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RINGS WHOSE MODULES
HAVE MAXIMAL SUBMODULES

Carl Faith
Dedicated to Laci Fuchs on his 70th birthday

Abstract

A ring R is a right max ring if every right module M �= 0 has
at least one maximal submodule. It suffices to check for maximal
submodules of a single module and its submodules in order to
test for a max ring; namely, any cogenerating module E of mod-
R; also it suffices to check the submodules of the injective hull
E(V ) of each simple module V (Theorem 1). Another test is
transfinite nilpotence of the radical of E in the sense that radα E =
0; equivalently, there is an ordinal α such that radα(E(V )) = 0

for each simple module V . This holds iff each radβ(E(V )) has a
maximal submodule, or is zero (Theorem 2). If follows that R is
right max iff every nonzero (subdirectly irreducible) quasi-injective
right R-module has a maximal submodule (Theorem 3.3). We
characterize a right max ring R via the endomorphism ring Λ of
any injective cogenerator E of mod-R; namely, Λ/L has a minimal
submodule for any left ideal L = annΛ M for a submodule (or
subset) M �= 0 of E (Theorem 8.8). Then Λ/L0 has socle �= 0 for:
(1) any finitely generated left ideal L0 �= Λ; (2) each annihilator
left ideal L0 �= Λ; and (3) each proper left ideal L0 = L+L′, where
L = annΛ M as above (e.g. as in (2)) and L′ finitely generated
(Corollary 8.9A).

HAMSHER MODULES

A module M is a Hamsher module provided each submodule S �= 0
has a maximal submodule.1

1Hamsher modules are called max modules by Shock [S].
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1. One-Module Theorem. A ring R is a right max ring iff R
has a cogenerating right Hamsher module E. A n.a.s.c. for this is that
the injective hull E(V ) of each simple right R-module V is a Hamsher
module.

Proof: A module E cogenerates the category mod-R of all right R-
modules iff for every module M �= 0, there is a nonzero map h : M → E
([F1, pp. 91, 148 & 165]). Then h(M) = M ′ is a nonzero submodule
of E. Thus, when E is a Hamsher module, then M ′ has a maximal
submodule M ′′, so h−1(M ′′) is a maximal submodule of M .

This proves the first statement in Theorem 1. Next let E = ⊕E(V ), as
V range over all simple R-modules. Then E is a cogenerator module for
mod-R ([F1, p. 167, prop. 3.55]). Let PV be the projection E → E(V ).
Then, in the above, 0 �= M ′ = h(M) ⊆ E implies 0 �= PV h(M) = MV ⊆
E(V ) is a nonzero submodule of E(V ) for some V , and so M has a
maximal submodule, as before, whenever E(V ) is a Hamsher module for
all V .

Note. E(V ) is direct summand of any cogenerator E of mod-R, hence
the Hamsher condition on E(V ) is a consequence of that on E in Theo-
rem 1. Moreover, this is sufficient for E to be Hamsher.

1.1. Corollary. If R is a ring such that each simple module V has
Noetherian injective hull E(V ), then R is a right max ring.

To illustrate when E(V ) is not only Noetherian, but simple we will
cite a theorem of Kaplansky, but first we recall some terminology:

R is right V -ring in case R has the equivalent properties. (See [F1,
p. 356, 7.32A].)
(V1) Every simple right R-module V is injective, that is, E(V ) is sim-

ple.
(V2) radM = 0 for each right R-module M .
(V3) Every right ideal I �= R is the intersection of maximal right ideals,

that is, rad(R/I)R = 0.

Note. A right V -ring is a right max ring since radM �= M for every
M �= 0.

Kaplansky’s Theorem. 2 A commutative ring R is a V -ring iff R
is Von Neuman regular (= V NR).

2According to my inquiry of Professor Kaplansky, “It worked its way into the public
domain” (Letter of October 12, 1994).
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Let J = radR. Then J is left vanishing (= T -nilpotent in [B], [H])
if for every sequence {an}∞n=1 of elements of A, there is an n ≥ 1 so that
an · · · a1 = 0, that is the left-hand partial product an · · · a1 vanishes.

First Max Theorem ([H], [K]). A commutative ring R is a max
ring iff R/J is V NR and J = radR is vanishing.

Expressed otherwise: R is a max ring iff R/J is a V -ring, and J
is vanishing. The radical series radα(M) is defined inductively for
each ordinal α in the usual way, where rad(M) is the intersection of
all maximal submodules of M, radα+1(M) = rad(radα(M)) for any
ordinal, and

radβ(M) =
⋂

α∈β

radα(M)

for each limit ordinal β.

Second Max Theorem ([H], [K]). A ring R is right max iff R/J
is right max and J is left vanishing.

We next show that the modules in the radical series are test submod-
ules for a Hamsher module.

2. Theorem. 3 The f.a.e.c.’s on a right R-module M .

(1) M is Hamsher.
(2) radβ(M) has a maximal submodule, or is 0, for every ordinal β.
(3) radα(M) = 0 for some α.

Proof: (1) ⇒ (2) is obvious, and (2) ⇒ (3) follows by cardinal number
theory for any α of cardinal greater than that of R. (3) ⇒ (1). If S �= 0
is a submodule of M , then S � radλ(M) for least ordinal λ < α, and
obviously λ is not a limit ordinal, so S ⊆ radλ−1(M). If S = radλ−1 M ,
then S has a maximal submodule since radS = radλ(M) �= S. And if
S �= radλ−1(M), then S is not contained in a maximal submodule M ′

of radλ−1(M), hence S ∩ M ′ is a maximal submodule of S. This proves
that M is a Hamsher module.

3.1. Corollary. Let E be a right cogenerator module for R. The
R is right max iff E has transfinite nilpotent radical. A n.a.s.c. for

3The equivalence (1) ⇔ (3) is a theorem of Shock [S] who also proved that every
semi-Artinian Hamsher module is Noetherian.
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this is that E(V ) have transfinite nilpotent radical for each simple right
R-module V .

3.2. Lemma. If M is a quasi-injective right R-module, then so is
every fully invariant submodule, in particular, so is radα(M), for each
ordinal α.

Proof: A theorem of Wong-Johnson ([W-J]) characterizes a quasi-
injective module as the fully invariant submodules of their injective hulls
(see, e.g. [F2, p. 63, Prop. 19.2]). For example, if E = E(M) has
endomorphism Λ, then M is quasi-injective iff λ(M) ⊆ M ∀λ ∈ Λ. Now
let M0 be a fully invariant submodule of M . Since E0 = E(M) ⊆ E, and
since E is injective, then every element λ0 ∈ Λ0 = EndE0 is induced by
an element λ ∈ Λ. Since λ induces an endomorphism λ̄ in M , and since
λ̄(M0) ⊆ M0 by the hypothesis that M0 is fully invariant in M , then
λ0(M0) ⊆ M0 for each λ0 ∈ Λ0, that is, M0 is fully invariant in E(M0),
hence is quasi-injective.

It follows that radα+1(M) is quasi-injective for all α, since radα+1(M)
is fully invariant in radα(M) which by an inductive hypothesis may be
assumed to be quasi-injective. Furthermore, radβ(M) is fully invariant
hence quasi-injective for each limit ordinal β, since it is the intersection
of fully invariant submodules of M .

3.3. Theorem. For a ring R, the f.a.e.c.’s:
(1) R is right max.
(2) Every nonzero quasi-injective module has a maximal submodule.
(3) Every nonzero subdirectly irreducible quasi-injective module has a

maximal submodule.

Proof: (1) ⇒ (2) ⇒ (3) is trivial, and (3) ⇒ (1) is an immediate
consequence of Theorem 2, Corollary 3.1 and Lemma 3.2.

4. Corollary. If a right R module M is faithful and has transfinite
nilpotent radical, then R has transfinite nilpotent radical J .

Proof: One shows inductively that radα(M) ⊇ MJα, where J =
radR.

Note. Let R be a commutative Noetherian ring. Then Jω = 0 by
the Krull intersection Theorem and if R is a domain, then Iω = 0 for
any ideal I �= R ([Z-S, p. 216, Theorem 12 and Corollary]). Thus, J is
transfinite but not T -nilpotent when R is e.g., a Noetherian local domain
not a field.
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LOEWY SERIES
AND TRANSFINITE SEMISIMPLE MODULES

A descending or dual Loewy series for a module M is descending
chain {Mα}α∈Λ of submodules indexed by an ordinal Λ such that M0 =
M , and Mα/Mα+1 is semisimple

Mβ = ∩α∈βMα

for any limit ordinal β ∈ Λ. We say that M is transfinitely semisimple
if there is a descending Loewy series {Mα} with Mα = 0 for some α ∈ Λ.

5. Theorem. Any transfinitely semisimple module M is a Hamsher
module.

Proof: By transfinite induction,

Mα ⊇ radα(M)

for each Mα as defined above, hence radα(M) = 0 for some ordinal α,
and Theorem 1 applies: M is Hamsher module.

By Theorem 1, we also have the following:

5.1. Corollary. If E(V ) is transfinite semisimple for each simple
right R-module V , then R is right max.

BASS MODULES

Recall that a module M is a Bass module ([F2]) if every submodule
M ′ �= M is contained in a maximal submodule of M .

6. Theorem. Let E be an quasi-injective right R-module that con-
tains a copy of each simple image of E and Λ = EndER. If E is a Bass
module, then Λ has essential left socle, soc� Λ.

Proof: By the Harada-Ishii ([H-I]) double annihilator condition (=
DAC) for a quasi-injective modules,

annΛ annE I = I

for finitely generated left ideals of Λ, one can show that each such I �= 0
contains a minimal left ideal L. For if E′ is a maximal submodule,
containing annE I the fact V = E/E′ ↪→ E yields λ ∈ Λ such that
λE ≈ V , hence L = Λλ is a minimal left ideal contained in I. Thus,
soc� Λ is an essential left ideal of Λ.

In the next corollary, we see what happens to Λ when E is Noetherian.
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6.1. Corollary. If E is a Noetherian quasi-injective right module
over R, then Λ = EndER is a right perfect ring, hence a right max ring.

Proof: By the Harada-Ishii DAC cited in the proof of Theorem 6, ER

Noetherian implies that Λ satisfies the DAC on finitely generated left
ideals, hence Λ is right perfect ([B]).

DOUBLE ANNIHILATOR CONDITIONS
FOR COGENERATORS

It is known that any cogenerator F satisfies the double annihilator
conditions (DAC)

I = annR annF I

(see, e.g. [F1]). We next prove another DAC for F .

7. Dac Theorem. 4 If F is any right cogenerator of R, and I and M
are submodules of RR and FR respectively, then they satisfy the DAC’s:

I = annR annF I(a)
M = annF annΩ M(b)

where Ω = EndFR.

Proof:

(1) Since F is a cogenerator then R/I ↪→ Fα for some cardinal α,
and if (xi) is the image in F of the coset 1 + I in R/I, one sees
that

I = annR{xi},
so (a) follows.

(2) F/M embeds in a direct product Fα of copies of F , and hence
there is a map h : F → Fα that has kerh = M . Then, if pα :
Fα → F is the α-th projection, it follows that ωα = pα ◦ h ∈ Ω
and that

(3)
M = ∩α kerωα.

Then,
(4)

M = annF L,

where L = ΣαΩωα.

Since (4) =⇒ (b), the proof is complete.

4After this was written, I found Kurata’s report [Ku] where (b) is stated without
proof in greater generality.
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INJECTIVE COGENERATORS

If any cogenerator of mod-R is a Hamsher module, then R is a right
max ring. In this section we list two conditions on a minimal injective
cogenerator E that are each necessary and sufficient in order that R be a
right V -ring: (1) radE = 0. (Theorem 8.1) and (2) ER is a Bass module,
and Λ = EndER has zero Jacobson radical (Theorem 8.2).

8.1. Theorem. Let E be a minimal injective cogenerator of R, and
W the direct sum of a complete set of non-isomorphic simple right R-
modules. (Thus, E is the injective hull of W , and W is the socle of E.)
Then, the f.a.e.c.’s:

(1) R is a right V -ring.
(2) radE = 0.

Proof: (1) ⇒ (2). As stated, (1) ⇔ radM = 0 for every right R-
module M .

(2) ⇒ (1). If V is a simple submodule of E, then (2) implies that
there exists a maximal submodule M of E not containing V . Then
since V ∩ M = 0, and V + M ⊃ M , we see that E = V ⊕ M , so V is
injective. Since every simple right R-module embeds in E, then R is a
right V -ring.

8.2. Theorem. If the right minimal injective cogenerator E of a ring
R is a Bass Module, and if Λ = EndER has zero Jacobson radical, then
R is a right V -ring (and E is semisimple).

Proof: Let W = socE, the sum of all simple module, one for each
isomorphy class. If W = E, then every submodule of E is a direct
summand, hence is injective, so R is right V -ring. We may therefore
assume that E �= W , and hence by our Bass module assumption that
there is a maximal submodule M of E that contains W . Since V =
E/M ↪→ W , there is an endomorphism λ of E such that kerλ = M .
Since M is an essential submodule of E, then λ ∈ J = J(Λ) by a
theorem of Utumi (e.g. [F2, p. 76, Theorem 19.27(a)]) contradicting the
J = 0 assumption, and completing the proof.

8.3. Proposition. If S is any semisimple right R-module with injec-
tive hull E = E(S), then the endomorphism ring Λ has radical

(1) J(Λ) = {λ ∈ ∧ kerλ ⊇ S},
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and moreover,

(2) J(Λ) = annΛ S.

Furthermore,

(3) Λ = Λ/J(Λ) = EndSR

is a full product = Πi∈ALi of full linear rings, where Li = EndWDi, and
Wi is a vector space over a sfield Di, ∀i ∈ A.

Proof: By Utumi’s theorem cited above (proof of 8.2), (2) has the
description (1) above. Since a submodule M of E = E(S) is essential iff
M ⊇ S, this shows that (2) holds. Furthermore since E is injective, any
element of EndSR is induced by some λ ∈ Λ, so (2) ⇒ (3). Finally, Λ̄ is
a product as described by classical ring theory.

8.4. Corollary. If E is a minimal injective cogenerator of mod-
R, and Λ = EndER, then Λ̄ = Λ/J(Λ) is product Πi∈ADi of sfields
Di = End(Vi)R, one for each isomorphy class [Vi] of simple modules.
Consequently, Λ̄ is a V -ring.

Proof: Follows from 8.3. Λ̄ is thus abelian V NR (=strongly regular),
hence is a right and left V -ring.

8.5. Corollary. If (in Theorem 8.3) E is a minimal injective cogen-
erator, then E = E(S), where S = ⊕Vi, exactly one simple module Vi of
each isomorphy class, and

Λ̄ = Λ/J(Λ) = Πi∈ADi

where Di = EndVi, one for each Vi.

Furthermore, Λ̄ is a right and left V -ring. Finally, Λ is a right (left)
max ring iff J(Λ) is left (right) vanishing. Moreover, Λ is right max iff
ER satisfies the acc on kernels of finite products {jn · · · j2j1} of elements
of J(Λ).

Proof: Follows from Corollary 8.4, the Harada-Ishii theorem, and the
Second Max Theorem.
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8.6. Corollary. If the minimal injective cogenerator E of mod-R sat-
isfies the acc on essential submodules (equivalently, E/ socE is Noethe-
rian), then Λ = EndER is a right max ring.

Proof: Since Λ/J(Λ) is a V -ring (both sides) hence a max ring, then
by Hamsher’s theorem, Λ is right max iff J(Λ) is left vanishing. But this
follows from Corollary 8.5 and the Harada-Ishi Theorem as in the proof
of Theorem 6. (Since socE is the intersection of all essential submod-
ule by a theorem of Kasch-Sandomierski, the parenthetical equivalence
holds.)

Remark 8.6A. The condition of Corollary 8.6 implies that E(V ) is
Noetherian for any simple module V , and by Corollary 1.1, this is also
a sufficient condition for R to be right max.

8.7. Theorem (Partial Converse of Theorem 6). If E is an injective
cogenerator for mod-R, and if Λ = EndER has essential left socle then
E is a Bass module.

Proof: The proof is a straightforward application of the Harada-Ishii
theorem. For if M is a proper submodule of E, the fact that E is an
injective cogenerator yields hom(E/M,E) �= 0, hence some λ ∈ Λ with
kerλ ⊇ M . Then, if Λλ0 is a minimal left ideal of Λ contained in
Λλ, by the Harada-Ishii theorem, E0 = kerλ0 is a maximal submodule
containing kerλ, hence M .

In the proof of the next theorem, we let ker L = ∩λ∈L kerλ.

8.8. Theorem. For a ring R, right injective cogenerator E, and
Λ = EndER the f.a.e.c.’s:

(1) R is right max.
(2) E is a Hamsher module.
(3) Λ/L has nonzero socle for any left ideal L = annΛ M , where M

is a nonzero submodule of E.

Proof: (1) ⇔ (2) by Theorem 1. (2) ⇒ (3). By the DAC Theorem 6.2,
if L = annΛ M , then M = ker L, hence, since E is Hamsher module, M
has a maximal submodule M0. Since homR(M/M0, E) �= 0 and E is
injective, then there exists λ0 ∈ Λ such that λ0M0 = 0 and λ0M �= 0.
Moreover, if L0 = annΛ M0, then by the DAC Theorem 7, annE L0 =
M0, and since M ∩ (ker λ0) = M0, then:

annE(L+Λλ0) = (ker L)∩(ker λ0) = M∩(ker λ0) = M0 = annE L0.
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By the Harada-Ishii theorem, L + Λλ0 satisfies the DAC, hence

L + Λλ0 = annΛ annE(L + Λλ0) = annΛ M0 = L0.

Moreover, the same argument shows that

L0 = L + Λλ′ for all λ′ ∈ L0\(L)

that is, necessarily annE(L + Λλ′) = M0 so L + Λλ′ = annΛ M0 = L.
Thus L0\L is a minimal submodule of Λ\L, so (2) ⇒ (3).

(3) ⇒ (2). Let L = annΛ M . Then, by the DAC Theorem 6.2, M =
annE L. Let L0/L be a minimal submodule of Λ/L, and let M0 =
annE L0. Since L0 = L+Λλ for any λ ∈ L0\L, then by the Harada-Ishii
DAC, necessarily L0 = annΛ M0. If M ′ �= M is a submodule of M
containing M0, then by simplicity of L0/L, necessarily annΛ M ′ = L0

whence by the DAC Theorem 6.2,

M ′ = annE annΛ M ′ = annE L0 = M0

so M0 is a maximal submodule of M . Thus, (3) ⇒ (2).

8.9A. Corollary. If R is right max, E an injective cogenerator, and
Λ = EndER, then Λ/I has nonzero socle for each proper left ideal I of
the (3) types:

(0) L0 finitely generated left ideal of Λ.
(1) L1 an annihilator left ideal of Λ.
(2) L2 = L + L0, where L0 is finitely generated and L = annΛ M for

a submodule M of E.

In particular, L1 = annΛ M1, where M1 = L⊥
1 E, so L can have the

form L1 in (2).

Proof: By the Harada-Ishii DAC, any left ideal L2 of the form (2)
satisfies the DAC, hence L2 = annΛ M2, where M2 = annΛ L2 = ker L2,
so Theorem 8.8 applies.

Furthermore, if L1 is the left annihilator ⊥X in Λ of a subset X of Λ,
then L1 =⊥ (L⊥

1 ) so
L1 = annΛ(⊥L1E)

is the annihilator of an R-submodule of E.
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8.9B. Corollary. If E is an injective cogenerator of mod-R with left
Loewy (equivalently, left semiartinian) endomorphism ring Λ, then R is
right max and Λ is right perfect. Moreover, R has just finitely many
simple right modules.

Proof: If Λ is left Loewy, then Λ/L has nonzero socle for all left ideals
L �= Λ, so Theorem 8.8 applies to establish that R is right max. Since
Λ = Λ/J(Λ) is also left Loewy and right self-injective (see, e.g. (3) of
Prop. 8.3), then Λ is semisimple Artinian and J = J(Λ) is left vanishing,
hence Λ is right perfect. (See, for example, the discussion in [C-P,
esp. Lemma 1 and the proof of Proposition 2].) Furthermore, since Λ is
semisimple and isomorphic to the endomorphism ring of the socle S of
E (see the proof of 8.3), then S has finite length. This shows that the
isomorphy set of simple right R-modules is finite.

8.10. Corollary. If E is an injective cogenerator of mod-R, and
Λ = EndER, then R is right max iff J = radR left vanishing, and
Λ/L has nonzero left socle for any left ideal L = annΛ M , where M is a
nonzero R-submodule of E annihilated by J .

Proof: One knows that F = annE J is an injective cogenerator of mod-
R/J (F is injective as an R/J-module and contains a copy of each simple
R-module). Moreover, F is a fully invariant R-submodule of E, hence,
by injectivity of E,

Λ̄ = Λ/ annΛ F ≈ EndFR.

The corollary now follows from Hamsher’s Second Theorem and Theo-
rem 8.8.

8.11. Example. Let M be any bimodule over a right max ring A.
Then the split-null or trivial extension R = (A,M) is a right max ring.

Proof: Let J(A) be the (left vanishing) radical of A. Then J(R) =
(J(A),M) and

R/J(R) ≈ A/J(A)

is a right max ring, so R is right max iff J(R) is left vanishing. But

J(R)/(0,M) ≈ J(A)

is left vanishing and (0,M)2 = 0, and then an easy computation shows
that J(R) is left vanishing.
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REMARKS ON THE LITERATURE

A module M is quotient finite dimensional (= q.f.d.) provided that
all factor modules have finite Goldie dimension, i.e., contain no infinite
direct sums. Generalizing a theorem of Shock [S], Camillo [C1] proved
that an R-module M is q.f.d. iff every submodule N contains a finitely
generated submodule K with N/K having no maximal submodules. This
implies that a q.f.d. module M is Noetherian iff every factor module
M/K is Hamsher. Since linearly compact modules are q.f.d., then by
duality theory [M] one shows that a Morita ring R(= R has a Morita
duality) is right max iff left Loewy (= semi-Artinian and iff R is right
and left Artinian.

Results of Camillo and Fuller [C-F1], [C-F2] and Nastasescu and
Popescu [N-P] are germane here: A left Loewy ring R of finite Loewy
length is right max ([C-F1], [N-P]). More generally, any left Loewy ring
with acc on primitive ideals is right max ([C-F2]). The example of a
right but not left V -ring R of the author’s in [F4] is a V NR of left Loewy
length 2 hence left max.

As an application of Theorem 1, we prove in [F3] that for a commu-
tative ring R that the f.e.c.’s : (1) R is locally a perfect ring (= Rm is
perfect at each maximal ideal m); (2) Rm is a max ring for each maximal
ideal m; (3) R is a max ring.

QUESTIONS

(1) If Λ = EndER is a right max ring, for a minimal injective cogen-
erator E of mod-R, is R right max?

(2) If R is right max, is Λ?

In [C2], Camillo proves that a right max right and left PID R
is simple, and that given two maximal right ideals, pR and qR,
either R/pqR or R/qpR is semisimple.

(3) Characterize when a PID ring R is right (or left) max. It is of
course if R/aR (or R/Ra) is semisimple for any 0 �= a ∈ R. (See
[C2].)

(4) (Hamsher [H]) When is a full linear ring right or left max? (Re-
garding the corresponding question for V -rings, see Osofsky [0].)
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