
Publicacions Matemàtiques, Vol 39 (1995), 335–347.

CONTINUITY AND
CONVERGENCE PROPERTIES

OF EXTREMAL-INTERPOLATING DISKS

Pascal J. Thomas

Abstract
Let a be a sequence of points in the unit ball of Cn. Eric Amar
and the author have introduced the nonnegative quantity ρ(a) =
infα infk

∏
j:j �=k

dG(αj , αk), where dG is the Gleason distance in

the unit disk and the first infimum is taken over all sequences α in
the unit disk which map to a by a map from the disk to the ball.

The value of ρ(a) is related to whether a is an interpolating
sequence with respect to analytic disks passing through it, and if
a is an interpolating sequence in the ball, then ρ(a) > 0.

In this work, we show that ρ(a) can be obtained as the limit
of the same quantity for the truncated finite sequences, and that
ρ(a) depends continuously on a when a is finite. Furthermore,
we describe some of the behavior of the minimizing sequences of
maps involved in the extremal problem used to define ρ.

0. Introduction.
This article is being written to provide some additional properties

of the notion of extremal disks introduced in the joint paper [A-T]. It
would not have arisen without the stimulating discussions I had with
Eric Amar, for which I wish to thank him. Some of the genesis of this
work took place while I was enjoying the hospitality of the University of
California at Los Angeles and the University of Wisconsin-Madison, and
my thanks go to them as well.

First we recap and simplify a few notations from [A-T].
As usual, D denotes the unit disk in the complex plane, and B

n the
unit ball in C

n : B
n := {z ∈ C

n st z · z̄ =
∑n

1 |zj |2 < 1}.
Let a = {ak, k ∈ Z

∗
+} ⊂ B

n, α = {αk, k ∈ Z
∗
+} ⊂ D, possibly finite

sequences. Given φ a holomorphic map from D to B
n, we shall employ the

abbreviated notation φ(α) = a to mean that for all k ∈ Z
∗
+, φ(αk) = ak.
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When α is such that a φ as above does exist, we say that α maps
to a, and write α �→ a for short. It means that the map φ describes
an analytic disk passing through the points of the sequence a without
“slopping over” the boundary of the ball.

Definition [A-T]. For a ⊂ B
n, n ≥ 1, k ∈ Z

∗
+,

ρk(a) := inf{δk(α) : α �→ a};

and
ρ(a) := inf{δ(α) : α �→ a},

where

δk(α) :=
∏

j:j �=k

dD

G(αk, αj),

δ(α) := inf
k
δk(α),

and, for z and w in a domain Ω, dΩG denotes the Gleason distance:

dΩG(z, w) := sup{|f(w)| : f ∈ H∞(Ω) st f(z) = 0 and ‖f‖∞ ≤ 1}.

Note that, for any nonnegative integer n,

1 − dB
n

G (z, w)2 =
(1 − |z|2)(1 − |w|2)

|1 − z · w̄|2 ,

in particular

dD

G(z, w) =
|z − w|
|1 − zw̄| .

(see [Ga], [Ru]).

Definition [A-T]. We say that φ is an extremal-interpolating disk iff
there exists an α ⊂ D such that φ(α) = a and δ(α) = ρ(a).

Such disks are those for which the pre-image sequence α is, in a sense,
as close together as it can within the unit disk (the Schwarz Lemma is
preventing its points from being arbitrarily close to each other).

Results about existence of extremal-interpolating disks and some of
their first properties were given in [A-T] (where they were simply called
“extremal disks”), as well as motivations for the study of this notion.
Essentially, ρ measures whether a is an interpolating sequence with re-
spect to holomorphic functions bounded on the analytic disks passing
through it (as opposed as being interpolating with respect to functions
bounded on the whole ball).



Extremal-interpolating disks 337

1. Convergence along finite subsequences
and semi-continuity.

Theorem 1.
Let a = {ak, k ∈ Z

∗
+} ⊂ B

n, then

ρ(a) = lim
N→∞

ρ({ak, 1 ≤ k ≤ N}) = inf
N∈Z

∗
+

ρ({ak, 1 ≤ k ≤ N}).

Corollary 1.
The function a �→ ρ(a) is upper semi-continuous with respect to the

topology given by the distance d(a, b) := supk dG(ak, bk).

Proof of Corollary 1:

Lemma 2 in [A-T] proved that the function ρ is u.s.c. over the set of
finite sequences with a given number of points, thus a �→ ρ({ak, 1 ≤ k ≤
N}) is an u.s.c. function, and the greatest lower bound of a family of
u.s.c. functions is also u.s.c.

Corollary 2.
Any sequence a ⊂ B

n verifying ρ(a) > 0 is separated, i.e. there exists
δ > 0 such that for any j 
= k, dG(aj , ak) ≥ δ.

This Corollary is interesting in the context of interpolating sequences
for bounded holomorphic functions (see [C], [Ga] for definitions). Sep-
aratedness is an easy necessary condition for a sequence of points to be
an interpolating sequence. One also easily sees that ρ(a) > 0 is another
necessary condition for a to be an interpolating sequence [A-T]. Thus
we see that this new necessary condition implies a better-known one.

Proof of Corollary 2:

By renumbering the sequence, take j = 1, k = 2. It is easy to see
(cf. [A-T]) that ρ({a1, a2}) = dG(a1, a2). Apply Theorem 1 for N = 2 :
dG(a1, a2) ≥ ρ(a) > 0.

Proof of Theorem 1:

Given any ε > 0, let α ⊂ D be such that δ(α) < ρ(a) + ε. Then there
exists k and N such that∏

j:j �=k, 1≤j≤N

dG(αk, αj) < ρ(a) + 2ε.

Thus by definition ρ({ak, 1 ≤ k ≤ N}) ≤ ρ(a) + 2ε, and we have

ρ(a) ≥ inf
N∈Z

∗
+

ρ({ak, 1 ≤ k ≤ N}).

The rest of the Theorem will follow from the
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Proposition 3.
Suppose a is a sequence in B

n and φ a holomorphic map from D to
B

n, and, for 1 ≤ k ≤ N , αk ∈ D such that φ(αk) = ak. Then, given any
ε > 0, there exists a holomorphic map ψ from D to B

n and a sequence
β ⊂ D such that

ψ(β) = a and δ(β) ≤ δ({αk, 1 ≤ k ≤ N}) + ε.

In particular, for any N < M , ρ({ak, 1 ≤ k ≤ N}) ≥ ρ({ak, 1 ≤ k ≤
M}).

The proof of Proposition 3 will be given in Section 4.

End of Proof of Theorem 1:

The last clause of the proposition shows that the limit in the theorem
exists and equals the infimum. Furthermore, by choosing a sequence α
such that δ(α) ≤ ρ({ak, 1 ≤ k ≤ N}) + ε, we have

ρ(a) ≤ δ(β) ≤ ρ({ak, 1 ≤ k ≤ N}) + 2ε,

which proves the required inequality.

2. Convergence of mappings.
The first section lends some validation to our approach (in [A-T]) of

studying the behavior of ρ(a) mostly when a is a finite sequence. In that
case, since ρ is defined as an infimum, it is legitimate to wonder what
happens when we take a sequence of mappings φp and sequences αp

such that, for any p, φp(αp) = a, and limp→∞ δ(αp) = ρ(a). By Montel’s
theorem, a subsequence of {φp}p will converge uniformly on compact
subsets of D, but no such convergence is guaranteed for the points in the
sequences αp, so the question arises of what the relationship between the
limit of the mappings and the original sequence.

Normalizations.
Since we are dealing with a finite sequence a, we may always assume

(after re-numbering) that ρ(a) = ρ1(a), and shall do so for the remainder
of this section.

Likewise, when have a sequence α which maps to a, by applying an
automorphism of the disk, we reduce ourselves to the case where α1 = 0.

We introduce a class of special holomorphic mappings from the disk
to the ball:
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Definition.
We say that φ, a holomorphic map from D to B

n, is a ball-valued
Blaschke product of degree N iff for ζ ∈ D,

φ(ζ) =
(
P1(ζ)
Q(ζ)

, . . . ,
Pn(ζ)
Q(ζ)

)
,

where P1, . . . , Pn and Q are polynomials with max(degPj , 1 ≤ j ≤
n, degQ) = N , Q has no zeros in D and for any ζ such that |ζ| = 1,

1 = |φ(ζ)|2 =
n∑
1

|Pj(ζ)|2
|Q(ζ)|2 .

The following was essentially proved in [A-T, Theorem 1]:

Theorem.
If a = {ak, 1 ≤ k ≤ N} ⊂ B

n, α ⊂ D, with φ a holomorphic map
from D to B

n, such that φ(α) = a, and δ1(α) = ρ1(a) (in particular
if φ gives an extremal-interpolating disk for a) then φ is a ball-valued
Blaschke product of degree no greater than N − 1, uniquely determined
by α.

Only the precise form of the rational map was not explicitly given in
[A-T], but it is easy to obtain by following the induction performed there,
observing that at each step we only perform composition by Möbius
automorphisms of the disc or ball, and multiplication by ζ.

We can now state:

Theorem 2.
Let a = {ak, 1 ≤ k ≤ N} ⊂ B

n, and {φp}p a sequence of mappings
from the disk to the ball such that for each p, φp(αp

k) = ak, 1 ≤ k ≤ N ,
where αp

k ∈ D, αp
1 = 0, and

lim
p→∞

δ1(αp) = lim
p→∞

N∏
k=2

|αp
k| = ρ(a).

Then there exist subsequences, denoted again by {φp}p and {αp}p, a
ball-valued Blaschke product φ, and a sequence α = {αk, 1 ≤ k ≤ N} ⊂
D such that

(i) limp→∞ φp = φ, uniformly on compact sets of D,
(ii) limp→∞ αp

k = αk ∈ D, and
(iii) φ(αk) = ak iff |αk| < 1.
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Let S := {k ∈ {1, . . . , N} st |αk| < 1}. Then ρ({ak, k ∈ S}) = ρ(a)
and φ is of degree no greater than #S − 1.

Remarks.
This theorem says that we do have convergence towards some

extremal-interpolating disk, but passing only through a subsequence of
a.

In the case where N = 3 and a itself does not admit an extremal-
interpolating disk, we see that the theorem implies that a subsequence
of the minimizing sequence of mappings has to converge to an affine disk
through two of the points of the original sequence.

Proof of Theorem 2:

By Montel’s Theorem and compactness of D, it is easy to extract
subsequences having properties (i) and (ii). The “if” part of (iii) follows
by equicontinuity of the converging subsequence of maps.

Now

ρ(a) = ρ1(a) = lim
p→∞

δ1(αp) = lim
p→∞


 ∏

k≥2, k∈S

|αp
k|

∏
k/∈S

|αp
k|




= δ1({αk, k ∈ S}) ≥ ρ1({ak, k ∈ S}) ≥ ρ({ak, k ∈ S}),

which itself is no less than ρ(a) by Proposition 3, so we actually have
equality throughout. Since φ({αk, k ∈ S}) = {ak, k ∈ S}, and
δ1({αk, k ∈ S}) = ρ1({ak, k ∈ S}), φ is a ball-valued Blaschke prod-
uct of degree no greater than #S − 1, so that for k /∈ S, |φ(αk)| = 1, so
that φ(αk) 
= ak, which finally proves the “only if” part of (iii).

It would be nicer to be able to describe the subsequence through which
an extremal-interpolating disk passes, {ak, k ∈ S}, in terms of the se-
quence a. Observe that {ak, k ∈ S} is a sequence with the same ρ as
the original sequence. If such a subset S is given, we have the:

Theorem 3.
Let S ⊂ {1, . . . , N}, such that 1 ∈ S, be minimal for the property that

ρ1({ak, k ∈ S}) = ρ1(a) = ρ(a).

Then there exists a sequence of finite sequences in the disk, {αp}p and
a sequence of mappings from the disk to the ball {φp}p such that

(i) φp(αp) = a,
(ii) ρ1(a) = limp→∞ δ1(αp),
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(iii) limp→∞ αp
k = αk ∈ D and S = {k ∈ {1, . . . , N} st |αk| < 1},

(iv) limp→∞ φp = φ, a ball-valued Blaschke product of degree no grea-
ter than #S − 1, and

(v) φ({αk, k ∈ S}) = {ak, k ∈ S}, δ1({αk, k ∈ S}) = ρ1({ak, k ∈
S}) = ρ1(a) = ρ(a).

Proof of Theorem 3:

The sufficient condition for ρ to be attained given in [A-T, Lemma 3]
covered the special case where the only such set S is the whole
{1, . . . , N}. The present proof will use the same idea.

For a given p, pick first, using the definition of ρ1, a sequence {βp
k , k ∈

S} so that

δ1({βp
k , k ∈ S}) ≤ ρ1({ak, k ∈ S}) +

1
p
;

then modify and complete this sequence according to Proposition 3 to
get αp = {αp

k, 1 ≤ k ≤ N} so that

ρ1(a) ≤ δ1({αp}) ≤ ρ1({ak, k ∈ S}) +
2
p

= ρ1(a) +
2
p
.

This forces limp→∞ |αp
k| = 1 for k /∈ S.

On the other hand, for k ∈ S, by the minimality property of S,
ρ1({aj , j ∈ S \ {k}}) > ρ(a). Then

|αp
k| =

∏
j∈S |αp

j |∏
j∈S, j �=k |α

p
j |

≤
∏

j∈S |αp
j |

ρ1({aj , j ∈ S \ {k}}) ≤ γk < 1,

for p large enough. Taking subsequences as before, we get the conver-
gence of the points αp

k to limits within the open disk when k ∈ S, and of
the mappings to a mapping φ. We obtain (v) as in the previous proof,
and the resulting extremality forces to φ to be a ball-valued Blaschke
product.

Questions.
Is the set S of Theorem 2 always “minimal”, i.e. of the type given

in Theorem 3? It is clear that it contains a “minimal” set S′, and that
any “minimal” set that contains it must be equal to it. Also, the set S
is included in some set S′′ maximal for the property that an extremal-
interpolating disk does pass through {ak, k ∈ S′′}; must S, S′ and S′′

coincide?
More modestly, are there examples of sequences where several different

minimal sets S′ can be found?
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3. Continuity in the finite case.
Despite their limitations, the ideas of the previous section enable us

to prove the following continuity result:

Theorem 4.
For every N ∈ Z

∗
+, the function {ak, 1 ≤ k ≤ N} �→ ρ({ak, 1 ≤ k ≤

N}) is continuous from (Bn)N to R+.

Proof of Theorem 4:

We shall adopt the same normalisations as those in the previous sec-
tion.

Since ρ(a) = min1≤k≤N ρk(a), it will be enough to prove that ρ1 is
a continuous function. By Lemma 2 in [A-T], we already know it to
be upper semi-continuous. We shall proceed by induction on N . Since
ρ({a1, a2}) = dG(a1, a2), the case N = 2 is clear.

Now suppose the property true for all sequences a such that #a ≤
N − 1. Given a ∈ (Bn)N , assume, to get a contradiction, that there is
a sequence of sequences ap ⊂ (Bn)N such that limp→∞ ρ1(ap) < ρ1(a).
Then for any proper subset S ⊂ {1, . . . , N}, by the induction hypothesis,

lim
p→∞

ρ1({ap
k, k ∈ S}) = ρ1({ak, k ∈ S}) ≥ ρ1(a),

by Proposition 3. Therefore for p large enough,

ρ1(ap) < min{ρ1({ap
k, k ∈ S}) : S ⊂ {1, . . . , N}, #S ≤ N − 1},

so an application of [A-T, Lemma 3] shows that for each such p there
exists a sequence αp in the disk such that δ1(αp) = ρ1(ap) and a mapping
φp such that φp(αp) = ap.

Now, for ε small enough, p large enough, and any k ∈ {2, . . . , N}, we
have

|αp
k| =

δ1(αp)
δ1({αp

j , j 
= k}) ≤ ρ1(ap)
ρ1({ap

j , j 
= k}) ≤ limp→∞ ρ1(ap)
ρ1(a)

+ ε < 1.

This implies that all the points αp
k remain in a relatively compact disk

within the unit disk, therefore by extracting a subsequence we may as-
sume that for each k, limp→∞ αp

k = αk ∈ D, and limp→∞ φp = φ, with
uniform convergence on compact subsets of the unit disk. This implies
that φ(α) = a, but since

δ1(α) = lim
p→∞

δ1(αp) = lim
p→∞

ρ1(ap) < ρ1(a),

we get a contradiction with the definition of ρ1.
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4. Proof of Proposition 3.
As usual, we may assume without loss of generality that α1 = 0 and

δ(α) = δ1(α), where α = {αj}1≤j≤N . Also, renumber a so that |aj+1| ≥
|aj | for any j ≥ N + 1.

We write Mβ for the constant of interpolation of a sequence β, i.e.

Mβ := inf{M > 0 st ∀a ⊂ B
n, there is φ : D → B

n(0,M) stφ(β) = a}.

Pick r0 < 1 such that α ⊂ D(0, r0) and

N∏
j=2

∣∣∣∣αj

r0

∣∣∣∣ < δ1(α) + ε,

and ε1 > 0 small enough so that ε1 ≤ 1−|aN+1|
Mα+2 and φ(D(0, r0)) ⊂

B
n(0, 1 − (Mα + 2)ε1).

Lemma 4. There exists a holomorphic function E ∈ A(D) (i.e. con-
tinuous up to the boundary) so that

(i) |E(ζ)| ≤ 1, for any ζ ∈ D;
(ii) |E(ζ) − 1| ≤ ε1, for any ζ ∈ D(0, r0);
(iii) E(1) = 0, but E(ζ) 
= 0 for any ζ ∈ D.

Proof:

For a ∈ (−1,+1) let φa(ζ) = ζ−a
1−aζ , and E(ζ) = (1 − φa(ζ))/2. Then

E(1) = 0 and ‖E‖∞ ≤ 1.
But the disk φa(D(0, r0)) admits the line segment [−r0−a

1+ar0
; r0−a

1−ar0
] for

its diameter and lima→1−
r0−a
1−ar0

= −1, so that for a close enough to 1,
φa(D(0, r0)) ⊂ D(−1, 2ε1), which yields (ii).

Lemma 5. There exists F ∈ C0([r0, 1),Bn) and {αj}j≥N+1 a strictly
increasing sequence such that

(i) F (αj) = aj for j ≥ N + 1;
(ii) M{αj}j≥1 ≤M{αj}1≤j≤N

+ 1;
(iii) 1 − |F (x)| ≥ ε1(Mα + 2)|E(x)|, for any x ∈ [r0, 1);
(iv) F (r0) = φ(r0).

Proof: Once the αj are given, we will define F by linear interpolation:

F (θr0 + (1 − θ)αN+1) := θφ(r0) + (1 − θ)aN+1

and F (θαj + (1 − θ)αj+1) := θaj + (1 − θ)aj+1,
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so that

min
x∈[r0,αN+1]

(1 − |F (x)|) = min(1 − |φ(r0)|, 1 − |aN+1|)

min
x∈[αj ,αj+1]

(1 − |F (x)|) = min(1 − |F (αj)|, 1 − |F (αj+1)|)

= min(1 − |aj |, 1 − |aj+1|) = 1 − |aj+1|.

By the choice of ε1,

|E(r0)| ≤ 1 ≤ 1
(Mα + 2)ε1

min(1 − |φ(r0)|, 1 − |aN+1|).

Choose αN+1 > r0 and inductively for j ≥ N + 1, αj+1 > αj , large
enough so that, for any j ≥ N ,

|E(αj+1)| ≤
1 − |aj+2|
(Mα + 2)ε1

and
M{αk, 1≤k≤j+1} ≤M{αk, 1≤k≤j} + 2N−j−1.

The first condition can be met since E(1) = 0. In order to estimate the
constant M{αk, k≤j+1}, let E1 be a function as in Lemma 4, this time
with r′0 = |αj |, ε′1 = 2N−j−2M{αk, k≤j}.

Suppose {vk, k ≤ j + 1} is a sequence of values in the unit ball.
Pick a map f1 such that f1(αk) = vk

E1(αk) for k ≤ j, and ‖f1‖∞,n ≤
(1 − ε′1)−1M{αk, k≤j}.

Choose ρ > 0 small enough so that |E1(ζ)| ≤ ε′1M{αk, k≤j} for ζ ∈
D(1, ρ); pick f2(ζ) =

(
1+ζ
2

)N

, with N large enough so that |f2(ζ)−1| ≤
ε′1M{αk, k≤j} for ζ ∈ D \D(1, ρ). Now we take αj+1 > 1 − ρ, and use as
interpolating function

f(ζ) := E1(ζ)f1(ζ) + vj+1
f2(ζ)

f2(αj+1)
.

Thus for ζ ∈ D \D(1, ρ),

|f(ζ)| ≤ (1 − ε′1)−1M{αk, k≤j} + (1 − ε′1)−1ε′1M{αk, k≤j}

≤M{αk, k≤j}(1 + 3ε′1) < M{αk, k≤j} + 2N−j ,

and a similar estimate is true for ζ ∈ D(1, ρ).

We shall need the following simple modification of Brelot’s proof of
Carleman’s theorem, see [Gl] and [Ka].
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Lemma 6.
For any G ∈ C0(D(0, r0) ∪ [r0, 1); Bn) ∩ H(D(0, r0)), for any e ∈

C0(D(0, r0) ∪ [r0, 1); R∗
+), there exists f1 ∈ H(D) such that

For any ζ ∈ D(0, r0) ∪ [r0, 1), |f1(ζ) −G(ζ)| < e(ζ).

Proof:

Choose a strictly increasing sequence r0 < r1 < · · · rm < rm+1 → 1.
Let {em}m≥0 be a strictly decreasing sequence of positive numbers such
that

e0 < min
|ζ|≤r0 or r0≤ζ≤r1

|e(ζ)|,

em < min
x∈[rm,rm+1]

|e(x)|, m ≥ 1,

and limm→∞ em = 0. Let dm := em − em+1 > 0 for m ≥ 0.
We shall set f1 = limm→∞ pm, where the pm are polynomial mappings

which will be defined inductively as follows.
First let g0 := G on D(0, r0) ∪ [r0, r1].
Now, for any m ≥ 1, suppose we have already chosen continuous maps

g0, . . . , gm−1 and polynomial mappings p1, . . . , pm−1 such that for any
k in the relevant ranges,

gk ∈ C0(D(0, rk) ∪ [rk, rk+1]; Bn),(i)
|gk(x) −G(x)| ≤ dk for any x ∈ [rk, rk+1],(ii)
gk(rk+1) = G(rk+1);(iii)

and

(iv) For any ζ ∈ D(0, rk−1) ∪ [rk−1, rk], |pk(ζ) − gk−1(ζ)| < dk.

By Mergelyan’s theorem (applied to each component function), we can
choose pm a polynomial mapping such that

For any ζ ∈ D(0, rm−1) ∪ [rm−1, rm], |pm(ζ) − gm−1(ζ)| < dm,

so it clearly verifies (iv) for k = m, and we define

gm(ζ) := pm(ζ) for ζ ∈ D(0, rm)

gm(ζ) := G(ζ) + (pm(rm) −G(rm))
ζ − rm+1

rm − rm+1
for ζ ∈ [rm, rm+1].
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To verify (i) for k = m, it’s enough to notice that gm(rm) = pm(rm);
(iii) is clear; (ii) follows from the fact that |pm(rm)−G(rm)| = |pm(rm)−
gm−1(rm)| < dm, by (iii) for k = m− 1 and the definition of pm.

The sequence {pm} will converge uniformly on compact subsets of D

since on any given D(0, rm), for any k ≥ m,

∑
j≥k

|pj+1 − pj | =
∑
j≥k

|pj+1 − gj | ≤
∑
j≥k

dj+1 = ek+1.

Furthermore, on the interval [rm, rm+1],

|p−G| ≤ |p− pm+1| + |pm+1 − gm| + |gm −G|
≤

∑
j≥m+2

dj + dm+1 + dm = em ≤ e.

For m = 0, this also applies to points in the disc D(0, r0), so we’re done.

Let G be the map in C0(D(0, r0) ∪ [r0, 1),Bn) obtained by “gluing
together” the map φ given in the hypotheses of Proposition 3 and the
function F from Lemma 5. We take e(ζ) = ε1|E(ζ)|, and apply Lemma 6
to this G to obtain a map f1.

Recall the notation

‖f‖n,∞ = sup{|f(ζ)| : ζ ∈ D},

where f is a map from the disk to C
n.

By our choices of constants of interpolation, the interpolation problem
at the points αj with data −f1(αj)+G(αj)

E(αj)
can be solved by a holomorphic

map h with
‖h‖n,∞ ≤ ε1(M{αj}j≥1) ≤ ε1(Mα + 1).

Let f2 = f1 +hE; this is a holomorphic map such that f2(α) = a, and

|f2(ζ)| ≤ |f1(ζ)| + (Mα + 1)ε1|E(ζ)|.

Lemma 6 implies, for ζ ∈ D(0, r0), |f1(ζ)| ≤ |φ(ζ)| + ε1, so

|f2|(ζ) < 1 − (Mα + 2)ε1 + ε1 + (Mα + 1)ε1 = 1,

by our previous choice of ε1; and for ζ ∈ [r0, 1), |f1(ζ)| ≤ |F (ζ)| +
ε1|E(ζ)|, so

|f2|(ζ) ≤ |F (ζ)| + ε1|E(ζ)| + (Mα + 1)ε1|E(ζ)| < 1,
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by our choice of F .
Let Ω = {ζ ∈ D st |f2|(ζ) < 1}: by the above, Ω is a neighborhood of

D(0, r0) ∪ [r0, 1), which is simply connected by the maximum modulus
principle. Let λ be a Riemann mapping from D to Ω, and set β :=
λ−1(α). The desired map will be ψ := f2 ◦ λ. Since, for any j, k ∈
{1, . . . , N},

dD

G(λ−1(αj), λ−1(αk)) = dΩG(αj , αk) ≤ d
D(0,r0)
G (αj , αk)

= dD

G(αj/r0, αk/r0),

we have

δ(β) ≤ δ({λ−1(αj), 1 ≤ j ≤ N})
≤ δ({αj/r0, 1 ≤ j ≤ N}) < δ1(α) + ε.
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