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ASYMPTOTIC EQUIVALENCE
OF VOLTERRA DIFFERENCE SYSTEMS
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lo

Abstract
The purpose of this paper is to give some results on the asymptotic
relationship between the solutions of a linear difference equation
and its perturbed nonlinear equation.

1. Introduction

The problem of the asymptotic equivalence for systems of ordinary
differential equations has been studied by many authors, as e.g. Brauer
[3], Brauer and Wong [4], Boundorides and Georgiou [2], Lowell Lovelady
[11], Morcha#lo [13], S̆vec [17], Szufla [18], and others.

The problem of the asymptotic equivalence for integrodifferential equa-
tions has been studied by Morcha#lo [14], Razapov [16], Talpalaru [19].

The problem of the asymptotic behavior of solutions of ordinary dif-
ference equations has been studied by Benzaid [1], Conffman [5], Droz-
dowicz, Popenda [6], Elaydi, Gyori [8], Li [10] and Pinto [15].

In this paper, we shall consider some results on the asymptotic rela-
tionship between the solutions of a linear Volterra difference equation
and its perturbed nonlinear equation. The author knows only the works
of Talpalaru [19], Ved and Go#lovina [21], Ved and Kaptagaev [20], deal-
ing with the above problem for special case.

2. Notations and Definitions

Here N(n0) = {n0, n0 + 1, . . . }, where n0 is a natural number or zero;
Rk - the k - dimensional real euclidean space with the norm

|x| =
k∑

i=1

|xi|, x = (x1, . . . , xk);
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Mk - the space of all k × k matrices D = (dij) with the norm |D| =

max
j

k∑
i=1

|dij |, I - identity matrix.

We denote by Φ(N,Rk) the space of all functions from N(n0) into Rk.
Let Φ1 = Φ1(N,Rk) be the Banach space in Φ of all bounded functions

u : N(n0) → Rk with norm ‖x‖ = |x(n)|Φ1 = sup{|x(n)| : n ∈ N(n0)}.
In this paper we consider the following systems of difference equations

(2.1) x(n+ 1) = [A+B(n)]x(n)+
n∑

r=0

[K(n− r) +Q(n, r)]x(r),

(2.2) x(n+ 1) = Ax(n) +
n∑

r=0

K(n− r)x(r)+f(n) + F (n, x(n))

thought et as perturbations of

y(n+ 1) = Ay(n) +
n∑

r=0

K(n− r)y(r),(2.1’)

y(n+ 1) = Ay(n) +
n∑

r=0

K(n− r)y(r) + f(n)(2.2’)

where x, y, f are k-dimensional vectors,

A - is a constant matrix k × k,
B, K : N(n0) →Mk

Q : N(n0) ×N(n0) →Mk,

F : N(n0) × U → Rk is for any n ∈ N(n0)
continuous as a function of x ∈ U

(U - a region in Rk).

We define the resolvent matrix R(n,m) of the equation

(2.3) x(n+ 1) = [A+B(n)]x(n) +
n∑

r=0

[K(n− r) +Q(n, r)]x(r) + f(n)

as the unique solution of the matrix difference equation [7]

(2.4) R(n+ 1,m) = [A+B(n)]R(n,m)

+
n∑

r=m

[K(n− r) +Q(n, r)]R(r,m), n ≥ m,
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with R(m,m) = I.
Using the resolvent matrix R(n,m) we can establish the following re-

lation [7] (Variation of Constants Formula)

(2.5) x(n, 0, x0) = R(n, 0)x0 +
n−1∑
r=0

R(n, r + 1)f(r),

where x(n, 0, x0) is the unique solution of the equation (2.3) satisfying
x(0, 0, x0) = x0.

Let Y (n) denote the fundamental matrix of the system (2.1’) [7]. No-
tice that Y (0) = I and y(n, 0, y0) = Y (n)y0 is the unique solution of
(2.1’) with y(0, 0, y0) = y0.

Moreover,

(2.6) Y (n+ 1) = AY (n) +
n∑

r=0

K(n− r)Y (r).

Remark [7]. We remark here that the resolvent matrix R(n,m) for
equations of nonconvolution type is closely related to the fundamen-
tal matrix Y (n). By uniqueness of solutions, it is easy to see that
for equations of convolutions type such as (2.1’), R(n, 0) = Y (n) and
R(n,m) = Y (n−m).

In this paper we consider the notion of asymptotic equivalence given
by,

Definition. We say that the equations (2.1) and (2.1’) or (2.2), (2.2’)
are asymptotically equivalent if, corresponding to each solution x = x(n)
of (2.1), ((2.2)), there exists a solution y = y(n) of (2.1’), ((2.2’)) with
the property

(2.7) lim[x(n) − y(n)] = 0 as n→ ∞ and conversely.

3. Asymptotic equivalence

We state the following lemma.

Lemma 3.1. If
1. ϕ(n) is bounded on N(n0) and lim

n→∞
ϕ(n) = ϕ(∞) exists,

2.
∞∑

k=n0

|g(k)| <∞,
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then

lim
n→∞

n∑
k=n0

ϕ(n− k)g(k) = ϕ(∞)
∞∑

k=n0

g(k).

Theorem 3.2. Assume that

1. all solutions of the system (2.1’) tend to finite limits as n→ ∞,

2.
∞∑

r=0

[
|B(r)| +

r∑
s=0

|Q(r, s)|
]
<∞,

3. detP �= 0, where P = limY (n) as n → ∞, P is a constant
matrix,

4. q =
∞∑

r=0

[
|B(r)| |R(r, 0)| +

r∑
s=0

|Q(r, s)| |R(s, 0)|
]
< 1.

Then,

a) corresponding to each solution x = x(n) ∈ Φ1 of (2.1), there exists
a solution y = y(n) ∈ Φ1 of (2.1’) such that (2.7) is satisfied
provided that Conditions 1, 2 hold,

b) in Relation (2.7) the solution y = y(n) of (2.1’) is unique if Con-
ditions 1, 2 and 3 are satisfied,

c) to each non-zero solution x = x(n) ∈ Φ1 of (2.1) there corresponds
in Relation (2.7) a non-zero solution y = y(n) ∈ Φ1 of (2.1’), if
Conditions 1, 2 and 4 hold and conversely,

d) in Relation (2.7) the solution x = x(n) of (2.1) is unique if Con-
ditions 1, 2, 3 and 4 are satisfied.

Proof: By Formula (2.5) the solutions x(n) of (2.1) and y(n) of (2.1’)
can be written as

(3.1) x(n) = Y (n)x0 +
n−1∑
r=0

Y (n− r − 1)

[
B(r)x(r) +

r∑
s=0

Q(r, s)x(s)

]

and

(3.2) y(n) = Y (n)y0, n ∈ N.

Furthermore, from the Relations (3.1) and (3.2) we obtain

(3.3) x(n) − y(n) = Y (n)[x0 − y0]

+
n−1∑
r=0

Y (n− r − 1)

[
B(r)x(r) +

r∑
s=0

Q(r, s)x(s)

]
.
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From Assumptions 1, 2 and (3.1) we obtain

|x(n)| ≤ |Y (n)| |x0|

+
n−1∑
r=0

|Y (n− r − 1)|
[
|B(r)| |x(r)| +

r∑
s=0

|Q(r, s)| |x(s)|
]
.

Hence and difference inequality [9] we can easily obtain that all solutions
of (2.1) are bounded.

Thus

(3.4)
∞∑

n=0

∣∣∣∣∣B(r)x(r) +
r∑

s=0

Q(r, s)x(s)

∣∣∣∣∣ <∞.

By Assumption 1, Lemma 3.1 and Relations (3.3) (3.4) we get

(3.5) lim
n→∞

[x(n) − y(n)]

= P

{
x0 − y0 +

∞∑
n=0

[
B(n)x(n) +

n∑
s=0

Q(n, s)x(s)

]}
.

This shows that for arbitrary solutions x(n) and y(n) of (2.1), (2.1’)
respectively Relation (2.7) hold iff

(3.6) P

{
x0 − y0 +

∞∑
n=0

[
B(n)x(n) +

n∑
s=0

Q(n, s)x(s)

]}
= 0.

Equality (3.6) defines a relation between all solutions x(n), y(n) of
(2.1), (2.1’), respectively, for which (2.7) holds.

If P = 0, then (3.6) means that (2.7) holds for arbitrary solutions
x(n), y(n) of (2.1), (2.1’) respectively.

On the other hand if P �= 0, then for arbitrary solution x(n) of (2.1)
we have

(3.7) y0 = x0 +
∞∑

n=0

[
B(n)x(n) +

n∑
s=0

Q(n, s)x(s)

]
.

Hence for suitable solution y(n) of (2.1’) we conclude that (2.7) holds.
Since Condition 3 holds, we claim that the solution y(n) with the initial
condition y0 defined by (3.7) is unique in (2.7).
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From (2.5) for f(n) = 0 and (3.7) we have

y0 = x0

{
I +

∞∑
n=0

[
B(n)R(n, 0) +

n∑
s=0

Q(n, s)R(s, 0)

]}

or

(3.8) (I + P0)x0 = y0

where

P0 =
∞∑

n=0

[
B(n)R(n, 0) +

n∑
s=0

Q(n, s)R(s, 0)

]
.

Assume that (I+P0)−1 exists and x(n) �= 0 for n ∈ N (x0 �= 0). Then,
by (3.8), we have y0 �= 0 (y(n) �= 0 for n ∈ N). Such a matrix exists if,
for example, |P0| < 1 [12] (Banach Theorem’s). From Assumption 4 it
follows that |P0| < 1.

Let the initial condition y0 of solution y(n) = y(n, 0, y0) be arbitrary.
From (3.8) we obtain

x0 = (I + P0)−1y0.

Hence for every solution y(n) �= 0 on N there exists a unique solution
x(n) �= 0 on N such that (2.7) holds and conversely.

Remark. If all solutions of (2.1’) tends to zero as n → ∞ and Con-
dition 2 hold, then all solutions of (2.1) tend to zero as n→ ∞.

Now, we consider asymptotic equivalence between Equations (2.2) and
(2.2’).

Lemma 3.3. Suppose that the following conditions hold:

1. every solution of (2.2’) is bounded on N ,
2. |F (n, x1) − F (n, x2)| ≤ g(n)| |x1 − x2| for n ∈ N , x1, x2 ∈ U ,

3.
∞∑

n=0

g(n) <∞ and
∞∑

n=0

|F0(n)| <∞ where F0(n) ≡ F (n, 0).

Then every solution of (2.2) is bounded on N and

(3.9) |x(n)| ≤ LM(n), n ∈ N
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where

Y0 = sup
N

|Y (n)|,

L = sup
N

∣∣∣∣∣y0(n) +
n−1∑
r=0

Y (n− r − 1)F0(r)

∣∣∣∣∣ <∞,

M(n) = exp

(
Y0

n−1∑
r=0

g(r)

)
,

y0(n) is a solution of (2.2’).

Proof: By the formula (2.5) the solution of (2.2) can be written as

(3.10) x(n, 0, x0) = y0(n) +
n−1∑
r=0

Y (n− r − 1)F (r, x(r))

where

y0(n) = Y (n)x0 +
n−1∑
r=0

Y (n− r − 1)f(r), n ∈ N.

Furthermore, it follows from (2.5) and in view 1 that all solutions
of (2.1’) are bounded on N . Now, using the Relation (3.10) and the
Condition 2, we get

(3.11) |x(n)| ≤ L+ Y0

n−1∑
r=0

g(r)|x(r)|,

which implies, by Gronwall inequality

|x(n)| ≤ L expY0

n−1∑
r=0

g(r) = LM(n).

Because the function M1(n) is bounded on N , we can conclude that
the solution x(n) of (2.2) is also bounded on N .

Remark. From (3.9), we have

(3.12) |x(n)| ≤ [Y0|x0| + f0 + Y0F1]M(n)

where

f0 = sup
N

∣∣∣∣∣
n−1∑
r=0

Y (n− r − 1)f(r)

∣∣∣∣∣ <∞,

F1 =
∞∑

n=0

|F0(n)| <∞.
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Theorem 3.4. Let

1. all solutions of the system (2.1’) tend to finite limits as n→ ∞,
2. Conditions 2 and 3 of lemma 3.3 hold,

3. sup
n∈N

{
n−1∑
r=0

|Z1(n, r)| |g(r)| +
∞∑

r=n

|Z2(n, r)| |g(r)| < 1

}
where

Z1(n, r) = Y (n− r − 1) − Y (n), Z2(n, r) = −Y (n).

Then for each solution x(n) of (2.2) there corresponds a solution
y(n) of (2.2’) such that (2.7) holds.

Moreover, suppose that Condition 3 of Theorem 3.2 holds. Then
the solution y(n) of (2.2’) in Relation (2.7) is unique.

Let Conditions 1-3 hold and

4. q1 = Y0

∞∑
n=0

g(n)M1(n) < 1.

Then for each solution of (2.2) with x0 �= 0 and

|x0| > (1 − q1)−1[F2 + q1(F1 + Y −1
0 f0)]

where

F2 =

∣∣∣∣∣
∞∑

n=0

F0(n)

∣∣∣∣∣ <∞

there corresponds a solution y(n) of (2.2’) with y0 �= 0 such that
(2.7) holds and conversely.

If, in addition the Condition 3 of Theorem 3.2 holds, then the
solution x(n) of (2.2) in Relation (2.7) is unique.

Proof: By 1 it follows that solutions of (2.2’) are bounded onN . Then,
the bounded properties of solutions of (2.2’) imply that solutions of (2.1’)
are bounded too. The first two parts of Theorem are easily verified (see
Theorem 3.2 and Lemma 3.3). Since P �= 0, then we can find a initial
condition y0 of the solution y(n) of (2.2’) such that

(3.13) y0 = x0 +
∞∑

n=0

F (n, x(n)),

where x(n) is a given solution of (2.2).
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Let x0 �= 0, then from (3.13), (3.12) we have

(3.14)

|y0| ≥ |x0| −
∣∣∣∣∣
∞∑

n=0

F (n, x(n))

∣∣∣∣∣
= |x0| −

∣∣∣∣∣
∞∑

n=0

F (n, x(n)) − F (n, 0)] +
∞∑

n=0

F (n, 0)

∣∣∣∣∣
≥ |x0| −

∞∑
n=0

|F (n, x(n)) − F0(n)| − F2

≥ |x0| −
∞∑

n=0

g(n)M1(n)[Y0|x0| + f0 + Y0F1] − F2

≥ |x0|(1 − q1) − [(F1 + Y −1
0 f0)q1 + F2] > 0.

Hence y0 �= 0.
Let the initial condition y0 of the solution y(n) of (2.2’) be arbitrary

selection. Then by Conditions 1, 2 and (3.13) the solution x(n) of (2.2)
be defined for all n ∈ N and (2.7) be hold. By this means we give some
conditions for existence and uniqueness of the solution x(n) of (2.2) in
Φ1 which satisfied (3.13).

Since the equation (2.2) with initial condition x0 is equivalent to the
equation (3.10), then substituting for x0 from (3.13) into (3.10)

(3.14) x(n) = y(n) +
n−1∑
r=0

Z1(n, r)F (r, x(r)) +
∞∑

r=n

Z2(n, r)F (r, x(r))

where

y(n) = Y (n)y0 +
n−1∑
r=0

Y (n− r − 1)f(r)

is arbitrary solution of (2.2’),

Z1(n, r) = Y (n− r − 1) − Y (n)
Z2(n, r) = −Y (n).

Let T be the operator defined for each x ∈ Φ1 by the equation

Tx(n) =
n−1∑
r=0

Z1(n, r)F (r, x(r)) +
∞∑

r=0

Z2(n, r)F (r, x(r)).
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It is obvious that

|F (n, x(n))| ≤ |F (n, x(n))−F (n, 0)|+ |F (n, 0)| ≤ g(n)|x(n)|+ |F (n, 0)|.

The above inequality gives

|Fx(n)| ≤
n−1∑
r=0

|Z1(n, r)|[g(r)|x(r)| + |F (r, 0)|]

+
∞∑

r=n

|Z2(n, r)|[g(r)|x(r)| + |F (r, 0)|].

From Assumption 1, 2 we obtain ‖Tx‖ < ∞. Thus T maps Φ1 into
itself. The operator T is a contraction. In fact, let x1, x2 ∈ Φ1,

|Tx1(n) − Tx2(n)| ≤
n−1∑
r=0

|Z1(n, r)| |F (r, x1(r)) − F (r, x2(r))|

+
∞∑

r=n

|Z2(n, r)| |F (r, x1(r)) − F (r, x2(r))|

≤ ‖x1 − x2‖
{

n−1∑
r=0

|Z1(n, r)|g(r)+
∞∑

r=n

|Z2(n, r)g(r)|
}
.

This implies that T is contraction in Φ1.

Remark. If all solutions of (2.2’) tends to zero as n → ∞ and the
assumptions of Lemma 3.3 hold, then all solutions of (2.2) tend to zero
as n→ ∞.

Remark. Let assumptions of theorem 3.4 hold and initial condition
x0 of the solution x(n) of (2.2) implies

|x0| < (1 + q1)−1[F2 − q1(f0Y −1 + F1)]

where

F2 − q1(f0Y −1 + F1) > 0.

Then for each solution of (2.2) with x0 �= 0 corresponds solution y(n) of
(2.2’) with y0 �= 0 such that (2.7) holds and conversely.
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