficiency part of Theorem 2. Let us
show first, that

(4.25) a0 = a1, b0 = b1.

To this end assume, for instance, that 0 ≤ a0 < a1. Then A0(t) =
A1(t) = 0, t ∈ [0, a0] and it follows from the Landau resonance theorem
([1, Lemma 2.6]) and Theorem 1, restricted to the interval [0, a0], that
for a.e. x ∈ [0, a0]

(4.26) ϕ(x)k(x, y)ψ(y) = 0 for a.e. y ∈ [0, x].

From (3.5) we find, that

A1(t) =
∥∥χ[t,∞)(·)k(·, t)ϕ(·)

∥∥
Y

∥∥χ[0,t]ψ
∥∥
X′

= 0, a0 < t ≤ a1.

If ∥∥χ[0,t]ψ
∥∥
X′

= 0, a0 < t ≤ a1,

then ψ(y) = 0 for a.e. y ∈ [0, t] by the first axiom of BFS and, hence,
A0(t) = 0, t > a0, which contradicts the definition of a0. If∥∥χ[t,∞)(·)k(·, t)ϕ(·)

∥∥
Y

= 0, a0 < t ≤ a1,

then for all a0 < t ≤ a1

ϕ(x)k(x, t) = 0 for a.e. x ∈ [t,∞)

and for all g ∈ Y ′ such, that supp g ⊆ [a0, a1], ϕ(x)g(x) ≥ 0 and arbitrary
f ∈ X such, that f(t)ψ(t) ≥ 0, we find∫ a1

a0

Kf(x)g(x) dx =
∫ a1

a0

ϕ(x)g(x) dx
∫ x

a0

k(x, t)ψ(t)f(t) dt

=
∫ a1

a0

ψ(t)f(t) dt
∫ a1

t

ϕ(x)k(x, t)g(x) dx = 0
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and, again by the Landau theorem, we get for a.e. x ∈ [a0, a1]

(4.27) ϕ(x)k(x, y)ψ(y) = 0 for a.e. y ∈ [a0, x].

Now by (4.26) and (4.27)∫ a1

0

Kf(x)g(x) dx =
∫ a1

a0

ϕ(x)g(x) dx
∫ a0

0

k(x, t)ψ(t)f(t) dt

and by the Hölder inequality and Oinarov’s condition we find∣∣∣∣∫ a1

0

Kf(x)g(x) dx
∣∣∣∣

≤ D
∫ a1

a0

k(x, a0)|ϕ(x)g(x)| dx
∫ a0

0

|ψ(t)f(t)| dt

+D

∫ a1

a0

|ϕ(x)g(x)| dx
∫ a0

0

k(a0, t)|ψ(t)f(t)| dt

≤ D
(∥∥χ[a0,a1](·)ϕ(·)k(·, a0)

∥∥
Y

∥∥χ[0,a0]ψ
∥∥
X′

+
∥∥χ[a0,a1]ϕ

∥∥
Y

∥∥χ[0,a0](·)k(a0, ·)ψ(·)
∥∥
X′

)∥∥χ[0,a1]g
∥∥
Y ′

∥∥χ[0,a1]f
∥∥
X

≤ D (A0(a0) +A1(a0))
∥∥χ[0,a1]g

∥∥
Y ′

∥∥χ[0,a1]f
∥∥
X

= 0.

Hence, by the principle of duality we obtain ‖K‖X[0,a1]→Y[0,a1] = 0,
and, in particular, Theorem 1, restricted to the interval [0, a1], implies
A0(t) = 0, 0 ≤ t ≤ a1. Thus, a0 = a1, and by similar arguments it can
be proved that b0 = b1. For this reason we may and shall assume further
for simplicity, that a0 = a1 = 0, b0 = b1 =∞.

Let 0 < a < b <∞ and put

Paf = χ[0,a]f, Qbf = χ[b,∞)f, Pabf = χ[a,b]f.

Then we have

(4.28) Kf = (Pa + Pab +Qb)K(Pa + Pab +Qb)f

= PaKPaf+QbKQbf+PabKPabf+QbKPaf+QbKPabf+PabKPaf.

By Theorem 1 restricted to the intervals [0, a] or [b,∞) and (3.4) we have

(4.29)

‖PaKPa‖ ≤
{

sup
0<t<a

A0(t) + sup
0<t<a

A1(t)
}
→ 0, a→ 0,

‖QbKQb‖ ≤
{

sup
t>b

A0(t) + sup
t>b

A1(t)
}
→ 0, b→∞.
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It follows from Lemma 4 that the operator QbKPa is compact. Indeed,

(4.30)

AQbKPa ≤
∥∥∥∥∥χ[0,b](·)k(x, ·)ψ(·)

∥∥
X′
χ[b,∞)(x)ϕ(x)

∥∥∥
Y

≤ D
(∥∥χ[b,∞)(x)k(x, b)ϕ(x)

∥∥
Y

∥∥χ[0,b]ψ
∥∥
X′

+
∥∥χ[b,∞)ϕ

∥∥
Y

∥∥χ[0,b](·)k(b, ·)ψ(·)
∥∥
X′

)
≤ D (A0(b) +A1(b)) <∞.

Anagously, we find

(4.31)
AQbKPab ≤ D (A0(b) +A1(b)) <∞,

APabKPa ≤ D (A0(a) +A1(a)) <∞.
Note, that 0<

∥∥χ[a,∞)ϕ
∥∥
Y

,
∥∥χ[0,b]ψ

∥∥
X′
<∞, otherwise A0(a)=A1(b)=0,

and
k(x, y) ≤ cb <∞, b ≥ x ≥ y ≥ a.

By Remark 4(ii), we may write

APabKPab =
∥∥∥∥∥χ[a,b](·)k(x, ·)ψ(·)

∥∥
X′
χ[a,b](x)ϕ(x)

∥∥∥
Y

≤ cb
∥∥χ[a,∞)ϕ

∥∥
Y

∥∥χ[0,b]ψ
∥∥
X′

<∞
and hence, by Lemma 4, operator PabKPab is compact too. Using this
and (4.29)-(4.31) we see, that K is a limit of compact operators. This
ends the proof of Theorem 2.

Proof of Theorem 3: We assume for simplicity, that a0 = a1 = 0,
b0 = b1 =∞. Let 0 < a < b <∞. By Theorem 1 we obtain

D−1JL(a) ≤ ‖PaKPa‖ ≤ d1d2γ(D)JL(a),

D−1JR(b) ≤ ‖QbKQb‖ ≤ d1d2γ(D)JR(b),

where the constant γ(D) is defined by (4.20). Now, using (4.28) and
taking into account the compactness of the last four components there,
we see, that,

α(K) ≤ ‖PaKPa +QbKQb‖.
Put S = PaKPa and T = QbKQb. Then

‖S + T‖ = sup
f 6=0

‖Sf + Tf‖Y
‖f‖X

≤ d2 sup


∥∥∥‖Sf‖Y + ‖Tf‖Y

∥∥∥
`

‖f‖X
; f 6= 0, fψ ≥ 0, Pabf = 0

 .
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If Pabf = 0, then by the Berezhnoi `-condition

‖f‖X ≥ d−1
1

∥∥∥‖g‖X + ‖h‖X
∥∥∥
`
,

where g = Paf and h = Qbf . Hence,

‖S + T‖ ≤ d1d2 sup
f 6=0, f=g+h

∥∥∥‖Sf‖Y + ‖Tf‖Y
∥∥∥
`∥∥∥‖g‖X + ‖h‖X

∥∥∥
`

= d1d2 sup
f 6=0, f=g+h

∥∥∥∥∥∥‖Sg‖Y‖g‖X
· ‖g‖X∥∥∥‖g‖X + ‖h‖X

∥∥∥
`

+
‖Th‖Y
‖h‖X

· ‖h‖X∥∥∥‖g‖X + ‖h‖X
∥∥∥
`

∥∥∥∥∥∥
`

≤ d2
1d

2
2γ(D)

∥∥∥∥∥∥JL(a)
‖g‖X∥∥∥‖g‖X + ‖h‖X

∥∥∥
`

+JR(b)
‖h‖X∥∥∥‖g‖X + ‖h‖X

∥∥
`

∥∥∥∥∥∥
`

≤ d2
1d

2
2γ(D)J.

To obtain the lower bound, let θ > α(K). If Y has AC-norm, then Y
is separable [1]. Hence, there exists T : X → Y such that rankT < ∞
and ‖Kf − Tf‖Y ≤ θ‖f‖X for all f ∈ X. Since range of the operator T
is formed by a finite number of functions from Y , we can approximate
each of them by a bounded function with compact support [1] and, thus,
given ε > 0, there exist T0 : X → Y with rankT0 = rankT and the
numbers 0 < δ < N <∞, such that

‖T − T0‖ < ε suppT0f ⊂ [δ,N ] for all f ∈ X.

Hence,
‖Kf − T0f‖Y ≤ (θ + ε)‖f‖X for all f ∈ X.

Let f be such that supp f ⊂ [0, δ]
⋃

[N,∞) and fψ ≥ 0. Then

(θ+ε)‖f‖X ≥ ‖Kf‖Y = ‖KPδf+KQNf‖Y ≥ ‖PδKPδf+QNKQNf‖Y ,

since all the functions involved are non-negative. Thus

(θ + ε)‖f‖X ≥ ‖PδKPδf‖Y
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for all f ∈ X with supp f ⊂ [0, δ] and fψ ≥ 0 and

(θ + ε)‖f‖X ≥ ‖QNKQNf‖Y
for all f ∈ X with supp f ⊂ [N,∞) and fψ ≥ 0. Hence, applying the
lower bound from Theorem 1, we obtain

(θ + ε) ≥ D−1JL(δ) and (θ + ε) ≥ D−1JR(N),

Letting θ → α(K), ε → 0 and then δ → 0, N → ∞ we establish the
lower bound. Theorem 3 is proved.

Remark 5. Theorem 3 for Lebesgue spaces was proved in [7], the
case k(x, y) = 1 was given in [6].

5. Approximation numbers

We begin with the reminder, that for any positive integer m, the
m-th approximation number am of a bounded linear map T : X → Y is
defined by

(5.1) am(T ) = inf{‖T − P‖; P a bounded linear operator
and rankP < m}.

For further information on the approximation numbers we refer the
reader to the monographs [4], [8] and [16]. We consider the operator
H : X → Y of the form (3.8) and suppose, that H is compact. We
also assume for simplicity, that a0 = 0, b0 = ∞ for the operator H. By
Theorem 2 we get

A = sup
t>0

A(t) = sup
t>0

∥∥χ[t,∞]ϕ
∥∥
Y

∥∥χ[0,t]ψ
∥∥
X′

<∞,

lim
t→0

A(t) = lim
t→∞

A(t) = 0.

Given sufficiently small ε, 0 < ε < ‖H‖, we choose the numbers 0 = c0 <
c1 < c2 < · · · < cN−1 < cN < cN+1 = ∞ and intervals Ik = [ck, ck+1],
k = 0, 1, . . . , N , such that

(5.3) A[c1] = A[cN ] = ε,

where

A[c1] = sup
0<t<c1

A(t) = sup
0<t<c1

∥∥χ[t,c1]ϕ
∥∥
Y

∥∥χ[0,t]ψ
∥∥
X′

A[cN ] = sup
cN<t<∞

A(t) = sup
cN<t<∞

∥∥χ[t,∞]ϕ
∥∥
Y

∥∥χ[cN ,t]ψ
∥∥
X′
.
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Lemma 5. Let X and Y be BFS satisfying the Berezhnoi `-condition,
and suppose Y and Y ′ have AC-norms. Let 0 < a < b < ∞, I = (a, b)
and

(5.4)

F (x) =
∫ x

a

ψ(y)f(y) dy, a ≤ x ≤ b;

FI =
1

µ(I)

∫
I

Fdµ,

µ(I) =
∫
I

dµ,

where dµ(x) = ϕ(x)g(x) dx, and g(x) is a function on I satisfying the
inequality

(5.5) (1− δ)‖χ[a,b]ϕ‖Y ‖χ[a,b]g‖Y ′ ≤
∫
I

ϕ(x)g(x) dx

for a sufficiently small 0 < δ ≤ 0, 01. Then

3
10

max(B0, B1) ≤ sup
f 6=0

‖χ[a,b]ϕ(F − FI)‖Y
‖χ[a,b]f‖X

≤ 8
2
25
d2

1d
2
2 max(B0, B1),

where

B0 = sup
a<x<c

‖χ[x,c]ψ‖X′‖χ[a,x]ϕ‖Y ,

B1 = sup
c<x<b

‖χ[c,x]ψ‖X′‖χ[x,b]ϕ‖Y .

Proof of Lemma 5: Given f ∈ X[a,b], c ∈ (a, b) we put

Ψc(x) =


−
∫ c

x

ψ(y)f(y) dy, a ≤ x < c,

∫ x

c

ψ(y)f(y) dy, c ≤ x < b

and Ψc,I =
1

µ(I)

∫
I

Ψc dµ. Then

F (x)− FI = Ψc(x)−Ψc,I .

To obtain the lower bound, we take f ∈ X[a,b] such that supp f ⊆ [a, c]
and suppose, that the inequality∥∥χ[a,b]ϕ(F − FI)

∥∥
Y
≤ C

∥∥χ[a,b]f
∥∥
X
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holds for all f ∈ X[a,b] with a constant C independent of f . Then

C
∥∥χ[a,c]f

∥∥
X
≥
∥∥χ[a,c]ϕ(F − FI)

∥∥
Y

=
∥∥χ[a,c]ϕ (Ψc −Ψc,I)

∥∥
Y

≥
∥∥χ[a,c]ϕΨc

∥∥
Y
− |Ψc,I |

∥∥χ[a,c]ϕ
∥∥
Y

=
∥∥χ[a,c]ϕΨc

∥∥
Y
− 1
µ(I)

∣∣∣∣∫
I

Ψc dµ

∣∣∣∣ ∥∥χ[a,c]ϕ
∥∥
Y

≥
∥∥χ[a,c]ϕΨc

∥∥
Y
− 1
µ(I)

∫
I

|Ψc|dµ
∥∥χ[a,c]ϕ

∥∥
Y

=
∥∥χ[a,c]ϕΨc

∥∥
Y
− 1
µ(I)

∫
I

|Ψcϕϕ
−1|dµ

∥∥χ[a,c]ϕ
∥∥
Y

≥
∥∥χ[a,c]ϕΨc

∥∥
Y
− 1
µ(I)

∥∥χ[a,c]ϕΨc

∥∥
Y

∥∥χ[a,c]g
∥∥
Y ′

∥∥χ[a,c]ϕ
∥∥
Y

=
(

1− 1
µ(I)

∥∥χ[a,c]g
∥∥
Y ′

∥∥χ[a,c]ϕ
∥∥
Y

)∥∥χ[a,c]ϕΨc

∥∥
Y

=
(

1− V (a, c)
µ(I)

)∥∥χ[a,c]ϕΨc

∥∥
Y
,

where V (a, c) =
∥∥χ[a,c]ϕ

∥∥
Y

∥∥χ[a,c]g
∥∥
Y ′

. Because of the absolute continu-
ity of the norms Y and Y ′, we can for any fixed β ∈ (0, 1−δ) find a point
c ∈ (a, b) such that V (a, c) = βµ(I), therefore by Theorem 4 restricted
to the interval [a, c] we have C ≥ (1−β)B0. A similar argument applied
for all f such that supp f ⊂ [c, b) gives

C
∥∥χ[c,b]f

∥∥
X
≥
(

1− W (c, b)
µ(I)

)∥∥χ[c,b]ϕΨc

∥∥
Y
,

where W (c, b) =
∥∥χ[c,b]ϕ

∥∥
Y

∥∥χ[c,b]g
∥∥
Y ′

.

1− W (c, b)
µ(I)

=
1

µ(I)
(µ(I)−W (c, b))

=
1

µ(I)

(
(1− δ)

∥∥χ[a,b]ϕ
∥∥
Y

∥∥χ[a,b]g
∥∥
Y ′
−W (c, b)

)
≥ β(1− δ)− W (c, b)

µ(I)
.
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If c → b, then β → (1 − δ) and W (c, b) → 0, therefore we can choose
c ∈ (a, b) such that

W (c, b)
µ(I)

≤ β(1− δ)
2

.

By Theorem 4 we get C ≥ β(1− δ)
2

B1. Now, if we take β such that

1 − β =
β(1− δ)

2
, then β =

2
3− δ and the required lower bound C ≥

3
10 max(B0, B1).

Sufficiency: Using Hölder’s inequality and the Berezhnoi `-condition,
we see that∥∥χ[a,b]ϕ(F − FI)

∥∥
Y

=
∥∥χ[a,b]ϕ(Ψc −Ψc,I)

∥∥
Y

≤
∥∥χ[a,b]ϕΨc

∥∥
Y

+ |Ψc,I |
∥∥χ[a,b]ϕ

∥∥
Y

≤
∥∥χ[a,b]ϕΨc

∥∥
Y

+
1

µ(I)

∥∥χ[a,b]ϕΨc

∥∥
Y

∥∥χ[a,b]g
∥∥
Y ′

∥∥χ[a,b]ϕ
∥∥
Y

≤ 2
(1− δ)

∥∥χ[a,b]ϕΨc

∥∥
Y

≤ 2
(1− δ)d2

∥∥∥∥∥χ[a,c]ϕΨc

∥∥
Y

+
∥∥χ[c,b]ϕΨc

∥∥
Y

∥∥∥
`

≤ 8d2
1d

2
2

1− δ max(B0, B1)
∥∥χ[a,b]f

∥∥
X
,

and the required result follows. The proof of Lemma 5 is complete.

By Lemma 5 the norm of the operator

HIf(x) = χI(x)ϕ(x)(F (x)− FI)

depends continuously on the interval I. We choose the intervals Ik =
[ck, ck+1], k = 1, . . . , N − 1 so, that

(5.6)
‖HIk‖ = ε, k = 1, . . . , N − 2,

‖HN−1‖ ≤ ε.
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Now we follow the construction from ([7, Section 3.1]) adjusted to the
present case. Let for k = 1, . . . , N − 1

Fk(x) = χIk(x)
∫ x

ck

ψ(y)f(y) dy,

Pkf(x) = χIk(x) {Hf(x)− ϕ(x)(Fk(x)− Fk,Ik)} .

Observe, that the operator P =
N−1∑
k=1

Pk is a bounded linear operator

P : X → Y and rankP ≤ N − 1.

Theorem 6. Let X and Y be BFS satisfying the Berezhnoi `-condi-
tion, and X ′, Y , Y ′ have AC- norms. Let H : X → Y defined by (3.8)
be a compact operator. Given ε > 0, ‖H‖ > ε, let the integer N > 2
and intervals Ik = [ck, ck+1], k = 0, 1, . . . , N be chosen so that (5.3) and
(5.6) hold. Then the upper bound

(5.7) aN (H) ≤ d1d2ε,

is valid, where the constants d1, d2 are determined by (2.3), (2.4).

Proof of Theorem 6: Using Theorem 4 and the Berezhnoi `-condition
we see that

‖Hf − Pf‖Y ≤ d2

∥∥∥∥∥ε ∥∥χ[0,c1]f
∥∥
X

+ ε
∥∥χ[cN ,∞)f

∥∥
X

+
N−1∑
k=1

‖HIkf‖Y

∥∥∥∥∥
`

≤ εd2

∥∥∥∥∥
N∑
k=0

‖χIkf‖X

∥∥∥∥∥
`

≤ εd1d2‖f‖X ,

and thus, aN (H) ≤ d1d2ε.

Theorem 7. Let the assumptions of Theorem 6 hold and, moreover,
let X be `p1-convex BFS and Y be `p2-concave BFS for BSS `p1 , `p2 with
p2 ≥ p1 > 1. Then the following lower bound

(5.8) aN (H) ≥ 1
2, 02

εd−1
1 d−1

2 N
1
p2
− 1
p1

holds.
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Proof of Theorem 7: Let λ ∈ (0, 1). We take the sequence of functions
fk ∈ X, such that supp fk ⊂ Ik, and

‖χIiϕFi‖Y
‖fi‖X

≥ λε, i = 0, N(5.9)

‖χIkϕ(Fk − Fk,Ik)‖Y
‖fk‖X

≥ λε, k = 1, 2, . . . , N − 1,(5.10)

where

Fk(x) =
∫ x

ck

ψ(y)fk(y) dy, k = 0, 1, . . . , N − 1.

In this construction we follow [5]. Let P̃ : X → Y be a bounded linear
map and rank P̃ ≤ N . Then we choose constants ν0, ν1, ν2, . . . , νN such
that

(5.11) P̃

(
N∑
k=0

νkfk

)
= 0.

Put f =
N∑
k=0

νkfk and as before

F (x) =
∫ x

0

ψ(y)f(y) dy, x > 0.

For all x ∈ Ik

F (x) = νkFk(x) + µk, k = 0, 1, . . . , N − 1,

for some constant µk. For all c ∈ R

‖χIϕ (F − FI)‖Y ≤ ‖χIϕ (F − c− (F − c)I)‖Y
≤ ‖χIϕ(F − c)‖Y + |(F − c)I | ‖χIϕ‖Y

≤ 2
1− δ ‖χIϕ(F − c)‖Y ≤ 2, 02 ‖χIϕ(F − c)‖Y .

Hence,

(5.12) ‖χIϕ(F − FI)‖Y ≤ 2, 02 inf
c∈R
‖χIϕ(F − c)‖Y .
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Applying (5.9)-(5.12), `p2-concavity of Y and `p1-convexity of X, we find

‖Hf − P̃ f‖p2
Y = ‖Hf‖p2

Y

≥ d−p2
1

(
‖χI0ϕF0‖p2

Y +
N−1∑
k=1

‖χIkϕF‖
p2
Y + ‖χINϕFN‖

p2
Y

)

≥ d−p2
1

(
(λε)p2‖ν0f0‖p2

X +
N−1∑
k=1

‖χIkϕ(νkFk + µk)‖p2
Y + (λε)p2‖νNfN‖p2

X

)

≥ d−p2
1

(
(λε)p2‖ν0f0‖p2

X

+
(

1
2, 02

)p2 N−1∑
k=1

(
|νk| ‖χIkϕ(Fk − Fk,Ik)‖Y

)p2 + (λε)p2‖νNfN‖p2
X

)

≥ d−p2
1

(
(λε)p2‖ν0f0‖p2

X

+
(

λε

2, 02

)p2 N−1∑
k=1

(|νk|‖fk‖X)p2 + (λε)p2‖νNfN‖p2
X

)

= d−p2
1

(
(λε)p2‖ν0f0‖p2

X +
(

λε

2, 02

)p2 N−1∑
k=1

| ‖νkfk‖p2
X +(λε)p2‖νNfN‖p2

X

)

≥
(

λε

2, 02d1

)p2 N∑
k=0

‖νkfk‖p2
X

≥
(

λε

2, 02d1

)p2
(

N∑
k=0

‖νkfk‖p1
X

)p1/p2

(N + 1)1−p2/p1

≥
(

λε

2, 02d1d2

)p2

(N + 1)1−p2/p1‖f‖p2
X .

Thus,

aN (H) ≥ 1
2, 02

d−1
1 d−1

2 λε(N + 1)1/p2−1/p1 ,

and, letting λ→ 1 the required lower bound follows.
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Remark 6. For Lebesgue spaces Theorems 6 and 7 were proved in
[5], the extension to Lorentz spaces was given in [11].
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