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ON BILINEAR LITTLEWOOD-PALEY
SQUARE FUNCTIONS

M. T. Lacey

Abstract
On the real line, let the Fourier transform of kn be k̂n(ξ) = k̂(ξ−n)

where k̂(ξ) is a smooth compactly supported function. Consider

the bilinear operators Sn(f, g)(x) =
∫

f(x + y)g(x − y)kn(y) dy.

If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove that

∞∑
n=−∞

‖Sn(f, g)‖2
2 ≤ C2‖f‖2

p‖g‖2
q .

The constant C depends only upon k.

1. The inequalities

The principal inequality of this paper has two motivations. In 1964,
Alberto Calderón raised conjectures concerning the following operator
acting on two functions f and g defined on the real line:

H(f, g)(x) =
1
π

∫
f(x+ y)g(x− y) dy/y.

This operator, which has come to be known as the bilinear Hilbert trans-
form, serves as the quintessential example of a bilinear operator whose
Fourier multiplier has a singularities. This operator will not be addressed
in this paper.
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The second motivation is the inequality of Littlewood-Paley type be-
low. Denote by SIf(x) the restriction of the Fourier transform of f to
an interval I ⊂ R. There is the inequality∥∥∥∥∥∥

( ∞∑
n=−∞

|S[n,n+1)f |2
)1/2

∥∥∥∥∥∥
p

≤ Cp‖f‖p, 2 ≤ p.

This is due to L. Carleson [C]. The restriction to 2 ≤ p is sharp, as can
be seen by taking the Fourier transform of f to be the indicator of the
interval [0, N ], for N large. The reader should consult Rubio de Francia’s
interesting generalization [RdF].

We extend the inequality above to a bilinear setting, in the case of
p = 2. To set notation, consider a smooth bump function with k̂(ξ)
supported on the unit cube of Rd. For integers n ∈ Zd, let kn be the
function with Fourier transform k̂n(ξ) = k̂(ξ − n) and define

Sn(f, g)(x) =
∫
Rd

f(x+ y)g(x− y)kn(y) dy.

Theorem 1.1. For all 2 ≤ p, q ≤ ∞, with 1/p+ 1/q = 1/2,

(1.2)
∑

n∈Zd

‖Sn(f, g)‖2
2 ≤ C2‖f‖2

p‖g‖2
q.

The constant C is independent of p and q.

The proof offered can be extended to other bilinear forms, where for
instance the “+y” in the integral is replaced by “−By” where B is an
invertible linear transformation on Rd which is not the identity.

Notice that we only prove the theorem in its most obvious possible
formulation and even then the proof is curiously intricate. The question
arises of the boundedness of the square function (

∑
n |Sn(f, g)|2)1/2 as a

map into Lp for p > 2, but I do not know how to address this question.
It is natural to ask for possible extensions to a sharp cut off in fre-

quency, namely by taking the kn to have Fourier tranform equal to the
indicator of the cube [n, n+1). Such a result if true, would be deep as it
would already entail the boundedness of the bilinear Hilbert transform
as a map into L2. Recent progress has been made on this conjecture in
[LT].
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2. Decomposition of the functions

For the proof f and g are decomposed in the space-frequency plane.
Define the Fourier transform to be

Ff(ξ) = f̂(ξ) =
1

(2π)d/2

∫
Rd

e−2πix·ξf(x) dx, ξ ∈ Rd.

In the sequel, 〈f, g〉 will mean
∫
fḡ dx, and we shall adopt the notation

eξ(x) = e2πiξ·x. Let ϕ be a smooth, rapidly decreasing function, and set
ϕm,n(x) = em(x)ϕ(x− n) for integers m,n ∈ Zd.

The particular decomposition of f and g that is needed is written as

(2.1) Φf(x) =
∑

m,n∈Zd

〈f, ϕm,n〉ϕm,n(x).

A curious feature of the problem is that a space-frequency decomposition
seems to be required, although the definition of Sn(f, g) would not seem
to force it upon us.

The subsequent section will be devoted to a proof of

Lemma 2.2. Adopt the notation of Theorem 1.1, and let ∆(f, g) de-
note the square function of (1.2). Let ϕ be a function of L2 norm 1, with
ϕ̂ supported in a translate of the cube [−1/4, 1/4]d, and

(2.3) sup
x

(1 + |x|)10d|ϕ(x)| = B <∞.

Let Φf be as in (2.1). And let ϕ′ be a second function satisfying these
same attributes, with Φ′g being the corresponding decomposition of g.
Then, there is a constant CB so that for all 2 ≤ p, q ≤ ∞, with 1/p +
1/q = 1/2,

(2.4) ‖∆(Φf,Φ′g)‖2 ≤ CB‖f‖p‖g‖q.

To conclude the theorem, we need to replace Φf by f , and likewise for
g. This can be done by way of a general principle, which we formulate
in this way.

Lemma 2.5. Let T be a sublinear map of bounded smooth functions
on Rd into a Banach space X. If T ◦ Φ is a bounded operator from Lp,
1 ≤ p <∞, into X, with norm N(ϕ), then T maps Lp into X with norm
at most ∫

[0,1)d

∫
[0,1)d

N(e2πis·ϕ(· − t)) ds dt.
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Proof: The basis of the proof resides in the following resolution of the
identity

f(x) = ‖ϕ‖−2
2

∫∫
〈f, ϕm,n〉ϕm,n(x) dmdn.

This equality is initially understood in the sense of inner products, as we
show. Let If denote the right hand side above. Then 〈If, g〉 = 〈f, g〉,
indeed

〈If, g〉 = ‖ϕ‖−2
2

∫∫
〈f, ϕm,n〉〈g, ϕm,n〉 dmdn.

Now, the Fourier transform is unitary, so that

〈f, ϕm,n〉 = 〈f̂(ξ), e2πin·ξϕ̂(ξ −m)〉,

which is the Fourier transform of the function Fm(ξ) = f̂(ξ)ϕ̂(ξ −m)
evaluated at ξ = −n. Thus, 〈f, ϕm,n〉 = F̂m(−n). Likewise, 〈g, ϕm,n〉 is
the Fourier transform of the function Gm(ξ) = ĝ(ξ)ϕ̂(ξ −m) evaluated
at −n.

From these considerations, it follows that

〈If, g〉 = ‖ϕ‖−2
2

∫
〈F̂m, Ĝm〉 dm

= ‖ϕ‖−2
2

∫
〈Fm, Gm〉 dm

= ‖ϕ‖−2
2

∫
f̂(ξ)ĝ(ξ)|ϕ̂(ξ −m)|2 dξ dm

= 〈f̂ , ĝ〉
= 〈f, g〉,

as claimed.

Recalling the definition of Φ, we then see that it is a discrete form of
I. To be more explicit, let ϕs,t be the expansion of (2.1) associated to
the function es(x)ϕ(x− t), and assume ‖ϕ‖2 = 1. Then

If(x) =
∫

[0,1]d

∫
[0,1]d

Φs,tf(x) ds dt.

Moreover, for f assumed smooth and compactly supported, the expan-
sions If(x) and Φs,tf are absolutely convergent. Hence we can interpret
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If(x) in a pointwise sense. For such an f , it follows from our assump-
tions that

‖Tf(x)‖X = ‖T (If)‖X

≤
∫

[0,1]d

∫
[0,1]d

∥∥TΦs,tf
∥∥

X
ds dt

≤ ‖f‖p

∫
[0,1]d

∫
[0,1]d

N(es(·)ϕ(· − t)) ds dt.

This is the bound claimed in the lemma. Smooth and compactly sup-
ported function are dense in Lp, for 1 ≤ p <∞, proving the lemma.

The previous two lemmas prove Theorem 1.1 for 2 < p < ∞ as the
smooth functions are dense in Lp. That leaves the inequality for the
square function ∆ as a map on L2 × L∞. Here, one can take f ∈ L2

to be bounded smooth and compactly supported. For an arbitrary g ∈
L∞, one can take bounded smooth and compactly supported gn so that
‖gn‖∞ ≤ ‖g‖∞ and

∆(f, gn) L2

−→ ∆(f, g) on all compact subsets of Rd.

Moreover, as the proof shows, each gn can be written as an average of
expansions Φ. Hence the limiting case of L2 × L∞ follows.

3. The Proof of Lemma 2.2

One needs a clear understanding of Sµ as a Fourier multiplier, ob-
tained by expanding Sµ(f, g) in frequency in a formal way. This requires
that f and g be expanded in different frequency variables, say α and β
respectively.

Sµ(f, g)(x) =
∫
f(x+ y)

{∫
eβ(x− y)Fβg(β) dβ

}
kµ(y) dy

= F−1
β

{∫
eβ(−y)f(x+ y) kµ(y) dy Fβg(β)

}
(x)

= F−1
β

{
F−1

α

{∫
eβ−α(−y)kµ(y) dy Fαf(α)

}
(x)Fβg(β)

}
(x)

(3.1)

= F−1
β

{
F−1

α

{
k̂µ(β − α)Fαf(α)

}
(x) Fβg(β)

}
(x)

where Fα denotes the Fourier transform with frequency variable α. The
interchange of integrals in this formal calculation can be rigorously ver-
ified for smooth and compactly supported functions f and g.
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To recap, we are to establish the inequality (2.4) above. A central part
of this is to diagonalize the sum

(3.2) Sµ(Φf,Φ′g)(x)

=
∑

m,n∈Zd

∑
m′,n′∈Zd

〈f, ϕm,n〉〈g, ϕm′,n′〉Sµ(ϕm,n, ϕ
′
m′,n′)(x).

To simplify the notation of the proof, we specialize to the case in which
ϕ = ϕ′, and the Fourier transform of ϕ is supported in [−1/4, 1/4]d. The
function ϕ satisfies in addition the remaining hypotheses of the lemma.
The reader will easily supply the necessary changes in the proof for the
general case, as they are only evident in the next paragraph.

It follows from (3.1) that for µ,m,m′ ∈ Zd,

(3.3) Sµ(ϕm,n, ϕm′,n′)(x) ≡ 0 if m′ −m /∈ {µ+ e | e ∈ {0, 1}d}.

This will diagonalize the sums in (3.2) in the frequency variables, which
is to say m and m′. Below, for notational convienence, we specialize to
the case where m′ = m+ µ.

For the diagonalization in space, let n, n′ ∈ Zd, and observe that

Sµ(ϕm,n, ϕm+µ,n′)(x)

= e2m+µ(x)
∫

eµ(−y)kµ(y)ϕ(x+ y − n)ϕ(x− y − n′) dy.

In this integral, kµ(y) is the convolution kernel associated to the opera-
tion Sµ. Hence, k̃(y) = eµ(−y)kµ(y) is independent of µ. The integral
above is then

ψn,n′−n(x) =
∫
k̃(y)ϕ(x+ y − n)ϕ(x− y − n′) dy.

Below, we will denote the difference n′ − n by η.
The Fourier transform of k̃(y) is smooth, hence

|k̃(y)| ≤ Cm(1 ∧ |y|−d)m, m > 1.

With the assumption stated on the decay of ϕ,

(3.4) |ϕ(x)| ≤ Bϕ(1 + |x|)−10d,

it follows that for n, η ∈ Zd, ψn,η satisfies

|ψn,η(x)| ≤ Bϕ(1 + |η|)−5d(1 + |x− n| + |x− n− η|)−5d.
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Provided a function ψ has a sufficently fast decay, the map of L2(Rd)
into &2(Zd) given by f → {〈f, em(·)ψ(· − n)〉 | m,n ∈ Zd} is bounded
and invertible. See for instance Section 3.4 of [D] for a discussion of this.
In particular, with the estimate on ψn,η, we have the inequality below.

(3.5)

∥∥∥∥∥∥
∑

m,n∈Zd

am,nem(x)ψn,η(x)

∥∥∥∥∥∥
2

≤ Bϕ(1 + |η|)−4d

 ∑
m,n∈Zd

|am,n|2
1/2

.

The rapid decay in η permits us to diagonalize the sum in (3.2) in the
space variables n and n′. Let us consider, with µ ∈ Zd fixed,

∥∥∥∥∥∥
∑

η∈Zd

∑
m,n∈Zd

〈f, ϕm,n〉〈g, ϕm+µ,n+η〉Sµ(ϕm,n, ϕm+µ,n+η)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

η∈Zd

∑
m,n∈Zd

〈f, ϕm,n〉〈g, ϕm+µ,n+η〉e2m+µ(x)ψn,η(x)

∥∥∥∥∥∥
2

(3.6) ≤
∑

η∈Zd

∥∥∥∥∥∥
∑

m,n∈Zd

〈f, ϕm,n〉〈g, ϕm+µ,n+η〉e2m+µ(x)ψn,η(x)

∥∥∥∥∥∥
2

≤ C Bϕ

∑
η∈Zd

(1 + |η|)−4d

 ∑
m,n∈Zd

|〈f, ϕm,n〉〈g, ϕm+µ,n+η〉|2
1/2

≤ C Bϕ

 ∑
η∈Zd

(1 + |η|)−6d
∑

m,n∈Zd

|〈f, ϕm,n〉〈g, ϕm+µ,n+η〉|2
1/2

.

We have invoked (3.5), and used a Cauchy-Schwartz inequality to control
the sum over η. With rapid decay in |η|, that variable no longer plays
an interesting role.

Do not forget that the square of the term above must be summed over
µ as well. Thus we fix η, sum over µ and observe that the summing
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variables m and µ separate.

∑
n∈Zd

∑
m,µ∈Zd

|〈f, ϕm,n〉〈g, ϕm+µ,n+η〉|2

(3.7) =
∑

n∈Zd

∑
m,µ∈Zd

|〈f, ϕm,n〉〈g, ϕµ,n+η〉|2

=
∑

n∈Zd

∫
U

∫
U

∣∣∣∣∣∑
m

em(x)〈f, ϕm,n〉
∑

µ

eµ(y)〈g, ϕµ,n+η〉
∣∣∣∣∣
2

dx dy.

In the last line U = [0, 1)d.

From the definition of ϕm,n observe that

∑
m∈Zd

em(x)〈f, ϕm,n〉 =
∑

m′∈Zd

ϕ(x−m′ − n)f(x−m′),

where on the right, we have periodized the function ϕ(x − n)f(x). It
is clear that the right hand side has bounded Lp([0, 1)d) norm, if f ∈
Lp(Rd). To be unambigious, let p′ be the conjugate index to p, thus
1 < p′ < 2. Then, to simplify notation, we set n = 0 and estimate as
follows.

∥∥∥∥∥∥
∑

m∈Zd

em(x)〈f, ϕm,0〉

∥∥∥∥∥∥
Lp([0,1)d)

≤
∑

m′∈Zd

‖f(x−m′)ϕ(x−m′)‖Lp([0,1)d)

≤ A
∑

m∈Zd

(1 + |m|)−10d‖f(x−m)‖Lp([0,1)d)

≤ A

 ∑
m∈Zd

(1 + |m|)−p′d

1/p′

×

 ∑
m∈Zd

‖(1 + |m|)−9df(x−m)‖p
Lp([0,1)d)

1/p

≤ A‖(1 + |x|)−9df(x)‖Lp(Rd).
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Clearly the same observations apply for any other choice of n �= 0, and
to g as well.

As 1/p + 1/q = 1/2, it follows that we can bound the expression in
(3.7), yielding the inequalities

∑
n∈Zd

∑
m,µ∈Zd

|〈f, ϕm,n〉〈g, ϕm+µ,n+η〉|2

≤ C
∑

n∈Zd

‖f(x)(1 + |x− n|)−9d‖2
p × ‖g(x)(1 + |x− n− η|)−9d‖2

q

(3.8) ≤ C

 ∑
n∈Zd

‖f(x)(1 + |x− n|)−9d‖p
p

2/p

×

 ∑
n∈Zd

‖g(x)(1 + |x− n− η|)−9d‖q
q

2/q

≤ C‖f‖2
p‖g‖2

q.

Recall that we were to bound the sum over µ of ‖Sµ(Φf,Φg)‖2
2, as

expanded in (3.2). As pointed out in (3.3), the sum in (3.2) diagonal-
ized in m and m′. The discussion leading to (3.5) shows that the sum
effectively diagonalizes in the variables n and n′ as well. Finally, (3.6)
and (3.8) conclude the proof.

The constants that interceed depend only on the decay condition on
ϕ, (3.4), which is as Lemma 2.2 requires.
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