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APPROXIMATION PROPERTIES
OF THE PICARD SINGULAR INTEGRAL
IN EXPONENTIAL WEIGHTED SPACES

A. LESNIEWICZ, L. REMPULSKA AND J. WASIAK

Abstract

In this note we give some direct and inverse approximation theo-
rems for the Picard singular integral in the exponential weighted
spaces and some generalized Holder spaces.

1. Preliminaries

1.1. The Picard singular integral

1) Pie) = o | et e (— t') i,

2r J_o T
z € R :=(—00,400), r > 0 and r — 04, was examined in [1], [2], [4] for
functions belonging to the space LP and the classical Holder spaces.
The purpose of this note is to give some approximation properties of
the Picard integral (1) in the exponential weighted spaces LP? and some
generalized Holder spaces [5].

1.2. Let ¢ > 0 be a fixed number and let
(2) wy(z) :=e M zeR.

For a fixed 1 < p < oo and ¢ > 0 we denote by LP¢ the set of all
real-valued functions f defined on R for which the p-th power of w,f is
Lebesgue-integrable on R if 1 < p < 0o, and w, f is uniformly continuous
and bounded on R if p = oo. Let the norm in LP'? be given by the formula

([ @)’ it1<p<x,

sup wy ()| f ()] if p=oo.
z€R

®3) 7l

pa = 1fO)llpg =
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For f € LP? we define the modulus of smoothness of the order 2

(4) wao(f, LP95t) = sup A7 f()llpgr 20,
[n|<t
where
(5) Abf(x) = f(z+h)+ f(x —h) = 2f(z), =, heR

From (3)-(5) for f € LP? follows

(6) IFC+ D)o < e™FO)lpg, R ER,

(7) 0= CUQ(f, Lp’q; 0) < WQ(f, Lp’q;tl) < CUQ(f7 Lp’q;tz) if 0 <ty < to.

Using the indentity (see [3, pp. 25-29])

n—1

Zm fl@=(n—kh)+ > (n—k)A}f(x + kh),

k=1

z, he R;n=23,..., and by (2)-(6) we can prove that
wo(f, L% nt) < nQe("*l)thg(f, LP%t) forn=1,2,... and t > 0

and
wo(f, LPU M) < (A + 1)%2e M wy (f, LP7;t) for A, t > 0.

1.3. Denote as in [5] by Q2 the set of all functions of order 2 modulus
of smoothness type ([6]), i.e., Q2 is the set of all functions w satisfying
the following conditions

(i) w is defined and continuous on [0, +00),
(ii) w is increasing and w(0) = 0,
(iii) w(t) t~2 is decreasing on [0, +00).
As in [5], for a given 1 < p < o0, ¢ > 0 and w € 2, we define the
generalized Holder space LP?% of all functions f € LP'? for which the

quantity
* = Sup {M}
L 0<h<1 w(h)

is finite. The norm in LP'%% is defined by

(10) [ P

(9) /]

a 151500
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For f € LP%“ we have

(11) wo(f, LP% 1) < [|f]

r (), 0<t<1.

If w, u € Q2 and the function
(12) o(t) = —=, t>0,

is increasing, then for a fixed 1 < p < oo and ¢ > 0 we have LP9% C
Pk

It is easy to observe that for every w € Q2 there exist two positive
constants My, My such that

N |

1
(13) Mt? < w(t) < M2t2/ w(z)z 3 dz forall 0 < t <
t

In this note we shall study the limit properties of the Picard integral (1)
for functions belonging to the spaces LP>? and LP-?*. We first notice that
for each 7, P, as given by (1), is well defined on all functions f € LP:?,
1 <p< o0, qg>0, provided 7 is small enough, i.e., 0 < r < %. It is then
a linear positive operator. In Section 2 we shall prove that, for a given
1<p<oo,¢g>0and 0<r< %, P, is an operator from LP'9 into LP-9.

Moreover, we shall prove that, for a given 1 < p < o0, ¢ > 0, w € Q2
and 0 <r < %, P, is an operator from LP:9* into LP9%.

2. Auxiliary results

In this part we shall give some fundamental properties of the Picard
integral P, in the spaces LP'? and LP?%.

It is easy to verify that holds.

Lemma 1. For k=0,1,2,... and y > 0 we have
+oo
/ th exp(—yt) dt = kly=* 1,
0

In what follows, for a given ¢ > 0, we shall denote by ro = r¢(q) a
fixed number such that

1
(14) 0<ry < 7
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Lemma 2. For every fited 1 < p < oo and q > 0, the Picard integral
P, is an operator from LP1 into LP? provided that 0 < r < %, Moreover,

1
1 Pr 5
(15) 12 (f5 )] T—
where Tg s given by (14).

pa = Hf“p,q for 0 <r <o,

)

Proof: We shall prove only (15).
If f e L>9 g >0, then by (1)-(3) we have

il oy — oLt
we ()| P (f52)] < [ flloo,q€ al l(2r) 1/}Reql =5 dt

+oo
swmww*/ D a, seR,
0

and further for 0 < r <ry < % we get by Lemma 1

1 1
18- (f; Mocg < I T g 1_Toqllfll 4

Similarly, if f € LP9, 1 < p < oo and ¢ > 0, then by (1)-(3) and the
generalized Minkowski inequality we get

nﬂuwmﬂswmawr{@wwfhm

which by Lemma 1 implies (15) for r € (0, r9]. Thus the proof of (15) is
completed. W

Lemma 3. Let LP?%% be a given Hélder space (1 < p < 0o, g > 0,
w € O%) and let ro be given by (14). Then for every f € LP%% and
r € (0,79] holds

(16) TG0 p—

pa < 7ol

which proves that P,., 0 <r < %, is an operator from LP%% into LP9%.

Proof: From (1) and (5) follows
(17) ALP(fra) = Po(A} f3 )
foral z,he Rand 0 < r < %. Hence and by (9) and (15) we have
|2 (A%ﬁ ) llp.q
1 P.(f;) = —_
(18) 1P wp{ 2

0<h<1
1 —70q 0<n<1 w(h) 1—roq " PP
for all 0 < r < < ¢. Combining (15), (18) and (10), we obtain (16)
and we complete the proof. B

<
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Lemma 4. Suppose that f € LP? with some 1 < p < o0, ¢ >0, and
ro is given by (14). Then

(19) P7-1(P7-2(f);$) = PT'z(Pn(f);x) fO?” T e Ra r1, T2 € <O, %) .

Moreover, for every fized r € (0, %) the function P,(f;-) has derivatives

of all orders belonging also to LP? and

(20) 1P (f3 Mlpa < (1 =700) " 77" fllp.g
foralln=1,2,... and r € (0,ro].

Proof: For fe LP9 n=12,... and 0 <r < % we get from (1)
P (fiz) =r "P(fix), zER

This fact and Lemma 2 imply (20). The equality (19) we immediately
obtain from (1) and Lemma 2. B

Lemma 5. Suppose that the assumption of Lemma 4 is satisfied.
Then

1

|p,qr_2h26q|h|
1 —roq

(21) IARP: (f5 )lpa <

I1f

for all r € (0,79] and h € R.

Proof: By Lemma 4 and (5) for z, he Rand 0 < r < % we can write

Lo b
2 2 7"
A%Pr(f;x):/ / P.(f;x 4+t + ta) dty dits.
S
Now arguing as in the proof of Lemma 2 we get
5 3
3Pl = P (T3l [ [ ertovela e

-3/-3

< B (f5)lpgh?et™,

which by (20) yields the desired inequality (21). ®
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3. Approximation theorems

3.1. First we shall prove a direct approximation theorem for functions
belonging to LP9.

Theorem 1. If f € LP'? with some 1 < p < oo and g > 0, and if rg
is given by (14), then

5 _
(22) 1P (f5) = F()llpg < 5(1 —70q) sz(f, LP9: )
for all r € (0,ro].
Proof: From (1), Lemma 1 and (5) follows

1
o

+oo .
Po(f;) - f(2) /O (A2f(z))et dt

forz € Rand r € (O, %) Further, by some calculations as in the proof
of Lemma 2 and by (4) and (8), we get

1 [t _t 1 [t _t
1)~ Fllpg < / 1A2F(llpge* di< / walf, IP; e * dt
27‘ 0 QT 0

—+oo 2
< wo(f, L”’q;r)i/ (f + 1> o~ (F=a)t g4
0

2r r

Now using Lemma 1, we easily obtain (22).
Theorem 1 and (11) imply the following

Corollary 1. If f € LP%“ with some fited 1 < p < 0o, ¢ > 0 and
w € 02, then

)
1P (£5) = FO)llpg < 50 = 100) P11} g0 (r)

for all r € (0,1] N (0, ro], where 0 < 1y < %.
In particular, if w(t) = t* with some 0 < « < 2, then

12-(f5-) = ()

pg =0(r%) asr — 04.

3.2. Using the Bernstein method ([6, p. 345]) we shall prove an inverse
approximation theorem for the Picard integral P,.
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Theorem 2. Suppose that f € LP? with some 1 < p < o0, ¢ > 0 and

(23) 1B-(f5) = fO

where w is a given function belonging to Q2 and 0 < 1o < +. Then there

pg S w(r) for (0,70],

exists a positive constant M depending only on p, ¢, w, ro and ||fllp.q
such that

1
(24) wa(f, L t) < Mt2/ w(z)z 3 dz
¢

foraltt e (0,5) 0 (0,1).

Proof: Choosing two natural numbers ng and n such that 0 < 27" <
2710 < %, we can write

n—1

f(@) = Py-no (f;2) + Z{Prkfl(f;x)—P%k(f;fﬂ)}

k‘ZTLO
+ f(z) = Po-n(f;2), z€R,
and further by (5)

n—1
AL F(@) = AjPyno (fiz) + Y AR {Po-ra(fi2) — Pooi(fi2)}

]{):no

+ A3 {f(z) — Po_n(f;2)}, z, hER.
Using Lemma 5, we get
||Ai21P2*"o (f7 )

From (1), (5) and (19) follows

Ai{szkfl(f; x) — Py (f;2)}
= AF Py (f = Py (f); ) + AL Py-ic(Pa-sa (f) = fr ).

pa < (1=70¢) " || fllp.g2° R,

Hence using Lemma 5 and (23), we obtain

IARA P11 (f;) = P (f;)}lp.q

SNARPo-s-1(f = Po=r(£); lpig + 1AZ Po-r(f = Po-r=1(f); )lp.g

< (1 —roq) e B2 2 f = Py (F)lpg + 2°F1f = Po—i—a (F)llpa}
< (1 —roq) " tetMp222k42,(27F) for h € R.




240 A. LESNIEWICZ, L. REMPULSKA, J. WASIAK

By (5), (6) and (23) we have for h € R

IARLF () = Po-n (£ )} lp.g
SFCHR) = Poon (s 4 B)llp.g + 1FC =) = Po=n(f5- = D)llpg

+201£() = Pon (£ )lpg <2 (M + 1) wi27™).

Consequently

p,q

(25) 1A F()lpg < e {4n0(1 —r0q) " R f

+(1 — 70q) "' h? ”i 2243270 + 4w(2”)}

k}:’ng

for all h € R. Now let t € (O, %) N (O, %), |h| < t, np <nandlet n be a
natural number such that 27" < ¢ < 27"*1. Then we get form (25)

n—1
wo(f, LP9:t) < M,y {t2 +17 ) 2%y (27h) + w(t)} :
k=n0

where M = e {4"°(1 = 70q) || fllp,q + (1 = 70g) ™" +4}. Since w(s)s?
is decreasing for s > 0, we obtain

iy " 4 1w(z)

22k 27k </ 225,27 ds < [ — / .
kZ: w(2™") < g w(27%)ds < m2) ) =3 dz
=ng

Collecting the above estimates and using (13), we obtain the desired
inequality (24). ®

From Theorem 2 we derive the following

Corollary 2. If the assumptions of Theorem 2 are satisfied and
w(t) < Mt*, ¢t >0, with somem >0 and 0 < o < 2, then

O(t™) if0<a<2,

ast — 0.
O (|nt]) ifa=2, oo

walf, P ) = {

3.3. Now we shall give an analogue of Theorem 1 in the Hélder norm.
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Theorem 3. Suppose that w, u € Q2 and the function ¢ defined by
(12) is increasing. If f € L% with some 1 < p < oo and ¢ > 0 and
if ro is given by (14), then there exists a positive constant M depending
only on p, q, ro, i such that

(26) 12-(f52) = FOllpan < MI|Fllpq.00(r)
for all r € (0,79] N (0, 1].

Proof: The assumptions on w, p and ¢ imply that f, P.(f) € LP»®H if

re (0, %)
Let 7 be a fixed point in (0,79]N(0,1] and let A = (0,7] and B = (r, 1].
Then by (9) and (10) we have

IAL[P-(f5) = FO)l llpa
(k)

p.q :Y'1+}/2_~_1/3

12 (f5 Mg < NP-(f5) = FC)llp,g + sup
heA

182 [P.(f ) — £l
o u(h)

Using Corollary 1 and by the properties (i), (ii) of functions belonging
to Q2, we get

(1 —roq) > u(ro)ll f

P (7):

Do | Ot

) s .
Yl S 5(1 - 7"Oq) SH.f”p,q,ww(T) S

By (6) and Corollary 1,

1
Y = s sup At [ P (£3) = F()llpa < 1071 = roq)

P (7):

In view of (5), (17) and (15) we have

iégsupHA%PT(f; Mp.a+ 1187 F()llp.q <sup [P (AR5 )lp.g AR FC)]
heA u(h) heA w(h)
I 83 7ks £ (1)
< +1])su h = < +1 r * w-
- <1 —roq ) h,eg¢( ) w(h)  — \1—roq P lp.q

Summarizing, we obtain (26). H

p.q

From Theorem 3 follows

Corollary 3. Let w(t) =t*, u(t) =t fort >0 and let 0 < f < a <
2. If f € LP? with some 1 <p < oo and ¢ > 0, then

I1P-(f;) = F)llpign = O(Tafﬂ) asr — 04.
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