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LIMIT CYCLES
IN THE HOLLING-TANNER MODEL

ARMENGOL GASULL, ROBERT E. KOO1J AND JOAN TORREGROSA

Abstract

This paper deals with the following question: does the asymptotic
stability of the positive equilibrium of the Holling-Tanner model
imply it is also globally stable? We will show that the answer to
this question is negative. The main tool we use is the computation
of Poincaré-Lyapunov constants in case a weak focus occurs. In
this way we are able to construct an example with two limit cycles.

1. Introduction

The two main types of interaction between any pair of biological
species, which are of interest to the ecologist, are either when they are
competing together for some common source of food supply, or when one
of the species preys upon the other. In this paper we will restrict our
attention to the latter case.

The existence and the number of isolated periodic solutions (limit cy-
cles) is one of the most delicate problems connected with two-dimensional
predator-prey models.

One of the first examples of a biological system modelling the interac-
tion between prey and predators was formulated by Lotka in 1925 [11]
and Volterra in 1927 [17]:

d
R Bzy,
dt

(1.1)
WY _ sy
—_ = — Ty.
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In system (1.1) z(t) and y(t) denote prey and predator densities respec-
tively, as functions of time. Furthermore, all constants are assumed to
be positive. Obviously, the attention is restricted to x > 0, y > 0.
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It is a well-known fact that (1.1) has a family of periodic orbits, but
no limit cycles.

Due to the fact that (1.1) has a center system (1.1) lacks structural
stability. That is, the phase portrait of (1.1) can be changed if we take
into account arbitrarily small additional effects. If, for example, (1.1) is
modified to include the effect of competition among the prey (by adding
—ex? to the first equation of (1.1)) then the resulting system no longer
has a center and the population oscillations decay. A first generalization
of system (1.1) was suggested by Gause in 1934 [6]:

dx

il p(z)y,
(1.2)

dy

A .

7 y+p(x)y

Here o > 0 is the growth rate of the prey in absence of the predator;
0 > 0 is the death rate of the predator in absence of the prey; v > 0 is
the rate of conversion of consumed prey to predator. Finally, p(x) is the
capture rate of prey per predator or functional response of a predator.

For most examples that appear in the literature (see the bibliography
in [5]) it is assumed that p(0) = 0 and p/(z) > 0 for all > 0.

The generalized Gause model for the interaction of the two species is
(see [5]):

X — 29(x) —plaly,
(1.3) .
d—? = —dy + h(x)y.

System (1.3) incorporates density-dependent prey growth in absence of
the predator. This is introduced in the model because it is quite unreal-
istic to assume that the prey will grow to infinity in absence of predators,
as will happen for (1.1) and (1.2). The growth rate g(x) satisfies g(0) > 0,
g'(z) < 0 for all z > 0 and there exists a K > 0 such that g(K) = 0.
K is called the carrying capacity of the prey. A growth rate of this type
is thought to model the situation where the food supply for the prey is
limited. For high densities of prey they will compete for the resources.

A famous example that belongs to systems of type (1.3) is a system
first mentioned by Rosenzweig and McArthur in 1963 [14]:

dzx T me
=rz (1 — —) ,

dt K _A—|—acy
(1.4)
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where 7, K, m, A, and 7 are positive constants.

System (1.4) is important because it is a structurally stable model
which can exhibit persistent oscillations. The uniqueness of the limit
cycle of system (1.4) was first proved by Cheng [3]. However, his ar-
guments are rather tedious; a simplified proof was given by Kuang and
Freedman [10]. The functional response that occurs in system (1.4),
p(xr) = F35, was suggested by the biologist Holling in 1959 [7]. In
fact, based on actual field data, he argued that the functional response
should not only be a monotonically increasing, but also a bounded func-
tion. Holling suggested p(z) = Xfw referred to as a functional response
of Holling type II, to represent invertebrate predators. In this function
p(x), m is the maximum rate of predation while A can be shown to be

proportional to the time required for the predator to search and find a
prey.

A slightly different model was suggested by Tanner [16]:

dr (- Ey_mr
(L5) Tx( K) Aery

In the literature model (1.5) is referred to as the Holling-Tanner model.
In (1.5) the predator grows logistically with intrinsic growth rate s and
carrying capacity proportional to the size of the prey. The parameter
h is the number of prey required to support one predator at equilib-
rium. Clearly this model incorporates intraspecific competition among
the predators. A study of several pairs of interacting species in [16] shows
that the theoretical predictions of (1.5) based on estimated parameter
values are broadly in line with practical reality.

The local stability of the unique positive equilibrium of (1.5) was in-
vestigated by May [12] and Murray [13]. Recently Hsu and Huang [8]
obtained some results on the global stability of the positive equilibrium.
To be more precise, they obtained conditions under which local stability
of the positive equilibrium implies its global stability. In fact, it is some-
times conjectured that for predator-prey systems with a unique positive
equilibrium local and global stability are equivalent. For instance, in
Arrowsmith and Place [2], it is remarked that this conjecture is true for
system (1.5). However, we will show in this paper that this conjecture is
not true for system (1.5). We do this by constructing an example where
the positive equilibrium is stable while being surrounded by two limit
cycles, the innermost being unstable and the outermost being stable.
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This implies the interesting phenomenon of coexistence of a stable equi-
librium and persistent oscillations. Our results confirm the numerical
results obtained by Wollkind et al. [18], who used system (1.5) to model
temperature-dependent mite interaction on fruit trees.

The rest of the paper is organized as follows. In section 2 we dis-
cuss some general properties of (1.5). To this end we will transform
(1.5) to a generalized Liénard equation. This makes it possible to sim-
plify the proofs of the results obtained in [8]. In section 3 we discuss
the case where the linearization matrix at the positive equilibrium has
a pair of pure imaginary roots. For this case nonlinear terms have to
be taken into account in order to determine the local stability of the
positive equilibrium. For this case the stability depends on the sign of
the first non-vanishing Poincaré-Lyapunov constant. For the effective
computation of these constants and for the study of their sign the use
of a system for mathematical computation like Maple is inevitable. In
section 4 we discuss the phase portraits of system (1.5), specially when
one or two limit cycles occur. In section 5 the analytic results are illus-
trated by numerical experiments. Finally we state some open problems
for system (1.5).

2. General properties of system (1.5)

%, ¥ = 2 system (1.5)

After applying the rescaling t = rt, T
becomes (after omitting the bars):

dx
dt

@2.1) " ) a+x
a=v(0-57),

where a, 3,5 > 0.

To study the phase portrait we will first investigate the singular points
of (2.1). It is easy to see that S(1,0) is a saddle and the character of
0(0,0) can be obtained after rescaling the time in (2.1) by 4 = g

d 2

G- -y
(2.2) T a+z

dy

E—y(&c—ﬁy)-

For the system (2.2) the character of the origin can be obtained by
applying one blow up. It appears that the character of this singularity
depends on the sign of § — 1, see Figure 2.1.
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(a) 0<d<1 (b) 6>1
Figure 2.1. Phase portrait of system (2.2) near the origin.

The behaviour of the trajectories near the origin for system (2.1) for
x > 0 is the same as in Figure 2.1. We will see later that we are only
interested in the case 0 < § < 1 because for 6 > 1 system (2.1) has no
limit cycles.

Furthermore there is a positive equilibrium E(x*,y*), where 0 <z* <1
is the unique positive zero of

(2.3) dx — Bl —z)(a+z)=0.

It is easy to show that E is an antisaddle i.e. the product of the eigen-
values of the linearization matrix at E is positive.

The following lemma, which is proved in [8, Lemma 2.1], will appear
to be useful in the sequel.

Lemma 2.1. The solutions of (2.1) are positive and bounded, and
furthermore there exists T > 0 such that z(t) < 1, y(t) < % fort>T.

The following lemma shows that system (2.1) can be transformed to
a generalized Liénard system. This is useful because there are many
criteria available which guarantee nonexistence or uniqueness of limit
cycles for (generalized) Liénard equations, see for instance Ye et al. [19].

Lemma 2.2. System (2.1) can be transformed to a generalized
Liénard system of the form
d -
Tl [ T,

dz
dr

(2.4)
= —g(.f),
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where
p(z) =€,
o) = 1o e ().
i) =gl e ().
with,

f(x) = (1 —a)z® —22° — (1 — z)(a + 2)?,
g(x) =0z — (1 —z)(a+ x))(a+ x).

Proof: First rewrite system (2.1) as

Ccll—f = fo(ﬂ?) - fl(m):%
(2.5) d

d_gi = go(x) + g1(2)y + g2(2)y”,
where,

fole) = 2(1 —=), go(x) =0,

ha)=——.  a)=4
g

g2(z) = S

It is well-known that systems of the form (2.5) can be transformed

to a Liénard equation, see for instance [19]. However, if we know

a solution y = (x) of (2.5) then we can transform (2.5) to a sim-

pler generalized Liénard equation, see Zegeling and Kooij [20]. Be-

cause y = 0 is a solution of (2.1) we can apply the transformation
dt 1 w' () _ _ g2(x)

y = w(@)e*, §& = —5man), Where w(z) satisfies 5 Fi) and
aB

hence w(z) = 2% exp (——) see Lemma 2.2 in [20], to obtain the gen-

T )

eralized Liénard equation (2.4). Note that it follows from this transfor-
mation that

b
fiw(z)

— (1= 2)(a+ )z exp (ﬂ)

X

F(z) = /1 “Frar

and from this we can obtain f(z) = -L(F(z)). This completes the
proof. B
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The equilibrium F(z*,y*) of system (2.1) is mapped unto the equi-
librium D(z*, z*) of system (2.4), where z* satisfies y* = w(z*)e* . Its
stability depends on the sign of — f(z*) which equals the sign of —f(z*).
If we solve 8 from dz* — B(1 — z*)(a + *) = 0 and substitute this into
f(x) then we obtain

f@*) =2"(-22"* + (1 — a — 0)2* — ad) = —a*P(z*).
This defines a function
(2.6) P(z) =22+ (a+6 — 1)z + af,

which is also derived in [8, formula (3.3)].

If P(z) has a fixed sign (i.e. > 0) then there are no limit cycles. This

-1
is shown in [8, Theorem 3.2 (i)], by using a Dulac function (ﬁ) y 2

for system (2.1). It also can be deduced by using a Dulac function e~¥
for system (2.4) and the fact that f(z) — g(z) = —xP(z).
Hence it follows directly that for § > 1 system (2.1) has no limit cycles.

Therefore the only case that interests us is where P(z) has two positive
roots: 0 < ap < ag < 1.

In the ad-plane this means we restrict our attention to the region D,
defined by

0<d<1+3a—2v2a+2a2,

(2.7)
0<a<l,

see Figure 2.2.

0.8
0.6
0.4

0.2
D

0 0.2 0.4 0.6 0.8 1
a

Figure 2.2. The region D.
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For this case the function F(x) has at most two extrema. We will
assume that F(x) has exactly two extrema, (3, and (32, where 0 < 3 <
B2 < 1, see Figure 2.3, because if F'(x) is monotone then f(x) has a fixed
sign and then the nonexistence of limit cycles follows by Bendixson’s
criterion.

|
—
=

b
i Ba 1

T

Figure 2.3. The function F(x).

As mentioned before the local stability of E(z*, y*) depends on the sign
of —f(x*). Therefore we obtain immediately, see also [8, Lemma 3.1]:

Lemma 2.3. (a) If 0 < 2* < a3 or ag < z* < 1, then E(x*,y*) is
asymptotically stable;
(b) If a1 < x* < g then E(z*,y*) is unstable.

In [8, Theorem 3.2], is proved:

Lemma 2.4. (a) If as < 2* < 1 then E(z*,y*) is globally stable;
_(b) If x is sufficiently small (to be precise, if 2* < ¥, with F(3) =
F(B2), see Figure 2.3) then E(z*,y*) is globally stable.

These results can be obtained by showing that under the conditions (a)
and (b) no limit cycles surround E(x*, y*). Then the result follows from
Lemma 2.1. The proof given by [8], who use different transformations
for case (a) and (b), can be unified by studying the generalized Liénard
equation (2.4). We leave this as an exercise to the reader.

Because for a1 < z* < ao, E(x*,y*) is unstable it follows by
Lemma 2.1 that we can apply the Poincaré-Bendixson theorem to deduce
the existence of at least one stable limit cycle for this case.
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For * = a1 or z* = ay the eigenvalues of the linearization matrix of
D(z*,2z*) (and hence at E(x*,y*)) are purely imaginary so we have to
take into account higher order terms in order to determine whether this
equilibrium is a center or a weak focus.

Recall that a weak focus is a singularity that is a center for the lin-
earized system but not necessarily for the nonlinear system. If the origin
is a weak focus then the canonical form of the system reads:

dx

o = _y+F2('T’ay)7
(2.8) ;“
=1+ Galay),

where F5 and G5 denote terms of at least order two.

It is known (see [1]) that if IT denotes the Poincaré return map defined
by the flow of (2.8) on the positive z-axis at a neighourhood of zero, then
either TI(z) = « (the origin of (2.8) is a center) or there exists k € N
and Vi, # 0 such that TI(z) = = + Vy2?**! + O(2%*2). The value V,
is called the Poincaré-Lyapunov constant of the origin of (2.8) and the
stability of this point is determined by its sign. In this situation we will
say that the order of the weak focus is k. Under perturbation of the
coefficients of (2.8) at most k limit cycles can bifurcate out of a weak
focus of order k. Such limit cycles are said to be of small amplitude. For
an ample discussion on the computation of Poincaré-Lyapunov constants
we refer to Andronov et al. [1].

In the next section we will compute the Poincaré-Lyapunov constants
for system (2.1) when z* = a; or * = as. However, we will first state
a result on the stability of E(x*,y*) in the case that * = aq, without
making an actual computation.

Theorem 2.1. If 2* = ag then E(x*,y*) is asymptotically stable.

Proof: First suppose that for z* = «ag, E(z*,y*) is locally unsta-
ble i.e. the first non-vanishing Poincaré-Lyapunov constant is positive.
Then by Lemma 2.1 and the Poincaré-Bendixson theorem E(x*,y*) is
surrounded by at least one stable limit cycle. Then, by continuity, sys-
tem (2.1) still would have a limit cycle if 0 < 2* — s < 1, but this con-
tradicts Lemma 2.4 (a). We can exclude the possibility that all Poincaré-
Lyapunov constants are zero because this would mean that E(z*,y*) is a
center i.e. a singularity surrounded by a family of closed orbits. However,
by Lemma 2.1 it would follow that this family has an outermost closed
orbit without singularities on it. But this is known to be impossible for
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analytic systems. Therefore we conclude that E(z*,y*) is asymptotically
stable. This ends the proof. B

Remark 2.1. If z* is slightly decreased from a5 then the Andronov-
Hopf bifurcation occurs, generating a stable limit cycle.

Remark 2.2. It will be proved in section 4 (see Remark 4.2), that
V1 < 0 when z* = ag. This fact gives an alternative proof to Theo-
rem 2.1.

The sign of the first non-vanishing Poincaré-Lyapunov constant for the
case * = « is more difficult to obtain. This will be the subject of the
next section.

3. Computation of Poincaré-Lyapunov constants

We want to compute the first nonzero Poincaré-Lyapunov constant for
the critical point E(z*,y*) for system (2.1). By standard transforma-
tions we convert the system (2.1) into a system of type (2.8) and the
critical point E(x*,y*) into the origin.

For reasons of simplicity, it is usual to express the Poincaré-Lyapunov

constants in complex notation. We will use the following result (see
[1, Ch. IV, Sect. 10] and [4]).

Theorem 3.1. Let 2 = hyoz + H(2,Z) be a smooth system with
hio € C and H(2,Z) = Y. huz"z', hyy € C. Then its first Poincaré-
k+1>2
Lyapunov constants are
Vo = exp(27 Re(hi9)/Im(h1o)) — 1,
V1 = 2w[Re(ha1) — Im(hoghi1)],

Vy = g[G Re(haz) + Im(3h2, — 6haohiz + 6haohat
— 12h11h3y — 6h11hag — 8hozhao — 2hoz2his3)
+ Re(—8ho2ho2ha1 + 4hoohozhia + 6haohiihiz
+ 6h11hoghi2 — 1203 hag — 4haoho2hao — 6haohi1hso
+ 10h11ho2hso + 4haohozhos + 2h11hozhos)
+ Im(6haohir hoz + 3h2gh2, — 4h2ghi1hoz + 475, ho)].

To apply the above theorem to our system of type (2.8) we make the
change of variables z = x + iy. The direct substitution in the formulas
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for V1 and V5 give intractable expressions in terms of a, § and 3 (larger
than the present paper) even for an algebraic manipulator. The main
computational problem is that the condition Vi = 0 given by (2.6) does
not allow to isolate in a easy way any of the variables a, § and 5. A

way to shorten the computation is to take as parameters a, § and x*
instead of a, § and (3 (ﬁ = %, see (2.3)). It turns out that Vg
depends on a, x* and ¢ and that V; and V, depend only on a and x*.
By using Maple we arrive at the following result.

Theorem 3.2. Let E(x*,y*) be a focus for system (2.1).
(i) Then its first Poincaré-Lyapunov constants are

—927(2 *2 * ok *

Vozexp< w(2x —&-a:c\/zz +5a—|—5x))_1’
Vi ma(—1+2*)22* +a—1)_

e 4S(a+ ) (a+a9)d 1

Voo — ma(—142*)S N

2= 96$*2(a—|—x*2)4(a+x*)5 2

where
ox*

ER(ErD )
A =66z a+ 42*° — 42** — 26a2*® + 2ax** — a®2*? — 4aa*?
— 2% 4 262%% — §%2*2 + 48a% — 26%x%a — §%a® — 28a2x*,
Vi = —a® — 6a%s* + a® — ax*® — 6az*? — 32+,
VN = 3a80*? — 4a® + 4507 2% + 43d%2*° + 4050 2*7 + 188a°2*°
+168aSz** +122* M + 416522 +38a2 2 1* + 4494325 — 1064 2*2
— 5a®z* — 4a8 4 2812*°a® — 5112*%a® — 11652 a® — 270*%a
+ 84" +193zpSa* + 6275 — 192*7a® + 3a72** + 384210
—15192*°a* — 10682*%a® — 5312*"a® — 1132*%a + 88a°z**
— 10a*z*? + 1812*%a® — 10a72* + 43a52*° + 3a°2*" — 62*°
—20a°z* + 35a%2* + 182 %a? + 4923 a* + 1592*%a? + 27725 a®
+ 422 a + 422 %6 + dax* 't + 2500227 + 18az*® + 106ax*°

and

g \/—x*(Qx* +a—1)(a+z*?)

(a+ x*)?
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(ii) For the parameters in region D (see (2.7)), Vi(a,xz*) = 0 if and
only if VN(a,z*) = 0. Furthermore Vi(a,z*)VN (a,2*) > 0 for
i=1,2.

4. Analysis of system (2.1)

It has been shown in the previous section that for z* = «; the relevant
part of the first Poincaré-Lyapunov constant becomes:

VN = —(3+a)ad — 6aa? — 6a*a; — a® + d?,

where o is the smallest root of P(z) = 22?2+ (a+6 — 1)z +ad, i.e. a; =

17“*5*\/“2’6‘2‘5’2‘”52’25*1. We will plot Vj¥ = 0 in the ad-plane,

together with the curve 6 = 1+3a—2v2a + 242, cf. (2.7), see Figure 4.1.

1
0.8
0.6

0
0.4 Vi<0
0.2
Vi>0
0 0.2 0.4 0.6 0.8 1

a

Figure 4.1. The graph of V; = 0.

The curve VN = 0 divides the region D = {(a,6) € R? | 0 < § <
14 3a —2v2a+2a%,0 < a < 1} into two regions where V; < 0 and
Vi > 0. If Vi < 0 then for 2* = «y, E(x*,y*) is asymptotically stable
and the Andronov-Hopf bifurcation occurs for 0 < z* — a1 < 1, generat-
ing a stable limit cycle. If V; > 0 then for z* = «y, E(z*, y*) is unstable
and then by Lemma 2.1 E(z*,y*) is surrounded by at least one sta-
ble limit cycle. Furthermore the Andronov-Hopf bifurcation occurs for
0 < a3 — x* < 1, generating an unstable limit cycle. Because by conti-
nuity the stable limit cycle still persists we have proved the following:

Theorem 4.1. If Vi > 0 then for 0 < a; — z* < 1 system (2.1) has
at least two limit cycles.
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For the situation described in Theorem 4.1, E(z*,y*) is asymptoti-
cally stable but obviously not globally stable. The innermost limit cycle
surrounding F(x*,y*) is innerly unstable whereas the outermost limit
cycle is outerly stable.

This implies the interesting phenomenon of bistability by the coexis-
tence of a stable equilibrium and a stable cycle. If the initial conditions
are chosen sufficiently close to the positive equilibrium then the trajec-
tories tend to this equilibrium. However trajectories starting sufficiently
far from the positive equilibrium will tend to the outermost limit cycle.

If for V7 > 0, z* is decreased from «; then at least two limit cycles
exist but by the time that z* = T they must have disappeared, see
Lemma 2.4 (b). This can only happen through a saddlenode bifurcation
for limit cycles, inducing the existence of a semi-stable limit cycle for a
certain value x5 € (Z, 7). In our situation the semi-stable limit cycle
is stable on the outside and unstable on the inside.

If V1 = 0 then we need to know the sign of V5 in order to determine
the stability of E(z*,y*) when * = a;.

Consider the system V{¥(a,2*) = 0, V¥ (a,z*) = 0. With the assis-
tance of Maple we can solve it obtaining the following solutions (a, z*):

(_37 2)7 (_9’3)7 (_1’ 1)7 (Oa 0)7 (17 0),

A5 393130 L U1
313 626 626 3137 ’

with z* satisfying the equation 224411523 — 8422 + 72— 12 = 0. Observe
that all these solutions are outside the region D. Therefore V5 is always
different from zero when V; is zero. In fact we can prove that V5 < 0, so
the point E(z*,y*) is an attractor.

The above computations provide another way to produce at least two
limit cycles for system (2.1). We describe it in the sequel. Take (a,z*) =
(@,z*) such that V; = 0 and Va < 0, while § = §(a,z*) such that (2.6)
vanishes at z = z*, i.e. Vj = 0. For these values of a, z*, and § the
Poincaré return map in a neigbourhood of FE(z*,y*) is given by
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(p) = p+ Vap” + O(p°).
Taking (a,z*,d) near (a,z*,5) the Poincaré map satisfies

I(p) = p+ Vop + p2(Vo)p* + (Vi + p3(Vo))p®
+ pa(Vo, Vi)p* + (Va + ps(Vo, V1)) p° + O(p%),

where p; are smooth functions vanishing at 0. Taking |a — al, |§ — §|
and |z* — Z*| small enough and such that |Vp| < |V1]| < |Va], Vo < 0
and Vi > 0, we can ensure that II(p) — p = 0 has at least two positive
solutions near p = 0, that is we can ensure that system (2.1) has at least
two small-amplitude limit cycles.

Remark 4.2. Consider z* = ap. Argueing in a similar way as in case
x* = a1, it can be seen that the system Vy(a,2*,6) = 0, Vi(a,z*) =0
has no solutions contained in D. Therefore Vi (a, as) is always negative.

5. Open problems and numerical experiments

Based on the analytical results obtained in the previous sections we will
state some open problems for system (2.1) and conduct some numerical
experiments that support them.

Problem 5.1. If a; < 2* < «ay then system (2.1) has exactly one
limit cycle.

The standard method to prove this problem would be to use the gen-
eralized Liénard equation (2.4) and then apply a criterion for the unique-
ness of the limit cycle by Zhang Zhifen, [21], [22], see for instance [9] or
[10]. The main condition to be satisfied is the monotonicity of the quo-

tient % In Figure 5.1 we have obtained some trajectories numerically

of system (2.1) for the parameter values a = .2, 8 = .06, § = .1.
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Holling-Tanner model: a = .2, § = .06, § = .1

0.7¢
0.6}

0 02 04 06 08 1

Figure 5.1. System (2.1) with a = .2, 8 = .06, 0 = .1.

|
=
2

Using Lemma 2.2 we can easily obtain the graph of the function

Q|
~
8
NS

for these parameter values, see Figure 5.2.

1
0.5’\
ol \o1 P2 03\ 04 05

Figure 5.2. 22 with a = 2, f= .06, 6 = .1.

It can be proved that for z € (z*,1), égg is monotone but for =z €

(0,x*), 558 has a relative maximum. In the future we hope to formu-
late a modification of the criterion by Zhang Zhifen in order to prove

Problem 5.1.
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Problem 5.2. If0 < z* < ay and Vi < 0 then E(x*,y*) is globally
stable.

Note that this problem is already proved for 0 < z* < #, where F(%) =
F(f32), see Lemma 2.4 (b).

In Figure 5.3 we have obtained some trajectories of system (2.1) nu-
merically for the parameter values a = .2, § = .0682, § = .2 for which
T <z*<aopand V] <0.

Holling-Tanner model: a = .2, 8 = .682, § = .2

0.8
0.7t

0 02 04 06 08 1
Figure 5.3. System (2.1) with a = .2, § = .0682, § = .2.

The graph of the function % for this case is depicted in Figure 5.4.
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Because for every ¢ € R the equation % = c has a solution, it follows
that it is not possible to use a Dulac function of the form e~<¥ for the
generalized Liénard equation (2.4) to prove nonexistence of limit cycles

in this case.

Problem 5.3. If 0 < 2* < a1 and Vi > 0 then E(z*,y*) is sur-
rounded by at most two limit cycles.

This is by far the most difficult of the three open problems because
there are no theorems available which guarantee the existence of at most
two limit cycles for a general system. Maybe one can obtain some results
in case it is assumed that some of the parameters in the system are small.
This would lead to the study of the zeros of Abelian integrals. This
approach is followed by Rothe and Shafer [15].

A numerical example with two limit cycles is displayed in Figure 5.5.
The parameter values are a = .1, 8 = .005, 6 = .1, such that £ < 2* < oy
and V7 > 0.

Holling-Tanner model: a = .1, = .005, § = .1

0 02 04 06 08 1

Figure 5.5. System (2.1) with ¢ = .1, 8 = .005, § = .1.
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