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OSCILLATION OF SOLUTIONS OF SOME
NONLINEAR DIFFERENCE EQUATIONS

Zdzis�law Szafrański and B�lażej Szmanda

Abstract
Sufficient conditions for the oscillation of some nonlinear difference
equations are established.

1. Introduction

In this note we consider the nonlinear difference equation of the form

(1) ∆(rn∆xn) + qn f(xn−τn) = 0, n = 0, 1, 2, . . . ,

where ∆ denotes the forward difference operator: ∆vn = vn+1 − vn for
any sequence (vn) of real numbers; (qn) is a sequence of real numbers,
(τn) is a sequence of integers such that

lim
n→∞

(n − τn) = ∞,

(rn) is a sequence of positive numbers and

Rn =
n−1∑

k=0

1
rk

→ ∞, as n → ∞.

f : R → R is a continuous with u f(u) > 0 (u �= 0).
By a solution of Equation (1) we mean a sequence (xn) which is defined

for
n ≥ min

i≥0
(i − τi)

and satisfies Equation (1) for all large n.
A nontrivial solution (xn) of (1) is said to be oscillatory if for every

n0 > 0 there exists an n ≥ n0 such xnxn+1 ≤ 0. Otherwise it is called
nonoscillatory.

In several recent papers the oscillatory behaviour of solutions of non-
linear difference equations have been discussed e.g. see [1]-[6].

Our purpose in this paper is to give the sufficient conditions for the
oscillation of solutions of Equation (1). The results obtained here extend
those in [6].
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2. Main results

Theorem 1. Assume that
(i) qn ≥ 0 and

∑∞
qn = ∞,

(ii) lim|u|→∞ inf |f(u)| > 0.
Then every solution of Equation (1) is oscillatory.

Proof: Assume, that Equation (1) has nonoscillatory solution (xn),
and we assume that (xn) is eventually positive. Then there is a positive
integer n0 such that

(2) xn−τn>0 for n ≥ n0.

From the Equation (1) we have

∆(rn∆xn) = −qnf(xn−τn
) ≤ 0, n ≥ n0,

and so (rn∆xn) is an eventually nonincreasing sequence. We first show
that

rn∆xn ≥ 0 for n ≥ n0.

In fact, if there is an n1 ≥ n0 such that rn1∆xn1 = c < 0 and rn∆xn ≤ c
for n ≥ n1 that is

∆xn ≤ c

rn

and hence

xn ≤ xn1 + c

n−1∑

k=n1

1
rk

→ −∞ as n → ∞

which contradicts the fact that xn > 0 for n ≥ n1. Hence rn∆xn ≥ 0 for
n ≥ n0. Therefore we obtain

xn−τn
> 0, ∆xn ≥ 0, ∆(rn∆xn) ≤ 0 for n ≥ n0.

Let
L = lim

n→∞
xn.

Then L > 0 is finite or infinite.

Case 1. L > 0 is finite.
From the continuity of function f(u) we have

lim
n→∞

f(xn−τn) = f(L) > 0.
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Thus, we may choose a positive integer n3 (≥ n0) such that

(3) f(xn−τn) >
1
2
f(L) n ≥ n3.

By substituting (3) into Equation (1) we obtain

(4) ∆(rn∆xn) +
1
2
f(L)qn ≤ 0, n ≥ n3.

Summing up both sides of (4) from n3 to n (≥ n3), we obtain

rn+1∆xn+1 − rn3∆xn3 +
1
2
f(L)

n∑

i=n3

qi ≤ 0

and so
1
2
f(L)

n∑

i=n3

qi ≤ rn3∆xn3 , n ≥ n3,

which contradicts (i).

Case 2. L = ∞.
For this case, from the condition (ii) we have

lim
n→∞

inf f(xn−τn
) > 0

and so we may choose a positive constant c and a positive integer n4

sufficiently large such that

(5) f(xn−τn
) ≥ c for n ≥ n4.

Substituting (5) into Equation (1) we have

∆(rn∆xn) + cqn ≤ 0, n ≤ n4.

Using the similar argument as that of Case 1 we may obtain a contra-
diction to the condition (i). This completes the proof.

Theorem 2. Assume, that

(iii) qn ≥ 0 and
∑∞

Rnqn = ∞,
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then every bounded solution of (1) is oscillatory.

Proof: Proceeding as in the proof of Theorem 1 with assumption that
(xn) is a bounded nonoscillatory solution of (1) we get the inequality (4)
and so we obtain

(6) Rn∆(rn∆xn) +
1
2
f(L)Rnqn ≤ 0, n ≥ n3.

It is easy to see that

(7) Rn∆(rn∆xn) ≥ ∆(Rnrn∆xn) − rn∆xn∆Rn.

From inequalities (6) and (7) we deduce

n∑

k=n3

∆(Rkrk∆xk) −
n∑

k=n3

∆xk +
1
2
f(L)

n∑

k=n3

Rqqk ≤ 0 n ≥ n3,

which implies

1
2
f(L)

n∑

k=n3

Rkqk ≤ xn+1 + Rn3rn3∆xn3 − xn3 , n ≥ n3.

Hence there exists a constant c such that

n∑

k=n3

Rkqk ≤ c for all n ≥ n3,

contrary to the assumption of the theorem.

Theorem 3. Assume that

(iv) (n − τn) is nondecreasing, where τn ∈ {0, 1, 2, . . . },
(v) there is a subsequence of (rn), say (rnk

) such that rnk
≤ 1 for

k = 0, 1, 2, . . . ,
(vi)

∑∞
n=0 qn = ∞,

(vii) f is nondecreasing and there is a nonnegative constant M such
that

(8) lim
u→0

sup
u

f(u)
= M.
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Then the difference (∆xn) of every solution (xn) of Equation (1) oscil-
lates.

Proof: If not, then Equation (1) has a solution (xn) such that its
difference (∆xn) is nonoscillatory. Assume first that the sequence (∆xn)
is eventually negative. Then there is a positive integer n0 such that

∆xn < 0 n > n0

and so (xn) is decreasing for n ≥ n0 which implies that (xn) is also
nonoscillatory. Set

(9) wn =
rn∆xn

f(xn−τn
)
, n ≥ n1 ≥ n0.

Then

(10)

∆wn =
rn+1∆xn+1

f(xn+1−τn+1)
− rn∆xn

f(xn−τn)

=
∆(rn∆xn)
f(xn−τn

)
+ rn+1∆xn+1

f(xn−τn) − f(xn+1−τn+1)
f(xn+1−τn+1)f(xn−τn

)

≤ ∆(rn∆xn)
f(xn−τn

)
= −qn, n ≥ n1.

Summing up both sides of (10) from n1 to n, we have

wn+1 − wn1 ≤ −
n∑

i=n1

qi

and, by (vi), we get

(11) lim
n→∞

wn = −∞,

which implies that eventually

(12) f(xn−τn) > 0 and therefore xn−τn > 0.

By (11), we can choose n2 (≥ n1) such that

wn ≤ −(M + 1), n ≥ n2.

That is

(13) rn∆xn + (M + 1)f(xn−τn) ≤ 0, n ≥ n2.
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Set
lim

n→∞
xn = L.

Then L ≥ 0. Now we prove that L = 0. If L > 0, then we have

lim
n→∞

f(xn−τn
) = f(L) > 0,

by the continuity of f(u). Choosing an n3 sufficiently large, such that

(14) f(xn−τn) >
1
2
f(L), n ≥ n3

and substituting (14) into (13), we have

(15) ∆xn +
1

2rn
(M + 1)f(L) ≤ 0, n ≥ n3.

Summing up both sides of (15) from n3 to n we get

xn+1 − xn3 +
1
2
(M + 1)f(L)

n∑

i=n3

1
ri

≤ 0

which implies that
lim

n→∞
xn = −∞.

This contradicts (12). Hence

lim
n→∞

xn = 0.

By the assumptions we have

lim
n→∞

sup
xn−τn

f(xn−τn
)
≤ M.

From this we can choose n4, such that
xn−τn

f(xn−τn
)

< M + 1, n ≥ n4.

That is
xn−τn

< (M + 1)f(xn−τn
), n ≥ n4,

and so from (13) we get

(16) rn∆xn + xn−τn
< 0, n ≥ n4.

In particular, from (16) for a subsequence (rnk
) satisfying the condi-

tion (v), we have

xnk+1 − xnk
+ xnk−τnk

≤ rnk
(xnk+1 − xnk

) + xnk−τnk
< 0,

for k sufficiently large, which implies that

0 < xnk+1 + (xnk−τnk
− xnk

) < 0

for all large k. This is a contradiction.
The case that (∆xn) is eventually positive can be treated in a similar

fashion and so the proof of Theorem 3 is completed.
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3. Z. Szafrański, On some oscillation criteria for difference equations
of second order, Fasc. Math. 14 (1985), 91–99.

4. B. Szmanda, Oscillation criteria for second order nonlinear equa-
tions, Ann. Polon. Math. 43 (1983), 225–235.

5. B. Szmanda, Oscillatory behaviour of certain difference equations,
Fasc. Math. 21 (1990), 65–78.

6. Z. Wang and J. Yu, Oscillation criteria for second order nonlinear
difference equations, Funkcialaj Ekvacioj 34 (1991), 313–319.

Institute of Mathematics
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