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ON BOTT-PERIODIC ALGEBRAIC K-THEORY

FELIPE ZALDIVAR

Abstract

Let K.(A;Z/f") denote the mod-£™ algebraic K-theory of a
Z[1/f)-algebra A. Snaith [14], [15], [16], has studied Bott-
periodic algebraic K-theory K;(A;Z/€™)[1/8n], a localized version
of K.(A;Z/E™) obtained by inverting a Bott element B,. For £ an
odd prime, Snaith has given a description of K,(A;Z/¢™)[1/8x]
using Adams maps between Moore spectra. These construc-
tions are interesting, in particular, for their connections with the
Lichtenbaum-Quillen conjecture [16].

In this paper we obtain a description of K.(A4;Z/2™)[1/B.],
n > 2, for an algebra A with 1/2 € A and v/—1 € A. We approach
this problem using low dimensional computations of the stable
homotopy groups of BZ/4, and transfer arguments to show that
a power of the mod-4 Bott element is induced by an Adams map.

Introduction. Let ¢ be a prime number and let A be a commuta-
tive ring containing 1/¢. For £ odd or £ = 2 and n > 2 there exists
(see [16]) a “Bott element” 8, € K.(A;Z/€") and Snaith [16] forms
K,(A;Z/€")[1/8,], the localization of K, (A; Z/¢™) obtained by inverting
the Bott element. Thus, K, (A;Z/€")[1/(,] is the direct limit of iterated
multiplications by £, using the K-theory product. The Lichtenbaum-
Quillen conjecture [18] has been reformulated as the assertion that for

a suitable regular ring A, the canonical localization map
(L.1) p: Ki(AZ/07) — Ki(A;Z/6)[1/Bn)]

is injective for large i (see [17]).

For £ an odd prime Snaith [16] has obtained a description of
K;(A;Z/6")[1/B,]) in terms of Adams maps. Recall 2] that an Adams
map between mod-£™ Moore spectra is a map A, : Z¢P({") — P(¢")
which induces isomorphisms on topological K-theory. In [16] Snaith
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proved that K;(A;Z/¢™)[1/8,] is the direct limit of iterated precompo-
sitions of suspensions of mod-#® Adams maps, i.e.
(1.2)

K (A 2/)[1/ ] o tim (K 2/m) 22

Kiva4:2/67))

then using (1.2) he obtains a factorization of the localization map (1.1)
through the Hurewicz map K;(A;Z/f") — h;(BGLA*;Z/¢"), where h;
denotes mod-€™ topological complex K-theory KU;(—,Z/¢") or a suit-
able defined J-theory J;(—,Z/¢").

In this paper we extended these results to the case £ = 2, n > 2
assuming that the ring A contains a fourth root of unity.

Bott elements and Adams maps. Let A = Z[1/2,{,] be the ring
obtained by adjoining {4 = v/—1 to the ring of integers localized away
from 2. Snaith [16, Section 3] considers the following construction:

The inclusion Z/4 — GL,A given by sending a generator of Z/4 to
{4, and inclusion of permutation matrices induces morphisms

(2.1) S, [Z/4— %, [GLLA - GL,A

where £, [ G is the wreath product of the symmetric group X, with the
group G. These morphisms induce an infinite loop space map

(2.2) d: (BY [2/4)" - BGLA*

2.3. The Bott element 3 € K(A;Z/4) is defined as the image under
the map induced by d; of a generator of order 4,

bem ((B >zt Z/4) ~ 13(BZ/4; Z/4)

obtained by stabilization of the generator of mo(BZ/4; Z/4) ~ Z/4 which
maps under the Bockstein morphism me(BZ/4; Z/4) — m(BZ/4) to the
generator of Z/4.

The element 4, = 3* € Kg(A;Z/4) is also called a Bott element. The
following characterization of the Bott elements is the mod-4 analogue of

[6].

Lemma 2.4. Forn > 1, the 4"~ ! cup power of B in K.(A;Z/4) is
the reduction mod-4 of an element By in Kg.4n-1(A; Z/4™).

Proof: As in [6, Lemma 2], the proof is by induction on n > 1
‘using the fact [12] that the differentials in the mod-4 stable homo-
topy Bockstein spectral sequence are derivations, and the definition
K, (A;Z/4™) = m (KA, Z/4™).
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i) n = 2: Since B{ = #** and since d; : K,(4;Z/4) — K._1(A;Z/4) is
a derivation, then

dy(8]) = di(B**) = 4% - B%d1(B) = 0

since K,(A;Z/4) is a Z/4-module. Thus, B¢ is a di-cycle and so it
survives to Es.

Now, by the description of E,., see [4, Section 5], ¢ = 816 € E; is
represented by the class of a map P84(4) — KA such that there exists
a factorization:

P84 (4)

N

PS -4 42}

ie, B = Baoi = i#(B), ie. (¢ is the mod-4 reduction of
B2 € Ksa(A;Z/4%) = m3.4(KA;Z/4%) (the mod-4 reduction map is
r4 =%(-)).
it} Now, for n > 2, inductively we see that the cup powers:
2 n—1 n
ﬂlxﬂ‘l] ;611=164!"' 4 _ﬁ‘l
are d,-cycles for 1 <r < n — 1, and so in particular

41'1 1_[64!1638471 1

can be represented as
4qn= 1

PS4 B KA P pRaT (g

by the description of ES 4 [4, Section 5. Thus, for 8, €
Kg.qn-1(4; Z/4") we have: 88" = i#(8,)) ie., the mod-4 reduction
of B, is Bt

2.5. Definition. Let X be an algebra over A = Z[1/2,(4], define
[16]:

K (X5 Z/47) [1/Bn) = lim (Ki(X; Z/4™) £ Kiva(X;2/47) )

where d = deg(8,) = 8- 4"~1. Notice that K.(X;Z/4™)[1/8,] is peri-
odic of period d, i.e., K;(X;Z/4™)[1/8n] = Ki+a(X;Z/4™)[1/B,). These
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groups are called the mod-4™ Bott-periodic algebraic K-theory groups of
X.

In this section we prove that an appropriate choice for the 2-primary
Bott elements is given by an Adams map between mod-4™ Moore spectra.
First, we recall some properties of these 2-primary Adams maps, see 5]
for details on these maps.

2.6. 2-Primary Adams maps. Let u € KUy(S°) = m(BU) = Z
be a (Bott) generator. Then, @ = u?" € KU (S%) = my,.(BU) = Z is
independent of the choice of u. This @ will be called a Bott class.

Now, consider real K-theory KO, and the complexification map
c: KO.(-) = KU,(-)

Choose a generator v € KOs, (S°) = mg,(BO) = Z such that c¢(v) =@
is the Bott class in KUg-(S°).

Now, let n > 1 and consider the Moore spectrum P(2") = S% Ugn e!.
Using this spectrum to introduce coefficients in K O-theory, write:
KO.(X;Z/2™) = [P(2"),X ANKO)].
for X any spectrum and KO the spectrum representing K O,-theory (see

(1, Part 3]).
Now, for v € KOg,(S°) = [S% KOJs, we have that:
7=1Ave [P(2") AS% P(2") AKOlg,
= [P(2n)1 P(2n) A KO]Sr
= KOs, (P(2");Z/2")
is a generator, called the mod-2™ Bott class.

Now, let hgo : mi(X;Z/2") — KO.(X;Z/2") be the KO-Hurewicz
map defined as follows: If [f] € w3(X; Z/2™) = [P(2"), X], is represented
by a map f: P(2") — X of degree r, then f induces

fo : KOL(P(2™);Z/2™) — KO.(X;Z/2™)
and we define: hgo[f] =f{e) € KO, (X;Z/2") where ee KOy (P(2");Z/2"7)
=~ Z/2" is a generator.

2.7. Definition. A map A, : £¢P(2") — P(2"), representing an
element A, € 73(P(2");Z/2"), is called an Adams map iff

hxolAn]) =0 = Bott class € KO4(P(2");Z/2™)
2.8. Remark. Observe that if A, is an Adams map then (A,). is

a KO,-isomorphism. M. C. Crabb and K. Knapp, [5], have proved the
following:
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2.9. Proposition. [5, 3.2]. Let d = d(n) = ma,x(S,Q"_l),n‘
1. Then, there ezists a family of maps A, € m3(P(2");Z/2")
[Z4P(27), P(2™)]o such that:

(1) A, ts an Adams map.

(2) In the homotopy commutative diagram.:

v

AP (27) gs P(2")
i J
x50 x50
Qn

where i and j are inclusion into the bottom cell and projection onto the
top cell respectively, and o, is defined by the composite oy, >~ j o Ap 01,
we have that [0,) € 75_,(S°) generates the 2-primary component of the
image of J if n > 4 (a subgroup of order 2™ if 1 <n < 4).

2.10. Remark. Recall, see e.g. [19], that ,m5(S°) = Z/16 generated
by the Hopf map o. From the coefficient sequence

- om§(8%) L 2m§(8%) T 2m(8% 2/4) 2 amy(S°) > 2m3(S°) — -

and since o7§(S°) = Z/2 ® Z/2, it follows that r is injective.
Also, from the Universal Coefficient Sequence [11] we see that

2m3(S%2/4) =Z/4® Z/20 Z/2

Let & a generator of order 4 in o7§(5% Z/4). Observe that 8(6) = 4o.
Consider now the following diagram for ¢ sufficiently large:

Put8(4) ___ 1 __ -~ Pi(4)
i \ ay 7
P \ g0

where a; is a map that represents &, 7 and j are inclusion into the bottom
cell and projection onto the top cell respectively, and a; =~ a;0i = i (a;)
represents 3(6) = 40 (recall that the Bockstein morphism 4 is given by
i#). Then, a; € 73(S°) has order 4 since a; = 9(6) = 40 and o is of
order 16.

The Toda bracket {4, a;,4} = 0 by [19, 3.7].
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The Adams e-invariant (2, Section 3] of o is: e(a;) = 1/4( mod 1)
since oy = 9(6) = 40 and e(0) = 1/16 (mod 1) by [1].
It follows, from [2, 12.5] that there exists a map A; making the pre-

vious diagram homotopy commutative, and moreover A4, is an Adams
map.

2.11. Transfer maps. Let H C G be finite groups, and let n = [G :
H) be the index of H in G. As usual, let £, denote the r-th symmetric
group for 1 < r < co. The natural morphisms:

G—%[H—%[H

induce, upon applying the classifying space functor B(—) and the plus
construction (—)* (Section 1.1.), maps:

BG — B(Z, [H) — (BY_, [H)" ~ Qo(BH,)
where the equivalence is that of [7]. The natural extension of the map

BG — Qo(BH.) to Qo(BG,) is called the (stable) transfer map, and
we will denote it by:

t:Qo(BG+) — Qo(BH4)

2.12. Theorem. Let b € n3(BZ/4;Z/4) = Z/4 ® Z/2 be the gen-
erator of order 4. Let t : Qo(BZ/4); — Qo(S°) be the transfer map
associated to the inclusion 1 — Z/4. Consider b* € n§(BZ/4;Z/4) and
let & € n§(S°;Z/4) be as in (2.10). Then

tu : m5(BZ/4;Z/4) — 75(S°;Z/4)
sends b* to 4.

Proof: The transfer map t4 can be factored as:
ta : m§(BZ/4;Z/4) 2 n§(RP™; Z/4) 1 73(S°;Z/4)

where RP*® = BZ/2, t, is the transfer map associated to 1 < Z/2 and
t2 is the transfer associated to Z/2 — Z/4.

Consider now the following commutative diagram:

tz 131
m3(BZ/4; Z/4) f: n§(RP*>; Z/4) f:_:“ n§(S%; Z/4)
2 1
a 3 a
iz ty
m3(BZ/4) —T——=  7m(RP%) — m3(S%

f2 f1
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where f;, i = 1,2 are the morphisms induced by the group inclusions, ¢;
are the corresponding transfer maps, and @ the Bockstein morphisms.

We know that 8(6) =4 - 0.

Similarly, if @ is a generator of order 4 of 7§(RP>°;Z/4) = Z/48Z/2&®
Z/20Z/26Z/2, then: 0(a) =4-a.

Also, if b is a generator of order 8 of 7$(BZ/4) = Z/8® Z/2® Z/2,
then: A(b*) = 2-b.

By Kahn-Priddy [8], see also [7, Remark 4, p. 26], t; is split surjective
on the 2-primary components. Thus: t;(a) = o € 27$(S°), and so, by
the commutativity of the right-hand side square of the diagram above
we have: t1(a) = d.

Now, observe that f; -tz = multiplication by 2 on 73(BZ/4) so that
to(b) = 2 - a € w$(RP™). Therefore t; - 9(b*) = 4-a = 9(a). Hence
tg(b4) =qa. B

2.13.
i) Recall that for A = Z[1/2, (4] we defined (2.3)

B = (d1)(b) € K2(A;Z/4)

where d; : (BY.,, [Z/4)* — BGLA™.
ii) We also defined (2.3)

By =B = ((d1)#(1))" = (d1)#(b*) € Ks(4;Z/4)

iii) Now, in order to have a similar description for the higher Bott
elements B, € K.(A;Z/4™) of (2.4) for n > 1, we proceed as in (16,
Section 3|, but first we point out, as communicated to me by V. Snaith
in a corrigendum of his paper [16], that diagram (3.7) of [16] should be
replaced by the following commutative (up to an inner automorphism)
diagram, where in the case considered by Snaith we replace 4 by and odd
prime £:

T, [ Z/4 i xdan . GL.Z[1/2,()xGLnZ[1/2,(4]

San 2+ GL4nZ[1/2,Ca) > GL2nZ[1/2,C4]
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where s : GL, — GL,,m > 7, is the stabilization map,
di:%, [Z/4— %, [ GL1Z[1/2,() — GL:Z[1/2,(4]
is induced by the inclusion Z/4 ~ py — GL1Z[1/2,(4),
dy : By, = GLZ — GL,Z[1/2, (4)

is induced by inclusion of permutation matrices,

n:%, [Z/4 -5,
is induced by the morphism Z/4 — 1,

t:5m [Z/4 > Ty

is the transfer morphism induced by sending a generator of Z/4 to the
cycle (1,2,3,4) € 4.

Snaith’s proof of the commutativity (up to an inner automorphism)
of this diagram runs as follows:

The right hand route corresponds to the module
(Z[1/4]" ®zp1/4) Z[1/4]%) @ (2[1/4]")

where ¥, [ Z/4 acts on the second summand by the permutation repre-
sentation 77, and on the first summand by the tensor product action on
the first factor of n with the translation action of Z/4 on Z[(4)[1/4] as
Z[1/4]-module. As in the proof of Lemma (3.8) of [16], this is conjugate
to the tensor product action of 7 ® ¢ where

t:Z/4— 3,

is the natural inclusion.

iv) From this (modified) diagram, applying the classifying space func-
tor, the plus construction and taking n — oo, we obtain a commutative
diagram, which replaces Corollary (3.10) of [16],

T(BSoo [ 2/4%:2/4) 02X E0% K (2[1/2, Ca)iZ/4) < K. (2[1/2, G4 Z/4)

H*(BE:O;Z/Ll} K. (Z[1/2,); Z/4)
(d2)#



ON BOTT-PERIODIC ALGEBRAIC K-THEORY 221

and since (BY_ [ Z/4)" ~ Qo(BZ/44) and b € 75(BZ/4,;Z/4) orig-
inates in mo(BZ/4;Z/4) then ng(b) = 0 and hence ng(b*) = 0 also.
Therefore, we have the formula:

(d2) st (b*) = (d1)#(0%),

which is essentiallly (3.12) in [16] and is used to derive Lemma (3.13) of
[16] and its consequences.

I thank professor Snaith for communicating the above results to me.

v) Now, using the formula in (iv) we have:

Br = (d1)#(b*) = (d2)t4(b*) = (d2)4(6)

by (2.12) where 6 = j o A;, with A; an Adams map (2.10). vi) Now,
dy : BY.X — BGLZ[1/2,{4]* is the base-point component of the 0-th
spaces of the unit

D :S° - KZ[1/2,(4)

of the algebraic K-theory ring spectrum of A = Z[1/2, (4]. Therefore,
Br = (d2)#(6) = Dy(6)

2.14. Now, to have the desired description for the higher Bott el-
ements 3, € K.(A;Z/4™) of (2.4) for n > 1, we proceed as in [16,
Section 3] as follows: We want 8, € Dy (n§ 4n—1(S% Z/4™)) where

Dy : m$(S% Z/4™) — K. (A; Z/47).

By induction on n suposse B, € Dy (7§ ;.- (5% Z/4™)) and consider
Bri1 € Kg.an(A;Z/4711).

Let 74 : mu(—; Z/4™*') — m,(—; Z/4™) be the reduction map.

Let 2, € 5 4n—1(S%; Z/4™) be such that Dy(z,) = B,, and consider
z% € 7§ 42 (S% Z/4™). Since the differentials in the homotopy Bockstein
spectral sequence are derivations [12] then 8, (z2) = 0 since $(S°; Z/4)
is a Z/4 module. Thus, there exists Z,+1 € 7§.4n(S%; Z/4™+1) such that
r4(Znt1) = z4. Now, since Dy is a ring map we have D (z5) = G-

Therefore, by naturality we have:

e 4
Tn+1 ——  » Iy
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i.e., Dg(2n41) is an element of Kg.4n(A; Z/4™+1) that reduces mod-4 to
.
Therefore, we may choose 8,41 = Dy(2n+1) since this element reduces
to B4 which itself reduces to (84" )4 = 84" by (2.4).

2.15. Remark. Analogously to [16, Section 3], we can see that for
n > 1, a suitable choice for z, € 7$(S° Z/4") is given by an Adams
map, i.e. by a, = j o A, where j and A,, are maps in the diagram:

P(sdﬂ+8)4""(4n) An Psdn-4"_l(4ﬂ)

—_——

i J

Glsdn+8)4" "1 -1 Ssd,,-4“—‘

Cn

where d, = max(8,4""!) = deg(4,), and A, an Adams map.

2.16. Now, let X be a commutative A-algebra, A = Z[1/2, (). Then
KX is a KA-module. We denote this action by

w:KANKX - KX.

Let [g] € Ki(X;Z/4") = mi(KX;Z/4™) be represented by a map
of spectra g : P(4") — KX of degree i. Consider a representative
Bn : P(4") — KA of the Bott element 3, € Kg.4n-1(A; Z/4™) of (2.4).
We have a commutative diagram of spectra:

P(A") APy PN KAANKX

\u.,,\g\ ‘ /

Al P(4™) A P(4™) SOANKX

Al 1Ag

P@AY) . S°AP@4)

where the composite of the top row represents the product

Bn - 9] € Kiya(X;Z/4™),
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S? is the sphere spectrum, ¥ is the copairing of Moore spectra of (4], u
is the multiplication induced by the action of A on X, A, and j are the
maps of spectra of (2.15) and a, ~ j - A, in (2.15), and D is the unit of
KA.

It follows that Al is also an Adams map between Moore spectra.
From the commutativity of this diagram it follows that:

Bn (9] = [9- A7) = A7 9] € Kiva(X;Z/47)

i.e., multiplication by f, is precomposition with an Adams map Aj,.

From this remark, we obtain the analogue of Snaith’s theorem (16,
3.22]:

2.17. Theorem. Let X be a commutative Z[1/2, (]-algebra. Suppose
that there exists a map of Moore spaces A, : PI*4(4™) — PI(4™) with
d =8-4""1 such that its stable homotopy class is A}, : P(4™) — P(4")
an Adams map of Moore spectra as in (2.11). Suppose i > q. Then:

Ki(X;2/47)[1/6n]

=~ “%,n(Kde(X; Z/4")

it+kd— -
E A, K ernya(X; Z/47))

Proof: First, recall that there exist Adams maps
Ap : PITe(4™) — PI(4™)

for d = max(8,22"~!) and q large enough.
Now, by choosing appropriate compositions of suspensions of these
Adams maps we get maps

Al s PITSAT gy L, pa(gn)

that still induce isomorphisms in K-theory, i.e. they are Adams maps.
Now, by the remark (2.16)

Bn-[9] = A7 lg) = 9~ A7]

and since the isomorphisms
Ki(X;Z/4™) = [P'(4"), BGLX "] = [E'P(4"), K X]

are such that the following diagram commutes
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[Pi(4™), BGLX ] [DiP(4™), K X]

(£ %4n)" (An)*

[Pi(4"), BGLX*] ____, [£"4P(4"),KX]

provided 7 > g, since we are assuming that the stable homotopy class of
the map A, is A,. Therefore the result follows. B

—

10.

11.

12.
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