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ADAMS SPECTRAL SEQUENCE
AND HIGHER TORSION IN M Sp.

BoRris I. BOTVINNIK AND STANLEY O. KOCHMAN

Abstract

In this paper we study higher torsion in the symplectic cobordism
ring. We use Toda brackets and manifolds with singularities to
construct elements of higher torsion and use the Adams spectral
sequence to determine an upper bound for the order of these ele-
ments.

1. Introduction

The symplectic cobordism ring M Sp, is the homotopy of the Thom
spectrum M Sp and classifies up to cobordism the ring of smooth man-
ifolds with a symplectic structure on their stable normal bundles. Al-
though M Sp. only has two-torsion, its ring structure is very complicated
and is only completely understood through the 100 stem [7], [13], [15].
In [2], we proved that there are nontrivial elements in M Sp, of all or-
ders 2. In this paper, we construct new elements of higher torsion by
means of Toda brackets, and we study their properties using the Adams
spectral sequence (ASS).

The following result provides the geometrical input we use to construct
higher torsion elements. Its proof in Section 5 uses low dimensional cal-
culations in the Atiyah-Hirzebruch spectral sequence for w,MSp. Let
¢o =n € MSp;, and let ¢ € M Spgi_3 for k > 1 denote the Ray ele-
ments [12]. The elements of M Sp, are built from the Ray elements using
Toda brackets. The most elementary ones are (¢, 2, ¢,,) for 0 < m < n.
Gorbounov [1, p. 139], [4] showed that these triple brackets contain zero
when m = 0. On the other hand, it was shown in [6, Thm. 8.1 3(c)]
that these triple brackets do not contain zero when (m,n) > (3,5) in
the lexicographical order. The following theorem resolves the situation
when m = 1 leaving open only the case m = 2.

This research was partially supported by a grant from the Natural Sciences and
Engineering Research Council of Canada.
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Theorem 1. In MSp., the Toda brackets (¢1,2, ¢n) contain zero for
allm > 0.

Let J = (j1,...,4s) with 0 < j; < j2 < -+ < js. By induction
on s > 1, we define elements a[J] € MSp,. The following theorem
describes our elements of higher torsion a[J]. Although we show how
the a[J] decompose in terms of Toda brackets, the a[J] will be defined
by specific representative symplectic manifolds.

Theorem 2. There exist elements a[J] € MSp. with the following
properties:

(a) alj1] = alj1, j2] = alj1, ja, j3] = 0;

(b) aljy, j2, j3, Ja] € 65y Dja(Diss 25 Bju) + Djsbju (D)1, 2, Dja) s

(¢) al2j1,...,24s] is indecomposable for s > 5;

(d) ¢1G[J] = 0 and a’[jlw-' ajs] S <¢j5’25¢1aa[j17"' 7js—1]> fOT'
s>b;

(e) for s > 7 and 1 < i3 < -+ < iy the element a[?il,... ,2“] €

MSpysy1 has order at least 2"*) where h(s) = [(s +1)/2] — 2.

Our main tool for proving Theorem 2 in Section 6 is /Ehe ASS which
we apply to the spectrum MSp and the spectra MSpZ». The latter
spectra classify bordism classes of symplectic manifolds with singularities
¥n = (Pa,...,P,) where [P;] = ¢qi—2 for 2 < i < n. The spectrum
M Spij3 is especially useful to us. Let

-~

Bs, vispSe 2 MSp,

MSpf3

be the Bockstein operators. Using the ASS we first construct higher
torsion elements ¢[.J] in the ring M SpZ? using Toda brackets. Then we
define the elements a[J] € M Sp.. as B (@ (t[J})) We prove Theorem 2

by identifying the projections of elements ¢[J] and a[J] in the ASS. In
particular, we show that the elements 2ka[J] for 0 < k < s—4 determine
towers of infinite cycles in E3*+1’2k+4 of the ASS for M Sp,. These towers
are very interesting: their heights give upper bounds for the orders of
our elements. However, we show that their top halves bound by higher
differentials, so only their bottom halves survive. This explains why our
elements of higher torsion only have half of their potential order.

To analyze the lower bounds of the orders of the a[J] we use the results
of [2] which were proved using the Adams-Novikov spectral sequence. Let
M Sp>» denote the bordism theory with singularities ,, = (P,... , P,)
where [P] = n. If J = (24,...,2%), let i = (i1,...,is). In [2]
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we constructed the higher order elements 73(i) € MSp>® of order at
least 2((>*1)/2 which defined elements a(i) € MSp, of order at least
2[(s+1)/2]=3 " We show that the elements 2a[2", ... ,2%] may be identi-
fied with the a(i).

Our analysis in the ASS and the ANSS is far from low-dimensional.
For example, the first element of order eight in M Sp, given by Theorem 2
has degree 16,377. However, if the following conjecture were true then
the first of these elements of order eight would be in degree 729.

Conjecture. The elements a[J] € M Sp. of Theorem 2 are indecom-
posable of order 2lTV/2=2 for all sequences J of distinct positive even
integers of length at least 7.

All groups, rings and spectra are two-local throughout this paper. By

[14], [16], the theories M SpZ~(-) and M Sp>=(-) have admissible commu-
tative and associative product structures. In particular, the associativity,
commutativity and Toda bracket constructions as well as all the results
of [2, Section 3] are valid for all of these theories.

The authors thank the referee for his careful reading of this paper and
his constructive suggestions.

2. May Spectral Sequence for M Sp*»

Let M Sp>», n > 1, be the spectrum defined in the Introduction with
singularities 3,, = (Py,...,P,), and let MSp*® denote M Sp. In this
section we compute the Eo-term of the Adams spectral sequence (ASS):

(1) E;’t = Cotor® (H*MSpE",Z/Z)t — MSpZn.

Our approach is analogous to that used in [5] in the case n = 0. In
particular, we use a change of rings theorem to reduce the problem of
calculating E, to computing

2) Cotorp(m) (Z/2,2/2) .

Here B (n) is a truncated polynomial algebra which we define as a quo-
tient of the dual of the Steenrod algebra below. Then we use the May
spectral sequence to compute the algebra (2). We compute & of these
May spectral sequences using the resolution constructed by May in [11].
Then we construct filtered polynomial DGA algebras 3, as quotients
of the cobar construction which induce these May spectral sequences.
We prove this from the case n = 0 of [5] by using induction on n and
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a generalized Five Lemma. Then for n > 1 we define representative
cycles of the algebra generators of £ to show that these May spectral
sequences collapse and that all the algebra extensions from £, to (2) are
trivial. Thus, when n > 1 the situation is much simpler than the case
n = 0 where there are nonzero ds-differentials and nontrivial extensions.
Consequently, for n > 1 we can describe Ey of the ASS (1) in terms of
five families of algebra generators and four families of relations while for
n = 0 nine families of algebra generators and forty families of relations
were required.

We begin by recalling the structure of the homology of M Sp*~ as a co-
module over the dual of the Steenrod algebra A, =7Z/2[&1,... ,&k,...].
Let S be the A,-primitive polynomial algebra:

S =7/2Va, Vi, Vs Vi, ]
where m = 2,4,5,..., m # 2! — 1, and degV,,, = 4m. V. Vershinin [14],
[16] proves that there is an isomorphism of A,-comodules:
(3) H MSp™ = 7Z/2[&F, ... &, &nvse &y ] ®S
for n > 0. Define the Z/2-Hopf algebra
B(n)=A./ (&, & |1 <h<nandn<k)

with coproduct ¢ induced from the coproduct of A... Note that in [5] the
Hopf algebra B (0) is denoted as B. By (3), the problem of computing
Ey of the ASS (1) is greatly simplified by Liulevicius’s interpretation
[10, Corollary 1.5] of the Cartan-Eilenberg change of rings theorem [3,
Proposition VI.4.1.3] which gives an isomorphism of Z/2-algebras:

(4)  Es = Cotora, (H.MSp™",Z/2) = Cotorp) (Z/2,2/2) ® S.
To compute the cohomology of the B (n) we use the May spectral se-
quence [11]:

E = COtOI‘EoB(n) (2/2,2/)2) = COtOI‘B(n) (2/2,7/2).

Recall that this spectral sequence is defined by giving B (n) the coprod-
uct filtration

F'B(n)c F"'B(n)c---CFPB(n)C---
where by induction on p > 1
F°B(n)=17/2, F?B(n)={beB(n) | v (b)eFP"B(n)®IB(n)}.

Here 1) denotes the reduced coproduct: ¥(b) = (b)) —b®1—1®b, and
IB (n) denotes the augmentation ideal of B (n). The following lemma
describes the structure of the Hopf algebra E°B (n). It is an immediate

consequence of the coalgebra structure of A, and the definition of the
B (n).
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Lemma 2.1. There is an isomorphism of Hopf algebras:
E'B(m)=E (¢ 1<) @B (&7 |n<k)
where the elements §J(~1), 1<j<n+1, §,£2), n < k, are primitive and
E(gJ(’l)) (2) ®f11) forj =n+2.

As in [5, Section 1], we compute the E-term of these May spectral
sequences by using the methods of May [11, Section 5] to construct a
DGA D (n) whose homology is isomorphic to

Cotorgop(n) (Z/2,2/2) .
In the notation of [5] and [11], we define the DGA
D(n)=17/2 {s§§1), Sﬁ;f) lj>1,k> n}

with differential:

0 forj<mn+1
Y _ =
d@@ )— (1) (2 : )
s s§;2y for j >mn+2
d (sf}?) =0 for k > n.

The following lemma is a straightforward generalization of [5, Lem-
mas 1.4, 1.5 and Theorem 1.6].

Lemma 2.2. There is an isomorphism of algebras:
H.D (n) = COtOI‘EOB(n) (Z/2, Z/Q) .

We will use the elements defined below to compute the homology of
the D (n).

Definition 2.3. In the algebra Cotorgop(n) (22, Z2) = H.D (n) de-
fine the following elements:

h = [s{%l)], rE = [ska] for k > n,

2
4 = {sf](i)z] for0<j<n, [q¢}]= {(«95&22) } for k > n,

1 ~ (1)
p(mlv s 7m5) = |:Zz 1 5§m1+15§(n3+2 gmb+2 gm +2:|
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for 0 <my < --- < ms.

Note 2.1. We will also need the following degenerate cases of these
elements:

rm = 0 for m < n, [qfn]:qﬁiform<n,
(5) p(m) = Tm, p(m,m) =0,
p(mi,...,mg,m,m)=p(my,...,msg) [qfn] for s > 1.

The homology of the D (n) can be computed as in [10, Proposi-
tion I.11].

Lemma 2.4. For n > 1, the elements
h, Tk, ;s [qz] , p(my, ..., mg)
fork>n,0<j<n, 0<my <---<mg are generators of the algebra
Cotorgop(n) (Z/2,7./2) .

A complete set of relations among these generators is given by the de-
generacy relations of Note 2.1 and by:
(1) pm,mq,...,ms) =p(my,... ,ms) qm form <n and s > 1;
(2) hp(mq,... ,ms) =0;
(3) > rmp(ma,. ..y, ... ,mg) =0;
4) p(ma,... ,mg)p(g1,.-.,9t)
=3 gD (M s Gy 3 Giye - Gt)-

We use the methods of [5, Section 3], to show that & = £ and that
all the extensions are trivial in the May spectral sequence of B(n) for
n > 1. That is, we construct polynomial DGAs ‘B,, whose homology is
Cotorp(n) (%2, Z2). To avoid repeating an analogue of the proof given
in [5, Section 3], we use the following lemma which shows how we auto-
matically obtain the 3,,, n > 1, with the required properties from the
B constructed in [5, Section 3.

Let C (Z/2,A,7Z/2) denote the cobar construction for A, a connected
Z/2-Hopf algebra. Suppose we have a DGA P and a Z/2-linear map
A : A — P. The map X\ induces an algebra homomorphism
X : C(Zy,A,Z5) — P which we assume is a map of DGAs. We also
assume that the algebra homomorphism

A, : Cotory (Z/2,7./2) — H,P
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induced by A is an isomorphism. Suppose that we have a primitive
element z in the center of A which is not a zero-divisor. Let

A =A/(z), y=Xz)and P, = P/(y).

Lemma 2.5 (Generalized Five Lemma). Assume that we have a Z)2-
Hopf algebra A, a DGA P, a Z/2-linear map A : A — P and elements
x, y as above which satisfy the following additional conditions:

(i) 22 =0;
(ii) y is central in P;
(iii) N(IA-z) =0.
Then X induces a map of DGAs Ay : C(Z/2,A1,7/2) — Py such that

A1x : Cotorg, (Z/2,7/2) — H,. Py

s an algebra isomorphism.

Proof: Let M =7Z/2®7Z/2(X), with deg X = degz, denote a comod-
ule over the algebra A. The comodule structure on M, ¢ : M — M ® A,
is induced by:

PX)=X01l+10a

Then the following cobar constructions give a short exact sequence of
DGAs:

0— C(2/2,A,2/2) L C(M,A,2/2) % C(Z)2(X),A,Z/2) — 0

where j (a) = a+0X and p(a+bX) = bX for a, b € Z/2. Consider the
diagram (6) below. In this diagram, 7' = y07, p’ = aop, a(aX) = a and
v(a+bX) =7"(a) where 7 : P — Py and n’ : A — A; are the canonical
projection maps. By condition (iii), A induces a map of DGAs \; making
the trapezoid in (6) commute. By condition (i), the exterior algebra F (x)
is a sub-Hopf algebra of A. Therefore, . in (6) is an isomorphism by the
change of rings theorem [10, I1.5]. We use the abbreviations Cotory =
Cotory (Z/2,7Z/2) and Cotora, = Cotora, (Z/2,7Z/2).
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(6) ’
0—C (22, A,7,/2) 2+ C (M, A,7,/2) L~ C (2/2 (X) , A,7,/2) — 0
jl P)/ pl g e
A1
0P 2up T P 0

The short exact sequences on the top and bottom rows of this diagram
induce the following long exact sequences in homology.

(7)

J P
.. — Cotory—— Cotory—— CotorAl—*> Cotory — - --

=n O =|n @ e (3) = |

*

T

.. — H.P i H.P H.P H,P— ..
In this diagram &’ = doa; ! and p, = p’ oy, 1. We show that diagram (7)
commutes. It then follows from the usual Five Lemma that A\, is an
isomorphism. Square 1 commutes because

MNOA{ZY =X A (X2)} = AT d(X2)}
=M {7 @2)} = A A2Z} = A Az} A A{Z} = y) {2}
Square 2 commutes because the trapezoid in (6) commutes. Note that
d(Z'+XZ"y=d(Z)+x2" + Xd(Z")
in C(M,A,Z/2). Thus, if Z' + XZ" is a cycle then Z” is a cycle and
d(Z") = xZ". Therefore, Square 3 commutes because
MNelsVe {2+ XZ"} = Nea {XZ"} = N\ {Z"} and
MY {2+ X 2"} = O Z"y=0{m N (Z") ={d\(Z") /y} ={\d(Z") ]y}
={A=2") [y} =A@ A Z") Jy} = A {27} m

We will need the following generalization of the previous lemma which
follows from it by induction on n > 1.
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Lemma 2.6. Let the Z/2-Hopf algebra A, the algebra P and the Z/2-
linear map X\ : A — P be as above. Let x1,... ,Tp,... be a sequence of
elements in the center of A. Let IO =0, I, = (x1,...,2,) forn >1
and A, = A/I,. Let y, = X\(zn), Jn = (Y1,--- ,yn), and P, = P/J,.
Assume that:

(i) the ideals I,, are prime and invariant;

(ii) 22 € I,,_1 forn>1;

(iii) the y, are central in P;

(iv) N(IA-z,) =0 forn > 1.

Then forn > 1, X induces maps of DGAs Ay, : C (Za, An, Z3) — Py, such
that the
Ans : Cotora, (Z2,Z2) — H.P,

are algebra isomorphisms.

We apply this lemma to complete our analysis of the May spectral
sequence for
CotorB(n) (Z/2, Z/Q)

thereby computing Ey of the ASS (1). Recall from Lemma 4 that
Ey = Cotorg(n (Z/2,7/2) ® S, where S is the polynomial algebra with
generators V;, a # 2¥ — 1. Let |c| denote the degree of c.

Theorem 2.7. Let n > 1. Then Ey of the ASS for MSpZr is the
algebra generated by

Va, Vol =(0,4a), a#2—1;

ho,  |hol = (0,0);

Ry,  |Ri| = (1,282 - 3), k> n;

Qj, Q= (1,212 - 2), 0<j<n;
Q7). 1[Q}] 1= (2252 —4),  k=n;

P(mi,...,ms), |P(my,...,mg)|=(s,2mF2 ... 4 2ms¥2_25_1)
0<my <+ < mg.

A complete set of relations is given by:

(1) P(m,mq,... ,ms) = P(my,... ,mg)Qm form<mn and s > 1;
()hoP(ml,... )—0,

(3) Zl 1R, P(ma, ... ,my, ... ,mg) =0;

(4) P(mi,...,ms)P(g1,--.,9t)

- Z::l Rgi,P(mlv"' y Mgy 91,5 -+ 7.@7"' 7gt);'
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and the degeneracy relations

R, =0 form <mn, [an]:Q?nform<n,
P(m) =R, P(m,m) =0,
P(my,...,ms,m,m) = P(my,...,my) Q2] fors>1.

Proof: Recall the DGA 8 constructed in [5, Section 3]. B is the Z/2-
algebra with generators:

ho, Qx, By

for kK > 0. hg and the Ry are cycles while d(Qx) = hoRg. The only
relation in P is
[ho, Qx] = Ro Ry,

for k > 0. Define a Z/2-linear map X\ : B — L by \(&1) = ho,
Akv2) = Qu, A(&2,,) = Ri for k > 0 and (&5, ...£5.) = 0 in all
other cases. Then X induces a map of DGAs \ : C(Z/2, B,7/2) — ‘B.
By [5, Theorem 3.4], A, is an algebra isomorphism. We apply Lemma 2.6
with

A=B, P=%9Pandz, =¢ forn>1.

Then y, = Ry,—1, I, = (5%, . ,ﬁ%), A, = B(n),
Pn :q3n :(BO/(RQ,... 7Rn_1) and Jn = (Ro,... ;Rn—1)~

Observe that since Ry = 0 in B, for n > 1, the algebra B, is the
commutative polynomial algebra

PBrn =2Z/2[ho, Q, R | kK >0 and m > n].

We check the hypotheses of Lemma 2.6.

(i) Since €2, n > 1, is a regular sequence of primitive elements, the
ideals I, = (ff, . ,fi) are prime and invariant.

(ii)) £ (ff, R - ) is a sub-Hopf algebra of B.

(iii) Clearly the R, are central in .

(iv) By the definition of A, we see that A (a€2) = 0 for o € IB.

By Lemma 2.6, A induces maps of DGAs A, : C'(Z2,B(n),Z3) — Py
for n > 1 such that the \,. : Cotorp(,) (Z/2,Z/2) — H, (B,) are iso-
morphisms.

We construct representative cycles in 3, of the algebra generators of
&> of the May spectral sequence for Cotorp(y) (Z2, Z2):
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h is represented by hg

rk is represented by Ry for k > n;
[q,z] is represented by Q% for k > n;
g; is represented by @); for 0 < j < n;
p(m,... ,ms) is represented by

P(my,...,mg) :ZRmile...Q\mi...Qms.
i=1

It follows that & = & in the May spectral sequences for the
Cotorp(n) (Z2, Z2). Using these representative cycles of the algebra gen-
erators of £, it is straightforward to check that all four families of re-
lations in £ are also valid in Cotorp,) (Z/2,7Z/2). Thus, the structure
of E5 of the ASS follows from (4) and Lemma 2.4. B

Observe that the commutativity of the ,, is the reason why the ele-
ments Q% and P (my, ... ,ms) are cycles in 3, for n > 1 while in B they
are not cycles and support nonzero do-differentials in the May spectral
sequence for Cotorp (Z/2,Z/2) when s > 3.

3. Adams Spectral Sequence for MSp*~

In the preceding section we obtained a concise algebraic description of
E; of the ASS (1) for M Sp¥», n > 1. However, this algebraic description
is not suitable for computing the differentials in the ASS or for under-
standing M Sp>» which is determined by the topology of the spectrum
M Sp>~. Thus, we begin this section with an alternate description of
Es in terms of the projections ®,, of the Ray elements ¢,. Although
this description may seems algebraicly awkward, it enables us to com-
pute all of the ds-differentials and some of the ds-differentials. These
ds-differentials are used to prove a technical fact which we needed in [2,
Section 6]. In addition, we will use this description of Eg in Section 6 to
identify and analyze the elements of higher torsion we construct there.

Recall from [5, Theorem 5.3] that the Ray elements ¢, k > 1, project
to elements

(8) (bk = ZRjVI(k,j) S E%’Sk_:‘
Jj=0

of the ASS for M Sp. In the following definition, as in [5, Section 4], we
rewrite all the elements of Ey of the ASS for M Sp*» in terms of the Ray
elements.
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Definition 3.1. Let n > 1. Define the following elements in E, of the
ASS for M Sp*n:

(1) Uor = U9 = Qo and ¥, = 3°,50Q;Vimy € B2 for

1<h< 2" L
71 n—
(2) [\IIQ] = Z Q2 I(k,j) + Z]>2n 1 [Qz] fOI‘ k>2 1
3) p(mq,... ,m )
= > - Z P 23 () Vigma gy - Viem..j(s)) I
§(1)>0 (5)>0
E5™ Wherem = 460" + 8my + -+ + 8my — 2s — 1 and

O§m1<---<ms.

In terms of these elements, the following description of Es follows from
Theorem 2.7.

Corollary 3.2. E, of the ASS for M Sp™» is the algebra generated
by:

Va,a#29—1, ho, ®p, k> 2" (7], k=271 ¥, 0<j < 2"t
and p(my,...,mg), 0 <my < -+ < msg.

A complete set of relations is given by:

(1) p(m,my,... ,ms)=p(ma,... ,mg) ¥, form<2" ! and s > 1;
( ) hOp(m17"' ;ms) :0;
(3) Yoil, ®pp(ma, ... ,my,... ,my)=0;
()(mh~wmﬁﬂmw~ﬂ0

—Zizl Qg p(mi,. .. .M, 15, Gir- - Gt);
(5) (a) U, = ZjZO \I/ijlvl(hd) for1<h< 2”71;

on—1l_q
(b) [‘I’%] = ijo \Ijgj*1VI2(k,j) + ijznfl [‘I’grl] I(k,j) for
k>2nt;

(C) p(mla"' )
> ZP(W(” L ,2](8)_1)V1(m1,j<1))~~~V1<msd<5>>f'

J(1)>0  j(s)>0
and the degeneracy relations

@y, =0 form <271, [02] =V2 form <2"71,
p(m) =0y, p(m,m) =0,
p(my,... ,mg,m,m) = p(ml,...,ms) (V2] for s > 1.

Using the description of the elements of Eo given in Corollary 3.2, we
compute the ds-differentials.
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Theorem 3.3. Letn > 1. The da-differentials in the ASS for M Sp*n»
are completely described below.
(a) If k # 2P then there is a choice of Var, which is a da-cycle.
(b) For k > 1, there is a choice of Vor such that da (Var) = UoPor—1.
(c) Write k = 2kt 4. .. 4 2Fs poket1 4o 4 9kt uhere 0 < ky < - < Ky
and ks <n < kgy1. Then there is a choice of Vap_1 such that

dy (Vag—1) = E Wor; Porey Vorr 1 oo Vorgrr oo Ve o0 Va1
1<i<s<j<t
ki ok; i 1
+ E p(2 ,2 J)‘/2k1+1...V2k,i+1...‘/ij+1...‘/ékt+l.
s<i<j<t

(d) ho, the U;, the Py, the [‘I/i] and the p (mq,... ,ms) are infinite
cycles fori <21, 2L <k and 0 <my < -+ < ms.

Proof: Using the canonical map from the ASS for M Sp to the ASS for
M Sp*¥=, the first three parts of this theorem follow from [5, Theorem 6.1].
It remains to prove (d). Clearly hg is an infinite cycle converging to 2.
Since E5?*~! = 0 for 2k — 1 < 272 — 3, the U, are infinite cycles. It
remains to prove that the p(mq,... ,mg) are infinite cycles.

Proposition 3.4. Forn >1 and 2" ! <m; < --- < my, there exist

elements 1, (my, ... ,my) in the ring M Sp> such that:
(1) ra(m) = dm;
(i) rn (M1,... ,me) € (Pmyy 2, 7n (M, ... ymy_1)) fort >2;
(iii) 2r, (my,... ,my) =0.
Proof: We construct the elements r, (mq,...,m;) by induction on
t > 1. When t =1 we use (i) to define r, (m1). Assume that ¢ > 2 and
that this proposition is true for t —1. Select any element r,, (mq, ... ,my)

of the Toda bracket (¢, ,2,7r, (M1,... ,mi—1)). By [2, Lemma 3.4 and
Note 3.1] we have:

2Tn (mla s 7mt) € 2<¢mta 2) Tn (mla N amt—1)>
C {2, Dy 2 (M, .o ymy_1) .
Note that the ¥,-manifold A(2) is a representative of n, and n = 0 in

the ring M Spy~ for n > 1. Thus, by [2, Lemma 3.3 and Note 3.1] and
by our induction hypothesis we have:

(2, Pmys 2)1n (May .o yme—1) = NPm, +2a) 1 (M, ... ,;me—1) =0. W
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Proof of Theorem 3.3 continued: Clearly the element r,, (m1,... ,ms)
projects to p (my,... ,ms) in Ey of the ASS for M Sp*». m

Next we compute the dz-differentials on some of the polynomial gen-
erators of E3** of the ASS for M Sp™». Recall from [6, Theorem 8.7(d)]
the following ds-differentials in the ASS for M Sp:

ds (V2,) = By @} + D2Do; + D,8,% (0, 5, 1)
where

By, = Doy, + Y218 (0,k,2n — k) and

9
( ) by (Cl, bv C) = (ba‘/b,c + q)bVa,c + (Dcva,lr

Applying the canonical map from MSp to MSp*, we obtain the fol-
lowing result.

Proposition 3.5. In E3 of the ASS for M Sp™n :

(a) ds (V;Qt) =0f0<s<tands<n-—3;

(b) ds (VA 2p) = @20 @3 ifn— 1< t;

(C) d3 (‘/225,2,5> = ‘525+1 ‘I)gt + (I)%s&)QtJrl + Pos Do 22 (0, 23, Zt)

ifn—1<s<t

In order to identify the projection to the Adams Novikov spectral
sequence of the elements of higher torsion which we constructed in [2,
Section 6] we used the following technical fact.

Corollary 3.6. The cobordism class of the Yo-manifold A (W2) equals
¢2.

Proof: Recall that we defined A (Ws) in [2, Section 3] as
A(Wa) = mo (WQ(“, Wf)) x TU—$Ry <W2(2), W;,(l)) .

Since MSp? = Z/2¢, the cobordism class of A (Ws) is either ¢y or
zero. By Proposition 3.5(b),

d3 (Vign) = @293,

in the ASS for MSp=2. If we represent Vi on € EQZ" 1 (MSp2) by
the Yy-manifold Van of Lemma 5.3 then V2, € B9+ (MSp2) is
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represented by a Yo-manifold V[g] which can be defined as ma (Van, Van)
union several manifolds of positive Adams filtration degree including
R (Van, W3) X an. Using the Hirsch formula, Lemma 3.1(a) and Note 3.1

of 2], 5‘/2[3] has as part of its boundary:
Ro (W2, Wa) X dan X pan.

This unionand of 5‘/2[3] is the only one which could possibly project to
®,®2, in the ASS for MSp*2. Thus, A (Ws) must equal ¢ and not
zero. W

4. Adams Spectral Sequence for M Spgn

Let MSp™, n > 2, be the spectrum with singularities in =
(Py,...,P,) defined in the Introduction, and let M Sp*t denote M Sp.
In this section we compute Eo of the ASS:

(10) E3" = Cotor’y (H.MSp™,2/2) = MSpPn.
t

As in Section 2, we use a change of rings theorem to reduce the problem
of calculating Es to computing
(11) Cotorﬁ(n) (2/2,72/2)

where B (n) is the truncated polynomial algebra which is defined as the
following quotient Hopf algebra of the dual of the Steenrod algebra:

E(n):A*/(gf,fi,g,%|2§h§nandn<k).

Note that in [5] the Hopf algebra B (1) is denoted as B. We compute
the algebra (11) by showing that it is the tensor product of a polynomial
algebra and a direct summand of Cotorp (Z/2,Z/2) which was computed
in [5]. Thus, Es of the ASS (10) for n > 2 has all the complexity of the
Es-term of the ASS for M Sp: it has nine families of algebra generators
and forty families of relations. As in Section 3, we give an alternate
description of Eq in terms of the projections ®,, of the Ray elements ¢,
into the ASS (10). In Section 6, we use this description to identify and
analyze the elements of higher torsion which we construct there.

V. Vershinin [14], [16] showed that for n > 2 there is an isomorphism
of A,-comodules:

H*Mspzn gZ/2 [gilag%a 7672u€$+15 agﬁa] ®S
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It follows from the change of rings theorem [10, Corollary 1.5] that for
n > 1 there is an isomorphism of Z/2-algebras:

(12) E; = Cotora, (H*MSpg",Z/Q) = Cotorg,, (Z/2.2/2) ® 5.
Define the sub-Hopf algebra C (n) of B (n) by
C(n) =Z/2[&1,6 | n <K/ (&, & n<k).

Since the &, 2 < h < n, are primitive in B (n),

~

as Hopf algebras. Let Qn—1 denote the homology class of [¢5] for 2 <
h < n. We thus have the following lemma.

Lemma 4.1. Forn > 2, there is an isomorphism of Z/2-algebras:

(13) Cotorg(n) (Z/27Z/2)’£Cotor6(n) (Z/2,Z/2)RZ/2[Q1, ... ,Qn_1] -

We compute Cotora(n) (Z/2,7/2) thereby determining Eo of the ASS

for MSp*». Recall from [5, Theorem 3.7] that Cotorp (Z/2,7/2) can
be described as the algebra generated by hy and by seven families
F (ky,... k) of generators with forty familites of relations. In par-
ticular, F' is one of the following symbols: ¢ (t =1), Q(t > 1), R(t =1),
P(t=2),P,(t>3),Y(t>7) orZ(t>s+2>4).

Proposition 4.2. For n > 2, let &, denote the subalgebra of
Cotorp (Z/2,7/2) generated by

ho Ry,
Gk Q(kla 7kt) (tzl)
P (k1 k2) Py (ki,... k) (t>3)

Y bty k) (02 7) Zs(kiy.o. k) (E>s5+2>4)

where each of the k; is either zero or greater than or equal to n. Then
Ey of the ASS for M Sp®¥r is given by

Ea =€, R7Z/2(Q1,...,Qn-1]®S.
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Proof: By (12), (13), Ea=Cotorg, (Z/2,/2/2) 8Z/2[Q1, . .Qu 1] ®S.

Let ¢, : C (n) — B denote the inclusion map. Define a map o,, : B —
C'(n) of Hopf algebras which splits ¢,, by

Un(fk){gk ifk':lork>n.

0 if2<k<n
Then o, is a splitting of the inclusion

b Cotora(n) (2/2,7,/2) — Cotorp (Z/2,7./2) .

Thus, we view Cotoran) (Z/2,Z/2) as asubalgebra of Cotorg (Z/2,Z/2).
The effect of o,. on the algebra generators F (ki,...,k;) of
Cotorg (Z/2,7,/2) is given by o, (hg) = ho and

(14)

O'n*(F (kl, .o

F(kyy..ky) if {ky,.. kn{1,... ,n—1}=0
7kt)): .
0 otherwise

for F one of ¢, Q, R, P, P>, Y or Zs. Observe that €, = Image ¢, is
the subalgebra of Cotorp (Z/2,7/2) spanned by all F (ky,... , k) with
{k1,... k) € {1,... ,n—1}. Thus by (14), opn« : €, — Imageoy,. is

an isomorphism. Therefore, Cotora(n) (Z)2,Z/2) = Image o, = €,. A

Note 4.1. The map m,., r > 2, of ASS induced by the canonical map
of spectra m : M Sp — M Sp*» does not induce the projection map

Ons @1 :Eg 2 Cotorg (Z/2,2/2) @ S — Eqy = Cotora(n) (2/2,7/2) ® S.
For example, o (P (1,n)) = Q1 R,, while (0, ® 1) (P (1,n)) = 0.

We conclude with an alternate description of E, in terms of the pro-
jections @, of the Ray elements ¢,, to the ASS. If

Py = ZRjVI(kr,j) S Eé’gk_:‘
j=0
in Ey of the ASS for MSp and F (kq,...,k:) is one of the above seven
families of algebra generators of Ey of the ASS for M Sp*» then define
Fkr,o k)= > F G ) Vig i Vit o

Jj120 Jjt=>0
where ep equals 1, 4, 2, 1, 2, 1, 2 if F equals R, q, Q, P, P», Y, Z,,
respectively. We denote @ . 8 Wi We do not explicitly specify the forty

relations in Eo of the ASS for M Spﬁn induced from Es of the ASS for
M Sp because we do not use them in this paper.
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Corollary 4.3. Forn > 2, Ey of the ASS for MS’pin is the Z/2-
algebra generated by

U, (1<k<2Y) Vi a#2 —1

ho R,

g, QU k) (t21)
P (ki,ks) Py (k1,... k) (t>3)

Y (ky,oo k) 0>7) Z, (k... k) (t>s+2>4).

A complete set of relations for Eo is given by the forty relations listed in
[5, Theorem 3.7] as well as the following relations:

(a) if0<k;<2" Y and F is Q, P, Y or Zs then
E(k17"' 7kt) :E(klv aktfl)\]:lzf;
(b) if 0 < ky < 2"71 then

R, =0;¢

4, = Uis Pki,ke) =W, R,y

1

(c) if F is any of the above ten families except hg or V, then

Fkio k)= SR @ v Vi

J120 Jt=0

From now on we only use the description of Es in terms of the
F (k1,...,kt), and we abuse notation by denoting them as F (kq,... , k).

5. Construction of Higher Torsion Elements

In this section we prove Theorem 1 and use it to construct elements
of higher torsion. The vanishing of the Toda brackets (¢1,2, ¢,,) of The-
orem 1 allows us to construct specific Sp-manifolds V,, with no singu-
larities in Lemma 5.3 such that 0V, is the canonical element in this
Toda bracket. Let J = [j1,...,js] with s > 1 and J' = [j1,... ,Js-1]
with s > 2 throughout this section. In Proposition 5.4 we use the V,, to
generalize the constructions of Section 5 of [2] to construct the elements

t[J] € MSp>: which define the elements g[J] = B ({[J]) € MSp>2
and a[J] = B2(B3(t[J])) € MSp, described in the Introduction for
J = [j1,...,Js)- We give the basic properties of the t[J] and g[J] in-
cluding their Toda bracket decompositions and their projection in the
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ASS. We abbreviate those constructions which are analogous to those of
[2].

We begin with the proof of Theorem 1. Its proof relies on decomposing
¢1 as a triple Toda bracket based upon the smash product. Recall from
[8] the definition of this type of Toda bracket. We are given three maps
of spectraa: S — E, 3:5 — F,v:5 — G and associative pairings of
spectra

wgp : EANAF—M, wpa : FNAG—N, wyg: MAG— P, wgy : EAN — P

such that wpp (e AB) =0 and wpe (BAY) =0. Let £ : D — M be an
extension of wgpo(a A ) to adisc and let ¢ : D' — N be an extension of
wra o (B A7) to adisc. Then (o, 3,7) is defined as the set of homotopy
classes of all maps

(wpgo(EAY))U(wenyo(an():S=(DAS)U(SAD)— P

for all choices of £ and (. We identify such a Toda bracket in the case
E =F = S and G = M Sp which decomposes ¢1. We also give a similar
decomposition of ¢o in terms of a four-fold Toda bracket. Recall that
M Spg = Z with the generator qq.

Lemma 5.1. Let u: S — MSp denote the unit of the spectrum M Sp.
Then

(a) ¢1 = (n,v,p);
(b) ¢2 € <n)V7 g, /j/> = {¢2a¢2 + ¢IQO}-

Proof: The proof of this lemma is based upon the analysis of the fol-
lowing Atiyah-Hirzebruch spectral sequence.

(15) E?,=H.MSp®rd = MSp,.

This spectral sequence was analyzed through degree 50 in [9]. Fortu-
nately, we only require its structure through degree 5 which is depicted
in Figure 1. We use the notation H,.MSp = Z[by,... ,b,,...] where
H,.HP®> has the Z-basis {b1,...,bn,...}. The only differential in our
range is d* (1) = v.

(a) Since M Sps = Z/2¢; and the only infinite cycle in EZ , of degree 5
is nb1, the only possibility for the projection of ¢1 to EZ, is nby. The
fact that nb; is an infinite cycle of (15) means that if By : D’ — MSp
represents by such that By | S’ =vand £ : D — S such that £ | S =nAv
then ¢, is represented by:

NABIUEA € (n,v, ).
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Note that we have suppressed the canonical pairings of spectra involved
in the previous statement. Since pi, (7r5s) =0 and - MSpy = 0, the
indeterminacy of (n, v, 1) is zero.

iy
0
0
14
e 3
n ® b
°
by H. (MSp;Z)

Figure 1: The Atiyah-Hirzebruch Spectral Sequence for M Sp.

(b) Observe that (n,v,0) C 75, = 0 and (v, 0, u) C MSp11 = 0. Thus,
the Toda bracket (n,v, o, u) C MSpy3 is defined. Consider any defining
system of A € (n,v, o, u) and let € be the element of this defining system
whose boundary is an element of (v, o, ). Then £ projects to a nonzero
element X € Hip (MSp;Z) in the zero row of the Atiyah-Hirzebruch
spectral sequence (15) which is not divisible by two. If b, is a monomial
summand of X with a coefficient that is nonzero modulo two then né
is a unionand of A and s, (A\) = 7. Since MSpis = Zops & Zad1qo
and s, (¢190) = 0, it follows that A = ¢o + k¢1qo for some k € Z/2.
Note that the indeterminacy of (n,v, o, u) contains (n, v, M Sps) which
contains ¢1qg by (a). Thus, (n,v,0,u) = {d2, P2 + P19} as asserted. W

Our representative of ¢; can be described in terms of (Sp, fr)-
manifolds as

nxYruws

where Y? is an Sp-manifold with Y% = v and W? is a framed manifold
with W?® =7 x v.

Recall from [12] that the Ray elements ¢,, are closed under the action
of the Landweber-Novikov operations. In particular, sa,, (¢m) = ¢m—k
if 1 < k < m. By [6, Theorem 11.4], the action of the Landweber-
Novikov operations on the Toda brackets (¢, 2, ¢,,) satisfies the Cartan
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formula:

Sw<¢m727¢n> - Z <SUJ1 (¢m) 7278w2 (¢n)>

w=witws

We thus have the following formula for the action of the sa,, on our
Toda brackets.

Lemma 5.2. Form >k > 1, sa,, ($1,2, dm) C (91,2, k).

We use the action of the sa,, on our Toda brackets and the decom-
position of ¢; to prove Theorem 1.

Proof of Theorem 1: By Lemma 5.1, {(¢n,2,$1) = (dn,2, (0, v, 1))
which contains an element which is also an element of

(Bns (2,m, ), 1) + ((Dns 2,m), v 1) = (s 0, ) + (nA, v, ).

The last equality uses Gorbunov’s Theorem [1, Theorem 4.3.5] which
says that 0 € (¢,,2,7n). Therefore, any element of (¢,,2,n) is of the
form nA. By Lemma 5.1 and the observation that nA - M Spy = 0, we
see that (¢, 2, 1) contains an element which is also an element of

On - M Sps + Apy modulo ITmage .

This sum is contained in the ideal spanned by ¢; modulo Image pi,.
Thus, for all n, we conclude that {¢,,2,¢1) contains an element which
is in Image p.. By Lemma 5.2,

SAson <¢2n7 2, ¢1> - <¢n7 2, ¢1>

Recall that an element in the image of the unit u, of M Sp is annihilated
by all Landweber-Novikov operations. It follows that (¢, 2, ¢1) contains
zero. W

The main technique which we use in constructing the ¢[J] is the ex-
istence of Sp-manifolds V; as in the following lemma. The proof of this
lemma is based upon Theorem 1. We abuse notation below by denoting
a cobordism class ¢,, and an Sp-manifold representing ¢,, by the same
symbol ¢,,.

Lemma 5.3. There are Sp-manifolds v, forn >0 and V,, forn > 2
such that

awl = ¢1 X 27

0Py, =2 X ¢, forn # 1,
avn:wl X¢nu¢1 xd)n~
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In particular, 11 does not depend on n.

Proof: By Theorem 1, there are Sp-manifolds 1/)571), ¥y, for n > 1 and
V! for n > 2 such that 0y\™ = ¢y x 2, Op, = 2 X ¢y, and AV =
U X 6 Uy X . Let 9y = {7, Since MSpg = Z/20¢1, 1 U—3{"
is bordant to k,n¢; for some k,, € Z/2. By Theorem 1,

0= <¢n,2,¢1>2 = ¢n<27¢1a2> = ¢n¢177

in M Sp, noting that (2, ¢1,2) = ¢1 [A(2)] = ¢171 by [2, Lemma 3.3 and
Note 3.1]. Thus, there exists an Sp-manifold Y,, with

Y, = X ¢ U -9 x ¢

Define V,, = V! UY,,. Then 0V,, = ¢1 x ¢, Uty X ¢, as required. W

We are now ready to construct t[J] € M Sp¥3. We denote the product
construction of ¥3-manifolds by ms, the associativity construction by 23
and the commutativity construction by 8s.

Proposition 5.4. For each J = [j1,...,]js|, there exists an element
t[J] € MSpZs with the following properties.
(a) tlj1] = oy, -

b) t[J] = 0.
(C) t[jlw“ 7_js] € <¢jsv¢1at[j17"' 7j571]> fO’f'S Z 2.
d) If jp =2%"2 for1 <k <sandi= (il,.A.. ,is) then Ay (t[J]) =

73(i) under the canonical map A3 : M Sp¥: — M Sp*s.
(e) t[J] projects to

I => 0 Vig - Vi ... Vi
k=1

in both Byt of the ASS for MSpZs and Ey*™* ™ of the ASS for
MSp*i”,

(f) There are vy (j) € MSp*EA'z which project to the infinite cycles
hoVi,; in E§’4* of the ASS for MSpg2 such that for s > 2,

2t[J] = M3 (vo (Js)  t[J]) -
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Proof: (a)-(c) We construct the ¢ [j1,... ,js] by induction on s > 1 to
satisfy (a)-(c) as in the proof of [2, Lemma 5.3].

(d) To insure that the t[J] map to the 73(i) under A3, we must be
careful how we choose ¢[J] in the Toda bracket of (¢). In particular, for
each sequence [ji, ... ,js|] we proceed as in the proof of [2, Lemma 5.4]
to use induction on s > 1 to define ig—manifolds Hg and T such that:

(1) T1 = ¢j1 and H1 = ijl;
(2) 5Hs = T/ﬁ?) (wlst);
(3) For s > 2,

Ty =¢5, x Hi_y Umg (V] | Ts_4),
H, =m3 (V;,,Hs_1) U —9s (Vs 1, Ts—1) U —1?13(%3(‘/3‘8,1#1), Ts—1)
Ums(B x ¢;,,Ts_1) UQA‘3(¢17‘G/S’T3—1)

where V/ = V;, U &3(¢;,,¢1) and B is a ig-manifol(/i\ with 6(B) =

?ig(l/}l,z/}l). Such a S3-manifold B exists because MSplEg3 = 0. By [2,
Lemma 5.4], t[J] defined as the X3-cobordism class of Ty maps under
)\3* to Tg(i).

(e) By induction on s > 1, we prove that T projects to ¢ [j1,... ,js] €

~

Ey** ! and H, projects to Vi j, ... V1. € EY* in the ASS for MSp>s.
The case s = 1 follows from (1). If s > 2, the induction hypothesis and
(3) show that the projection of T to the one line of the ASS equals

¢js‘/i,j1 .. ~‘/1,js_1 + Vl,jst[jla cee ajs—l] = t[jla' . 7js] .

Since 1, Ts—1 and ¢;, have Adams filtration degree one, the pro-
jections of the manifolds s V1o, Ts—1), ﬁg(ﬁg(‘/}s,wl),ﬂ_l),
m3(B x ¢;,,Ts—1) and ﬁg(@/}l,vl',js,:rs,l) to the zero line of the ASS
are trivial. Thus by (3), the projection of H; to the zero line of the ASS
equals the projection of m3(V;,, Hs_1) which by the induction hypothesis
is ‘/1715 . Vle . ‘/1,j571 .

(f) The element 2¢[J] is represented by the manifold
2¢j5 x Hy_1U 2{'(\13(‘/3!5,11571) U—4 (sz X Hsfl)
which is bordant to

m3 (2V] Uy, x 91, To—1) = ms(vo (js) , Ts—1)
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where vg (j5) is defined as the $o-cobordism class of 2V} Uh;, x4p1 which
projects to hoVi j, in Eé 4 of the ASS for MSp*:. m

Consider the T[J], H[J] constructed above as a Sa-manifold T[J],
H|[J], respectively. Then

SHLI) =z (1, T1J]) U bz x ELJ],
0T[J] = g2 x GLJ],
SE[J] = ma (1, GJ])
where G[J] = B3(T[J]) represents the Sy-cobordism class g[J]. To iden-

tify the projection of g[J] into the ASS we need to know the projection
of E[J] into the ASS.

Lemma 5.5.

(a‘) E[jl] = @ and E[jlan] = ¢]1¢]2

(b) For s > 2, E[J] projects in E22’4*+2 of the ASS for MSp*2 and
in B3 of the ASS for MSp™ to

e[jl)"' 7js] = Z (I)jth)th‘/l,jl ""/i;jtl "'Vl,jt2 "'V17j5'

1<t <t2<s

Proof: (a) We can take T'[j1] = ¢;, and H[j:] =V}, as a $3,-manifold
with 6V;, = ¥1 x ¢;,. Thus, E[j;] = (. It will follow from (iii) below
that E[jl,jg} = ¢j2¢j1'

(b) Observe that just as in the proof of [2, Lemma 6.2(b)], we can use
induction on s > 2 to construct 22 manifolds TS, HS, FE, and L such
that:

(i)
(i)
)
) T

T, represents t[J];
(S _mg(WQ, )U¢2XE ULS7
ElJ

E[J] = (V. ELT']) U ), x T(jr, ja);
s projects in the one line of the ASS for MSp22 and in the one
line of the ASS for MSp™ to t[.J] € Ey**;

(v) H, projects in the zero line of the ASS for MSpg2 and in the zero
line of the ASS for MSp™ to Vi, ... Vi, € E9™;

(vi) E, projects in the two line of the ASS for M Sp*2 and in the two
line of the ASS for M Sp™2 to

(iii

(iv

> > 2,4%42.
E 0y, @, Vi, Vg, Vi, - Vi, € B ;

1<t <t2<s
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(vii) L, has Adams filtration degree four. m

Using this lemma, we determine the basic properties of the g[J].

Proposition 5.6. The elements g[J] = gg(t[J]) € ]\45]9?2 satisfy the
following conditions.

(a) gli] =gli1.j2] = 0.
b) g [11,327]3] Dy Pjz Piis -

(c) wlg[ | =

(d) glJ] € <¢J n,glI") for s > 4.

(e) For s >3, g[J] projects in E3 F3 of the ASS for MSp®2 and in

ES* T3 of the ASS for MSp™ to

Q[J] = E q)ﬁl iy devl N IR Vthl . V17jt2 e Vlvjts . Vl,js~

1<t; <ta<ts<s
() 29) = @iz (v (G  gLJ]) for s > 2.

Proof: (a)-(d) These statements are proved in the same way as the
analogous statements in [2, Proposition 6.3(a)-(c)]. In particular, g[J] =
B3 (t[J]) is represented by the Xo-manifold

(16) GLJ) = ®s (V. GLI) Uy, x B[

(e) We use induction on s > 3. The case s = 3 follows from (b).
Assume the case s — 1. By (16), g[J] projects in the three line of the
ASS to

glJ] = Va0l ']+ @ e[ J].

By the induction hypothesis and the previous lemma,

Q[J]:Vl,js E (I)Jtl Jto thvl,h ‘/th1~-~vi,jt2 . V,th Wjea

1<t <ta<tz<s—1

+ (I)js E : (ijl Jto Vi Jieee Vlyjr,l s Vvl»th s Vlvjs—l'

1<t <t <s—1

This is the asserted value of g[.J] in (e).
(f) By (16), 2g[J] is represented by the manifold

261J] = 20y (V] G[T']) U26;, x E[J'|U ~6 (s, x ELJ))

which is bordant to My (2V] U, X ¢1, GLJ']) = M2 (v (js) , G[J']).
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6. Elements of Higher Torsion and the ASS

In this section we analyze the elements

alJ] = Ba(glJ]) = Ba(Bs(¢[])) € MSp..

In particular, we give their decomposition in terms of four-fold Toda
brackets and identify their projections to the ASS. These results are
summarized by Theorem 2. In addition, we shall see that the projections
of the 2¥a[J], k > 0, to E of the ASS for M Sp determine towers whose
top halves are zero in E,. Throughout this section J = [j1, ... ,js] with
s>1land J =[j1,...,Js—1] with s > 2.

We begin by determining the projection of the a[J] to the ASS for
MSp. We will use the following notation from [5, Definition 7.12(19a)].
Let H = (h1,... ,hg). Assume that r > k, s > 2r —k+ 3 and s — k
is even. Then the following elements of [E; are ds-cycles in the ASS for
M Sp:

~

C(H)Y (fuy- - Gs) =D Yty i dtrs e s tay s +ds)
Viedn -V,

Jtg Pk ijthrl Tty " ijth,k,l Jtor_k

where this sum is taken over all sequences (t1,...,ta,—j) of distinct
integers between 1 and s such that ¢t < -+ < g, thy1 < tpps < -+ <
tor—k—1 and tpioq—1 < tpyoq for 1 < ¢ < r — k. We introduce the
following notation for the particular elements of this family which we
will be studying.

alJ] = ¢TI Y (o)
= Z Vi ""71:]21 ""71,jt4 "‘VLst(jhﬂjtzvjtgva)'

1<ti1<ta<tz<ts<s

To describe the projections of the 2¥a[J] in Ey of the ASS for M Sp we
introduce the following notation. For 0 < k < s — 4, let

o] = ¢ (TN Y (180 d) -
Note that ag[J] = a[J].

Proposition 6.1. Let s >4 and 0 < k < s—4. Then

(a) alJ] projects to the infinite cycle alJ] in BEa™**" of the ASS for
M Sp;

(b) 2%a[J] projects to the infinite cycle a,[J] in Ba¥ ™41 of the ASS
for M Sp.
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Proof: (a) Let Go[J] denote G[J] viewed as an Sp-manifold. Since
Go[J] is a representative manifold of ¢g[J] and a[J] = B2(g[J]),

9Go[J] = ¢1 x A[J]

where A[J] is a representative manifold of a[J]. By Proposition 5.6(e),
G[J] projects in E3**T3 of the ASS for MSp to

go = Z @5, ., i, Vi ~--‘71,th -~-‘71,jt3 Vi, 00X

1<t1<ta<tsz<s

Therefore, d3 (go) is equal to

S 2,8, 8, P(Lg)Vig- Vi, Vi, Vi +®ida(X)

1<t1<ta<tz<ts<s

=, > Vigi Vige, - Vg, Vi3Y Uys Jias s Jia) +d2(X)

1<t1<ta<ts<ts<s

= @ (a[J] + d2(X)) .

Since multiplication by ®; is a monomorphism on E§’4*+1 of the ASS for
M Sp and ds-boundaries project to zero in Eg, a[J] projects to a[J].

(b) We prove (b) by induction on k. (a) gives the case k = 0. Assume
that (b) is true for some k with 0 < k < s — 5. We show that in E., of
the ASS of M Sp twice ay[J] is equal to agy1[J] by a nontrivial extension
of degree one. We apply [6, Theorem 12.2] to

Z= Z Vi-,jtl"‘V17jts,k74Y(N71kajl7~-~7jt1a---ajtsfk—u"'ajs)

1<t < <ts_p—4<s

€ <<Sik74 (187’674) Y (1k7j17 e 7j$) 7h07 (I)N>
in Es of the ASS for M Sp. Then
dy (Z) = OnCTF 0 (1R 0) Y (14 G, L) -

The annihilator ideal of {®y | N > 0} in Ey of the ASS for M Sp is the
ideal spanned by hg, and the latter ideal is zero in E3*** . Thus, twice
ax[J], the projection of 25*+1a[.J], equals a,1[J] by a nontrivial extension

of degree one. W
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2s —4 as—a[J] ° 25~%alJ]
2 l
25 —6 as_s5[J] 25=%a[J]
2k +6 apr1]J] ° 2k +1q[J]
2 l
2k + 4 ax[J] 2kalJ]
6 ay[J] ° 2a[J]
2 l
4 ap[J] = alJ] alJ]
Adams Element E5™* (M Sp) Representative
filtration in MSp,

Figure 2: Higher Torsion in Es of the Adams Spectral Sequence

Figure 2 illustrates how the 2¥a[J], 0 < k < s — 4, 5 < s, project to
the tower of elements a,[J] in E5***! of the ASS for MSp.

We use our understanding of the g[J] from Section 5 and our identifi-
cation of the projection of the a[J] to the ASS to prove Theorem 2.

Proof of Theorem 2:
a) It follows from Proposition 5.6(a),(b) that a[ji,...,js] = 0 for

—~

IN

S

3.
(¢) By Proposition 6.1(a), a[2j1, - .. ,2js] projects to
al2j1,... .25 =T (1Y) Y (251, ..., 2)s)

in E3** " of the ASS for MSp. Since the V1,255 -+, V1,25, are special

choices of the distinct polynomial generators Vij 41,...,Vaj,41 of S,
a[2j1,...,2js] is indecomposable in E§’4*+1 for s > 5. Since E;A*” =
ES***? = 0, no d,-boundary, » > 3, can land in E****1 Therefore,
a[2j1,-..,2js] projects to an indecomposable element of E:L4*T1 and

must be indecomposable in M Sp,.
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(b), (d) We have Sp-manifolds ¢7, ¢ and V] such that
Oy =2 x ¢1;
N = bj, X2
Vi =1bj, X ¢1U¢j, x Pl;
0G| J] = ¢1 x A[J]

where A[J] is an Sp-manifold which represents alJ]. Let F[J] =
B2 (E[J]). Let s > 5. Since dE[J] = ma (Y1, G[J]),

AF[J] = 2 x GolJ] U~ x A[J].

Thus, ¢1a[j] = 0 and we have the following defining system for
<¢js72’¢17a[J/]>:
bj. 2 o1 Al
v, = GolJ]
-Vi, —FlJ

By Proposition 5.6(d), G[J] = —¢;, x E[J'JU-my(V] , G[J']). Therefore,
a[J] is represented by

AlJ) = B2 (G[J])
= —d)js X F[J/] U —1/13-5 X Go[J/] U ‘/jls X A[Jq S <¢>j5,2,¢1,a[J’]>.

T(jlaj?) = (¢j2 X V?l) U 1:(\13(‘/}/2,425]‘1), we have ﬂQ(T(jlan)) = p(anjl)
where

When s = 4 we have A[J'] = 0 and Go[J'] = ¢}, X ¢j, X ¢j,. Since

pm,n) = (P, X én) U (dm X ¥n) € (¢m, 2, dn)-

Using (iii) from the proof of Lemma 5.5, we have

FIJ) = Ba(BL) = B2 (wa(Vy: 650 X 631) U s x T, 2)
= (Yjs X dj, X ¢5,) U (¢j5 X p(d2, J1))-
Thus,
(17)
A[J] = =i, X [1hjy X gy X iy U by XD (G2, 1)1 U — (], X P X P, X )
= —(p(ja, J3) X ¢j, X ¢j,) U —(dj, X ¢, X p(ja,j1))
~ (¢j1 X ¢j2 X p(j3,j4)) U (p(jlva) X ¢js X ¢j4)'



186 B. I. BoTvINNIK, S. O. KOCHMAN

(e) Let j, = 2% 2 for 1 < k < s, let i = (i1,...,is) and let J =
[71,-.. ,7s]. Consider the following commutative diagram.

o~

MSpSs _Ps MSp>2 _ P MSp,

l>\3* foz* lﬂ'l*

MSpEs —— MSpE s MSpE
By Proposition 5.4, the definition of (i) in [2, Proposition 6.3] and the
definition of &/ (i) in [2, Proposition 6.4], it follows that

T1 % (a[J]) = T

By [2, Proposition 7.1(ii)], o/ (i) has order at least 2[(6T1/21=2 "and there-
fore a[J] also has order at least 2((s+1)/21-2 m

Our canonical representative A[j1, ja2, js, ja| of a[j1, j2, js, ja] projects
to alj1, Jo, Js, Ja] € E;LA*H which is a da-boundary. In fact, a[ji, j2, j3, ja
has a representative which projects to a nonbounding infinite cycle
in E>**'. To describe this element let e(m,n) denote the projec-
tion of (¢m,2,dn) to Ey** ! of the Adams spectral sequence. By [6,
Thm. 8.13(¢c)], these e(m,n), for (m,n) > (3,5) in the lexicographical
order, are nonbounding infinite cycles which are represented in Eq by
S-linear combinations of the elements ®,P;,P...

Corollary 6.2. The element a[j1,j2,]3,74) has a representative in
F?MSp, which projects to the infinite cycle

D, ®j,€(f3, Ja) + Py @ju€(d1, J2)
mn ES’MH of the Adams spectral sequence.

Proof: p(m,n) projects to da(Vi,n) € E§’8m+8n_5. Consider the da-
cycle
E(la m, n) = (I)IVm,n + q)m‘/l,n + (I)nvl,nr

By [6, Thm. 8.13], ds(2(1,m,n)) = ®ie(m,n) where e(m,n) €
E3® 875 §s an infinite cycle. Tt follows that V., is represented by a
symplectic manifold v, , such that

I(Vm,n) = p(m,n) Ue (m,n)
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where €/(m, n) is a closed symplectic manifold of Adams filtration degree
three which projects to ¢(m, n) in the Adams spectral sequence. By (17),

A[jlanaj3aj4] U 8((¢J4 X ¢j3 X I/(j27j1)) U (V(j4aj3) X ¢j2 X ¢j1>)

is a closed symplectic manifold of Adams filtration degree five which
projects to the infinite cycle ®;, ®;,€(js, ja) + @, P;,€(j1, J2) in E§’4*+1
of the Adams spectral sequence. B

When we multiply the Toda brackets for a[J] by two, their length
decreases.

Corollary 6.3. For s > 5,
2alJ] € (ngj,, d1,alJ']), 4da[J] = v (js)alJ']

where v (js) projects to the infinite cycle hiVy ;. in E3%t of the ASS
for M Sp.

Proof: Using the manifold A[.J] which we constructed in Theorem 2(d)
to represent a[J], we represent 2a[J] by

2A[J] = —=2¢;, x F[J'TU =24 x Go[J'TU2V] x A[J'TUA(¢;, x F[J']).
Thus, 2A[J] is bordant to
Ao[J] = {thj, x 20U =20 } x Gol[J']U {—v, x oy U2V] } x A[J']
= Bjs X G()[J/] U st X A[JI]

Since 9;, = ¥} U —R(¢;,,2), the Hirsch formula shows that &(¢} ,2)
gives a cobordism between B; and —¢; x £(2,2) = —¢;, xn. In
addition, 0 (C},) = —Bj;, X ¢1. Thus, 2a[J] is represented by As[J] which
is in (¢;,n, ¢1,a[J']). Then we can represent 4a[J] by the manifold

245[J] U {—28(¥)_,2) Uy, x n} x GolJ']
which is bordant to
A4[J] = {2st U 72ﬁ(¢);§,2) X ¢1 U?/st xXn X (;51} XA[J/] = Djs XA[J,]

From the definition of Cj,, we see that the cobordism class v (j5) of D;,
projects to h2Vi ;. € E3®* T of the ASS for MSp. m

We conclude this section by showing that certain ag[J] = 0 in Eo, of
the ASS for M Sp. Note that all the ag [j1,... ,Js] are nonzero in E, for
0 < k < s—4. We begin by determining when a[J] = 0 in EX***1. Since
EJ**+2 = E2***2 = 0, a[J] can only bound as a da-boundary.



188 B. I. BoTvINNIK, S. O. KOCHMAN

Proposition 6.4. (a) For s > 3,

allji,jsl=do | Y. @5, Vi, o Vi, Vi, Vi,

1<h<k<s
(b) Let j1,... ,js be distinct even natural numbers with s > 4. Then the
element a[j1,... ,js| = 0 in EL¥F1 4f and only if s = 4.

Proof: (a) Let Z denote the sum of all distinct elements of the given

D
form. Observe that

a [le; s ,js] = Z ‘I)jlq)jzp (lv.j3) V17j4 s VL]'s
D

=d, (Z D D, Vi, ...Vms) .

D

(b) When s = 4v a[j17j27j37j4} = d2 (P (jlan) ‘/j3,j4 + P(j37.j4) ‘/jl,jQ) .
If s > 5 write j, = 2j,.. Then

alji,. - Js]= E Y (Jers Jtas Jts> Gea)Vign - Vi, -« Vi, - Vage
1<t1<ta<t3<ts<s
which can not be a dp-boundary because V1 ;, :Vl,2j{ =Voji+1,- - Vi,5.=

V1,250 = Vaj, 41 are distinct indecomposable elements of Eg*“. |

Theorem 2 implies that when the entries of J are distinct powers of two
then the elements in the bottom half of the tower in Figure 2 represent
nonzero elements of MSp,. We will show that all of the remaining
elements in the top half of the tower in Figure 2 are boundaries in the
ASS. We begin by introducing notation that we will need to describe
specific elements in the ASS for M Sp. Recall the ds-cycles 3(a,b,c) €
E%A*'H which were defined in (9).

Let Ay, By,..., Ay, By, be a sequence such that each (A, By) equals
either (1) a pair of non-negative integers, (2) (1,X(1,z,y)) or (3)
(072(17xay)) Let Vl,Z(l,rc,y) = Vvl.,zvl,y and ‘/O,Z(l,rc,y) = %,1Vz,y +
Vo,eVi,y + VoyVie + Vizy. Thus, in all three cases we have elements
Va,.B, in Es of the ASS for M .Sp such that:

da (Va,.B,) € (Ak, ho, Bx)
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where this Toda bracket is defined in E; = H,(P®S). Thus, as

in [5, Definition 7.12(19a)], we can define the following elements of
Egn—2k),4*+1:

CkY (AlaBla"' 7AnaBn)
- ¥ Y(Al,Bl,... Ay By, A B, ,An,Bn)

1<G1<<jr<n

VAh By, - VAjk’BJk

where 2 <nand 0 <k <n-—2.

Lemma 6.5. All of the elements (Y (A1, By, ..., Ay, Bn) are infi-
nite cycles which are zero in By, of the ASS for MSp where 2 < n and
0<k<n-2.

Proof: A proof analogous to that of Proposition 6.1(b), shows
that for 1 < k < n — 2, twice (Y (A1, By,..., A, B,) equals
¢*Y (A4, By, ..., A, By) by a nontrivial extension of degree one. Ob-
serve that

C"Y (A1 By, An By)=do| > ®aBpVa, 5. Va,p,-Va, ).

1<i<n

By [6, Theorems 12.1,12.4], all the ¢*Y (A, By,... ,4,,B,), 0 < k <
n — 2, are boundaries in the ASS. Thus, they are infinite cycles which
are zero in E,. W

In the next two lemmas we identify the elements in the top half of
the tower in Figure 2 in terms of various (*Y (A1, By, ..., Ay, B,). We

will use the following notation. Let i = [i1,... ,4,] and € = [k1,... , kag).
Define
i/ = [1, il, - ,1,7;1)] and E// = [17 E (1, k’l, kg) geeey 1, Z (1, kgq_l, k’gq)] .

Lemma 6.6. Let J = [j1,... ,jote] with3 <t,0< s <t—2 and
e=0,1. Then

A2t—ste—alJ]
s t

=3 ) ¢V (dat204e8dot—204e-2, ¥ Jogre 1, J2ge)
a=0fp=t—«a
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where

i=[j1,... ,J2t—204e—4] and

€= |jot—2a4e—1s--+J284+e—1,J284¢€s- - 7j2t+e:| .

Proof: Let A denote either ®; or ¥y. Consider the above double sum
as an element ® of P ® S. Write ® as a polynomial in the canonical
generators hg, @y, Wi, Vop and Vo, of P ® S. Then each monomial
summand of ® in P ® S has a factor of maximal length of the following
form:

(18)
Aj21'1+571Aj21‘1+e U Aj2ip+e—1Aj2ip+e‘/j2k1+e—la.j2k1+z T ‘/}2kq+e—1,j2kq+e
where iy < -+ <y, by < -+ < kq. Each of the factors Aj,, .. Aj,, .

in (18) comes from either i, jo; 2a4e—3, Jor—2a+e—2 OF J2gte—1, J2B+c-
Thus, p < t — a. The remaining t — o — p possible sources for factors
Ajyi o1 Njy,, . in (18) must be producing factors Vi j,. .. Vi j,. ...
The total number of such factors V4, g, in the summand with the factor
(18)is s—a. Thus,t—a—p<s—a <t—a—2and 2 < p. Each of the
factors. Vj%ﬁg_‘l,j%ﬁg in (18) comes from either jo;—oa+e—3, J2t—20a+e—2,
¥’ or jogte—1,J28+e. Thus,
(D) ki >t—a-1;
(2) ip—1 <t—a—1;
(3) if ip—1 =t —a —1then i, = F and ip_1 < k1.
Therefore, there are three types of factors (18):
(I) ¢ >1and ip_1 < k1 < ip;
(II) ¢ > 1 and i, < ky;
(I11) ¢ = 0.
Observe that each factor of type I occurs twice:

t—a—1=ip_1,f=tpandt—a—1=k, =1
Observe that each factor of type II occurs 2¢ times:

t—a—1=1i,, B=k- (1<r<gq)
t—a—1l=i,_y, B=i,
t—a—1=k, b=k 2<r<gq).

Observe that each factor of type III occurs once:

t—Oz—lZip_l,ﬁ:Z.p.
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The sum of the summands with factors of type III give exactly

§ 2t—s+e—4 - = ™ .
Y(]- 7.717"'ajh17"'u]hsa~~~7]2tfs+e)
1<hi<---<hs<2t—s+e X X
=" - VL]hl .. Vl,JhS
= A2 ste—d (J1,--+  Jotge) B

The next lemma gives the obstruction to extending Lemma 6.6 to
s = t—1 and thereby bounding one more element of the tower in Figure 2.

Lemma 6.7. Let J = [j1,...,Jotre] with4 <t and e =0,1. Then

=2 ¢t
e alJ]=) 0 D Y ({ datsatess ot—2ate-2, apte s dapte)
a=0=t—«

t
+> Y(1t+€_3, Jer B (L Jerts Jerz) 5o o B (1, Jokte—15 J2k+e) »
k=1

s 72 (17j2t—1+67j2t+6) 7.j2k+6—17j2k+6)

where
i=[J1, .-, J2t—2a4e—a],
t= [jzt—2a+e—1, e s J2Bte—15J28+€s - - - 7j2t+e:|

and the “jo” should be deleted from the last sum when € = 0.

Proof: We apply Lemma 6.6 to the element aiyc—1[J1,--. ,J2t+1et2)
where joryer1 and joiiero are large powers of two. Applying the
Landweber-Novikov operation sa,;, . _,+A,,,, ., and dividing by
q1, we obtain this lemma. B

We combine the previous three lemmas to show that the elements of
the top half of the tower of Figure 2 are boundaries in the ASS for M Sp.

Proposition 6.8. (a) Fore = 0,1, 3 <t and 0 < s <t —2, the
element
a8+t+€72 [jl; .. aj2t+e}

is zero in By of the ASS for M Sp.

(b) Fort > 3, the following element is also zero in B, of the ASS for
MSp:
at—2 [Ovaa s 7j2t+1] .
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Proof: (a) Each summand of the decomposition of asi¢yc—2[j1,- - -, j2t+e
in Lemma 6.6 is a boundary in the ASS by Lemma 6.5.

(b) When € =1 and j; = 0 in Lemma 6.7, the last sum in the decom-
position of a;_2 [0, j2, ... , j2r+1] equals

t
ZY (072(17j27j3) ) 1a2(15.j47j5)7' . 7172 (17j2]€7j2k+1) ety
k=1

17 2(17j2t7j2t+1)7j2k7j2k+1) .

Thus, by Lemma 6.5 each summand of the decomposition of
a: [0, 42, .., jor+1] in Lemma 6.7 is a boundary in the ASS. ®

Note 6.1. If j1,...,j2t+ is an increasing sequence of non-negative
even integers then the only apparent way that the last sum in Lemma 6.7
can bound is as in (b) when ¢ =1 and j; = 0.

It follows from this proposition that the order of a[J] given in Theo-
rem 2 is exact after projection into E., of the ASS.

Corollary 6.9. Fors>7and0 < j; < --- < js, the projection of the
element 2[6HD/A=2q 15, 4.] into g2 +3)/2)x of the ASS for M Sp is
zero.
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