ON BOTT-PERIODIC ALGEBRAIC K-THEORY

FELIPE ZALDÍVAR

Abstract _

Let $K_*(A; \mathbf{Z}/\ell^n)$ denote the mod- ℓ^n algebraic K-theory of a $\mathbf{Z}[1/\ell]$ -algebra A. Snaith [14], [15], [16], has studied Bott-periodic algebraic K-theory $K_i(A; \mathbf{Z}/\ell^n)[1/\beta_n]$, a localized version of $K_*(A; \mathbf{Z}/\ell^n)$ obtained by inverting a Bott element β_n . For ℓ an odd prime, Snaith has given a description of $K_*(A; \mathbf{Z}/\ell^n)[1/\beta_n]$ using Adams maps between Moore spectra. These constructions are interesting, in particular, for their connections with the Lichtenbaum-Quillen conjecture [16].

In this paper we obtain a description of $K_*(A; \mathbf{Z}/2^n)[1/\beta_n]$, $n \geq 2$, for an algebra A with $1/2 \in A$ and $\sqrt{-1} \in A$. We approach this problem using low dimensional computations of the stable homotopy groups of $B\mathbf{Z}/4$, and transfer arguments to show that a power of the mod-4 *Bott element* is induced by an Adams map.

Introduction. Let ℓ be a prime number and let A be a commutative ring containing $1/\ell$. For ℓ odd or $\ell=2$ and $n\geq 2$ there exists (see [16]) a "Bott element" $\beta_n\in K_*(A;\mathbf{Z}/\ell^n)$ and Snaith [16] forms $K_*(A;\mathbf{Z}/\ell^n)[1/\beta_n]$, the localization of $K_*(A;\mathbf{Z}/\ell^n)$ obtained by inverting the Bott element. Thus, $K_*(A;\mathbf{Z}/\ell^n)[1/\beta_n]$ is the direct limit of iterated multiplications by β_n using the K-theory product. The Lichtenbaum-Quillen conjecture [18] has been reformulated as the assertion that for a suitable regular ring A, the canonical localization map

(1.1)
$$\rho: K_i(A; \mathbf{Z}/\ell^n) \to K_i(A; \mathbf{Z}/\ell^n)[1/\beta_n]$$

is injective for large i (see [17]).

For ℓ an odd prime Snaith [16] has obtained a description of $K_i(A; \mathbf{Z}/\ell^n)[1/\beta_n]$ in terms of Adams maps. Recall [2] that an Adams map between $\operatorname{mod-}\ell^n$ Moore spectra is a map $A_n: \Sigma^d P(\ell^n) \to P(\ell^n)$ which induces isomorphisms on topological K-theory. In [16] Snaith

proved that $K_i(A; \mathbf{Z}/\ell^n)[1/\beta_n]$ is the direct limit of iterated precompositions of suspensions of mod- ℓ^n Adams maps, i.e. (1.2)

$$K_i(A; \mathbf{Z}/\ell^n)[1/\beta_n] \approx \lim_{\longrightarrow} \left(K_i(A; \mathbf{Z}/\ell^n) \xrightarrow{(\Sigma^d A_n)^*} K_{i+d}(A; \mathbf{Z}/\ell^n) \right)$$

then using (1.2) he obtains a factorization of the localization map (1.1) through the Hurewicz map $K_i(A; \mathbf{Z}/\ell^n) \to h_i(BGLA^+; \mathbf{Z}/\ell^n)$, where h_i denotes mod- ℓ^n topological complex K-theory $KU_i(-, \mathbf{Z}/\ell^n)$ or a suitable defined J-theory $J_i(-, \mathbf{Z}/\ell^n)$.

In this paper we extended these results to the case $\ell = 2$, $n \geq 2$ assuming that the ring A contains a fourth root of unity.

Bott elements and Adams maps. Let $A = \mathbb{Z}[1/2, \zeta_4]$ be the ring obtained by adjoining $\zeta_4 = \sqrt{-1}$ to the ring of integers localized away from 2. Snaith [16, Section 3] considers the following construction:

The inclusion $\mathbb{Z}/4 \to GL_1A$ given by sending a generator of $\mathbb{Z}/4$ to ζ_4 , and inclusion of permutation matrices induces morphisms

(2.1)
$$\Sigma_r \int \mathbf{Z}/4 \to \Sigma_r \int GL_1 A \to GL_r A$$

where $\Sigma_r \int G$ is the wreath product of the symmetric group Σ_r with the group G. These morphisms induce an infinite loop space map

$$(2.2) d_1: \left(B \sum_{\infty} \int \mathbf{Z}/4\right)^+ \to BGLA^+$$

2.3. The Bott element $\beta \in K_2(A; \mathbb{Z}/4)$ is defined as the image under the map induced by d_1 of a generator of order 4,

$$b \in \pi_2 \left(\left(B \sum_{\infty} \int \mathbf{Z}/4 \right)^+ ; \mathbf{Z}/4 \right) \approx \pi_2^s(B\mathbf{Z}/4; \mathbf{Z}/4)$$

obtained by stabilization of the generator of $\pi_2(B\mathbf{Z}/4;\mathbf{Z}/4) \approx \mathbf{Z}/4$ which maps under the Bockstein morphism $\pi_2(B\mathbf{Z}/4;\mathbf{Z}/4) \to \pi_1(B\mathbf{Z}/4)$ to the generator of $\mathbf{Z}/4$.

The element $\beta_1 = \beta^4 \in K_8(A; \mathbf{Z}/4)$ is also called a Bott element. The following characterization of the Bott elements is the mod-4 analogue of [6].

Lemma 2.4. For n > 1, the 4^{n-1} cup power of β_1 in $K_*(A; \mathbb{Z}/4)$ is the reduction mod-4 of an element β_n in $K_{8\cdot 4^{n-1}}(A; \mathbb{Z}/4^n)$.

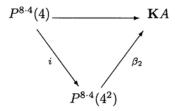
Proof: As in [6, Lemma 2], the proof is by induction on n > 1 using the fact [12] that the differentials in the mod-4 stable homotopy Bockstein spectral sequence are derivations, and the definition $K_*(A; \mathbf{Z}/4^m) = \pi_*(\mathbf{K}A; \mathbf{Z}/4^m)$.

i) n=2: Since $\beta_1^4=\beta^{4\cdot 4}$ and since $d_1:K_*(A;\mathbf{Z}/4)\to K_{*-1}(A;\mathbf{Z}/4)$ is a derivation, then

$$d_1(\beta_1^4) = d_1(\beta^{4\cdot 4}) = 4^2 \cdot \beta^{15} d_1(\beta) = 0$$

since $K_*(A; \mathbf{Z}/4)$ is a $\mathbf{Z}/4$ -module. Thus, β_1^4 is a d_1 -cycle and so it survives to E_2 .

Now, by the description of E_r , see [4, Section 5], $\beta_1^4 = \beta^{16} \in E_2$ is represented by the class of a map $P^{8\cdot 4}(4) \to \mathbf{K}A$ such that there exists a factorization:



i.e., $\beta_1^4 = \beta_2 \circ i = i^\#(\beta_2)$, i.e. β_1^4 is the mod-4 reduction of $\beta_2 \in K_{8\cdot 4}(A; \mathbf{Z}/4^2) = \pi_{8\cdot 4}(\mathbf{K}A; \mathbf{Z}/4^2)$ (the mod-4 reduction map is $r_\# = i^\#(-)$).

ii) Now, for n > 2, inductively we see that the cup powers:

$$\beta_1 = \beta^4, \quad \beta_1^4 = \beta^{4^2}, \dots, \beta_1^{4^{n-1}} = \beta^{4^n}$$

are d_r -cycles for $1 \le r \le n-1$, and so in particular

$$\beta_1^{4^{n-1}} = \beta^{4^n} \in E_n^{8 \cdot 4^{n-1}}$$

can be represented as

$$P^{8\cdot 4^{n-1}}(4) \xrightarrow{\beta_1^{4^{n-1}}} \mathbf{K} A \xrightarrow{\beta_n} P^{8\cdot 4^{n-1}}(4^n)$$

by the description of $E_n^{8\cdot 4^{n-1}}[4, \text{ Section 5}]$. Thus, for $\beta_n \in K_{8\cdot 4^{n-1}}(A; \mathbb{Z}/4^n)$ we have: $\beta_1^{4^{n-1}} = i^{\#}(\beta_n)$ i.e., the mod-4 reduction of β_n is $\beta_1^{4^{n-1}}$.

2.5. Definition. Let X be an algebra over $A = \mathbb{Z}[1/2, \zeta_4]$, define [16]:

$$K_i\left(X;\mathbf{Z}/4^n\right)\left[1/eta_n\right]:=\lim_{\longrightarrow}\left(K_i(X;\mathbf{Z}/4^n)\stackrel{eta_n}{\longrightarrow}K_{i+d}(X;\mathbf{Z}/4^n)\rightarrow\cdots\right)$$

where $d = \deg(\beta_n) = 8 \cdot 4^{n-1}$. Notice that $K_*(X; \mathbf{Z}/4^n)[1/\beta_n]$ is periodic of period d, i.e., $K_i(X; \mathbf{Z}/4^n)[1/\beta_n] \approx K_{i+d}(X; \mathbf{Z}/4^n)[1/\beta_n]$. These

groups are called the mod- 4^n Bott-periodic algebraic K-theory groups of X.

In this section we prove that an appropriate choice for the 2-primary Bott elements is given by an Adams map between $\text{mod-}4^n$ Moore spectra. First, we recall some properties of these 2-primary Adams maps, see [5] for details on these maps.

2.6. 2-Primary Adams maps. Let $u \in KU_0(S^0) = \pi_2(BU) = \mathbf{Z}$ be a (Bott) generator. Then, $\bar{u} = u^{2r} \in KU_{2r}(S^0) = \pi_{2r}(BU) = \mathbf{Z}$ is independent of the choice of u. This \bar{u} will be called a *Bott class*.

Now, consider real K-theory KO_* and the complexification map

$$c: KO_*(_-) \to KU_*(_-)$$

Choose a generator $v \in KO_{8r}(S^0) = \pi_{8r}(BO) = \mathbf{Z}$ such that $c(v) = \bar{u}$ is the Bott class in $KU_{8r}(S^0)$.

Now, let $n \ge 1$ and consider the Moore spectrum $\mathbf{P}(2^n) = \mathbf{S}^0 \cup_{2^n} \mathbf{e}^1$. Using this spectrum to introduce coefficients in KO-theory, write:

$$KO_*(X; \mathbf{Z}/2^n) = [\mathbf{P}(2^n), X \wedge \mathbf{K}O]_*$$

for X any spectrum and KO the spectrum representing KO_* -theory (see [1, Part 3]).

Now, for $v \in KO_{8r}(S^0) = [S^0; \mathbf{K}O]_{8r}$ we have that:

$$\bar{v} = 1 \land v \in [\mathbf{P}(2^n) \land \mathbf{S}^0, \mathbf{P}(2^n) \land \mathbf{K}O]_{8r}$$
$$= [\mathbf{P}(2^n), \mathbf{P}(2^n) \land \mathbf{K}O]_{8r}$$
$$= KO_{8r}(\mathbf{P}(2^n); \mathbf{Z}/2^n)$$

is a generator, called the mod- 2^n Bott class.

Now, let $h_{KO}: \pi_*^s(X; \mathbf{Z}/2^n) \to KO_*(X; \mathbf{Z}/2^n)$ be the KO-Hurewicz map defined as follows: If $[f] \in \pi_r^s(X; \mathbf{Z}/2^n) = [\mathbf{P}(2^n), X]_r$ is represented by a map $f: \mathbf{P}(2^n) \to X$ of degree r, then f induces

$$f_*: KO_*(P(2^n); \mathbf{Z}/2^n) \to KO_*(X; \mathbf{Z}/2^n)$$

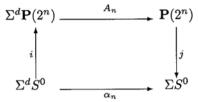
and we define: $h_{KO}[f] = f_*(e) \in KO_r(X; \mathbb{Z}/2^n)$ where $e \in KO_0(\mathbf{P}(2^n); \mathbb{Z}/2^n)$ $\approx \mathbb{Z}/2^n$ is a generator.

2.7. Definition. A map $A_n : \Sigma^d \mathbf{P}(2^n) \to \mathbf{P}(2^n)$, representing an element $A_n \in \pi_d^s(\mathbf{P}(2^n); \mathbf{Z}/2^n)$, is called an *Adams map* iff

$$h_{KO}[A_n] = \bar{v} = \text{ Bott class } \in KO_d(P(2^n); \mathbf{Z}/2^n)$$

2.8. Remark. Observe that if A_n is an Adams map then $(A_n)_*$ is a KO_* -isomorphism. M. C. Crabb and K. Knapp, [5], have proved the following:

- **2.9.** Proposition. [5, 3.2]. Let $d = d(n) = \max(8, 2^{n-1}), n \geq 1$. Then, there exists a family of maps $A_n \in \pi_d^s(\mathbf{P}(2^n); \mathbf{Z}/2^n) = [\Sigma^d \mathbf{P}(2^n), \mathbf{P}(2^n)]_0$ such that:
 - (1) A_n is an Adams map.
 - (2) In the homotopy commutative diagram:



where i and j are inclusion into the bottom cell and projection onto the top cell respectively, and α_n is defined by the composite $\alpha_n \simeq j \circ A_n \circ i$, we have that $[\alpha_n] \in \pi_{d-1}^s(S^0)$ generates the 2-primary component of the image of J if $n \geq 4$ (a subgroup of order 2^n if $1 \leq n < 4$).

2.10. Remark. Recall, see e.g. [19], that $_2\pi_7^s(S^0) = \mathbf{Z}/16$ generated by the Hopf map σ . From the coefficient sequence

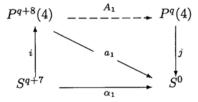
$$\cdots {}_2\pi_8^s(S^0) \xrightarrow{4} {}_2\pi_8^s(S^0) \xrightarrow{r} {}_2\pi_8^s(S^0; \mathbf{Z}/4) \xrightarrow{\partial} {}_2\pi_7^s(S^0) \xrightarrow{4} {}_2\pi_7^s(S^0) \to \cdots$$

and since $_2\pi_8^s(S^0)={\bf Z}/2\oplus {\bf Z}/2,$ it follows that r is injective.

Also, from the Universal Coefficient Sequence [11] we see that

$$_2\pi_8^s(S^0; \mathbf{Z}/4) = \mathbf{Z}/4 \oplus \mathbf{Z}/2 \oplus \mathbf{Z}/2$$

Let $\hat{\sigma}$ a generator of order 4 in $_2\pi_8^s(S^0; \mathbf{Z}/4)$. Observe that $\partial(\hat{\sigma}) = 4\sigma$. Consider now the following diagram for q sufficiently large:



where a_1 is a map that represents $\hat{\sigma}$, i and j are inclusion into the bottom cell and projection onto the top cell respectively, and $\alpha_1 \simeq a_1 \circ i = i^\#(a_1)$ represents $\partial(\hat{\sigma}) = 4\sigma$ (recall that the Bockstein morphism ∂ is given by $i^\#$). Then, $\alpha_1 \in \pi_7^s(S^0)$ has order 4 since $\alpha_1 = \partial(\hat{\sigma}) = 4\sigma$ and σ is of order 16.

The Toda bracket $\{4, \alpha_1, 4\} = 0$ by [19, 3.7].

The Adams e-invariant [2, Section 3] of α_1 is: $e(\alpha_1) = 1/4 \pmod{1}$ since $\alpha_1 = \partial(\hat{\sigma}) = 4\sigma$ and $e(\sigma) = 1/16 \pmod{1}$ by [1].

It follows, from [2, 12.5] that there exists a map A_1 making the previous diagram homotopy commutative, and moreover A_1 is an Adams map.

2.11. Transfer maps. Let $H \subseteq G$ be finite groups, and let n = [G: H] be the index of H in G. As usual, let Σ_r denote the r-th symmetric group for $1 \le r \le \infty$. The natural morphisms:

$$G \longrightarrow \Sigma_n \int H \longrightarrow \Sigma_\infty \int H$$

induce, upon applying the classifying space functor B(-) and the plus construction $(-)^+$ (Section 1.1.), maps:

$$BG \longrightarrow B(\Sigma_n \int H) \longrightarrow (B \sum_{\infty} \int H)^+ \simeq Q_0(BH_+)$$

where the equivalence is that of [7]. The natural extension of the map $BG \longrightarrow Q_0(BH_+)$ to $Q_0(BG_+)$ is called the (stable) transfer map, and we will denote it by:

$$t: Q_0(BG_+) \longrightarrow Q_0(BH_+)$$

2.12. Theorem. Let $b \in \pi_2^s(B\mathbf{Z}/4; \mathbf{Z}/4) = \mathbf{Z}/4 \oplus \mathbf{Z}/2$ be the generator of order 4. Let $t: Q_0(B\mathbf{Z}/4)_+ \to Q_0(S^0)$ be the transfer map associated to the inclusion $1 \hookrightarrow \mathbf{Z}/4$. Consider $b^4 \in \pi_8^s(B\mathbf{Z}/4; \mathbf{Z}/4)$ and let $\hat{\sigma} \in \pi_8^s(S^0; \mathbf{Z}/4)$ be as in (2.10). Then

$$t_{\#}:\pi_{8}^{s}(B\mathbf{Z}/4;\mathbf{Z}/4)\to\pi_{8}^{s}(S^{0};\mathbf{Z}/4)$$

sends b^4 to $\hat{\sigma}$.

Proof: The transfer map $t_{\#}$ can be factored as:

$$t_{\#}:\pi_8^s(B\mathbf{Z}/4;\mathbf{Z}/4)\xrightarrow{t_2}\pi_8^s(RP^{\infty};\mathbf{Z}/4)\xrightarrow{t_1}\pi_8^s(S^0;\mathbf{Z}/4)$$

where $\mathbf{R}P^{\infty} = B\mathbf{Z}/2$, t_1 is the transfer map associated to $1 \hookrightarrow \mathbf{Z}/2$ and t_2 is the transfer associated to $\mathbf{Z}/2 \hookrightarrow \mathbf{Z}/4$.

Consider now the following commutative diagram:

where f_i , i = 1, 2 are the morphisms induced by the group inclusions, t_i are the corresponding transfer maps, and ∂ the Bockstein morphisms.

We know that $\partial(\hat{\sigma}) = 4 \cdot \sigma$.

Similarly, if \tilde{a} is a generator of order 4 of $\pi_8^s(RP^\infty; \mathbf{Z}/4) = \mathbf{Z}/4 \oplus \mathbf{Z}/2 \oplus \mathbf{Z}/2 \oplus \mathbf{Z}/2$, then: $\partial(\tilde{a}) = 4 \cdot a$.

Also, if \tilde{b} is a generator of order 8 of $\pi_7^s(B\mathbf{Z}/4) = \mathbf{Z}/8 \oplus \mathbf{Z}/2 \oplus \mathbf{Z}/2$, then: $\partial(b^4) = 2 \cdot \tilde{b}$.

By Kahn-Priddy [8], see also [7, Remark 4, p. 26], t_1 is split surjective on the 2-primary components. Thus: $t_1(a) = \sigma \in {}_2\pi_7^s(S^0)$, and so, by the commutativity of the right-hand side square of the diagram above we have: $t_1(\tilde{a}) = \hat{\sigma}$.

Now, observe that $f_2 \cdot t_2 =$ multiplication by 2 on $\pi_*^s(B\mathbf{Z}/4)$ so that $t_2(\tilde{b}) = 2 \cdot a \in \pi_7^s(RP^{\infty})$. Therefore $t_2 \cdot \partial(b^4) = 4 \cdot a = \partial(\tilde{a})$. Hence $t_2(b^4) = \tilde{a}$.

2.13.

i) Recall that for $A = \mathbf{Z}[1/2, \zeta_4]$ we defined (2.3)

$$\beta = (d_1)_{\#}(b) \in K_2(A; \mathbb{Z}/4)$$

where $d_1: (B\sum_{\infty} \int \mathbf{Z}/4)^+ \to BGLA^+$.

ii) We also defined (2.3)

$$\beta_1 = \beta^4 = ((d_1)_{\#}(b))^4 = (d_1)_{\#}(b^4) \in K_8(A; \mathbb{Z}/4)$$

iii) Now, in order to have a similar description for the higher Bott elements $\beta_n \in K_*(A; \mathbf{Z}/4^n)$ of (2.4) for n > 1, we proceed as in [16, Section 3], but first we point out, as communicated to me by V. Snaith in a corrigendum of his paper [16], that diagram (3.7) of [16] should be replaced by the following commutative (up to an inner automorphism) diagram, where in the case considered by Snaith we replace 4 by and odd prime ℓ :

$$\Sigma_{n} \int Z/4 \xrightarrow{d_{1} \times d_{2}\eta} GL_{n}Z[1/2, \zeta_{4}] \times GL_{n}Z[1/2, \zeta_{4}]$$

$$\downarrow \qquad \qquad \qquad \downarrow \oplus$$

$$\Sigma_{4n} \xrightarrow{d_{2}} GL_{4n}Z[1/2, \zeta_{4}] \xrightarrow{s} GL_{2n}Z[1/2, \zeta_{4}]$$

where $s: GL_r \to GL_m, m \ge r$, is the stabilization map,

$$d_1: \Sigma_r \int \mathbf{Z}/4 \to \Sigma_r \int GL_1\mathbf{Z}[1/2, \zeta_4] \to GL_r\mathbf{Z}[1/2, \zeta_4]$$

is induced by the inclusion $\mathbb{Z}/4 \approx \mu_4 \to GL_1\mathbb{Z}[1/2, \zeta_4]$,

$$d_2: \Sigma_m \to GL_m \mathbf{Z} \to GL_m \mathbf{Z}[1/2, \zeta_4]$$

is induced by inclusion of permutation matrices,

$$\eta: \Sigma_n \int \mathbf{Z}/4 \to \Sigma_n$$

is induced by the morphism $\mathbb{Z}/4 \to 1$,

$$t: \Sigma_m \int \mathbf{Z}/4 \to \Sigma_{4m}$$

is the transfer morphism induced by sending a generator of $\mathbb{Z}/4$ to the cycle $(1,2,3,4) \in \Sigma_4$.

Snaith's proof of the commutativity (up to an inner automorphism) of this diagram runs as follows:

The right hand route corresponds to the module

$$(\mathbf{Z}[1/4]^n \otimes_{\mathbf{Z}[1/4]} \mathbf{Z}[1/4]^3) \oplus (\mathbf{Z}[1/4]^n)$$

where $\Sigma_n \int \mathbf{Z}/4$ acts on the second summand by the permutation representation η , and on the first summand by the tensor product action on the first factor of η with the translation action of $\mathbf{Z}/4$ on $\mathbf{Z}[\zeta_4][1/4]$ as $\mathbf{Z}[1/4]$ -module. As in the proof of Lemma (3.8) of [16], this is conjugate to the tensor product action of $\eta \otimes \iota$ where

$$\iota: \mathbf{Z}/4 \to \Sigma_4$$

is the natural inclusion.

iv) From this (modified) diagram, applying the classifying space functor, the plus construction and taking $n \to \infty$, we obtain a commutative diagram, which replaces Corollary (3.10) of [16],

$$\pi_*(B\Sigma_{\infty} \int Z/4^+; Z/4) \xrightarrow{(d_1)_{\#} \times (d_2\eta)_{\#}} K_*(Z[1/2, \zeta_4]; Z/4) \times K_*(Z[1/2, \zeta_4]; Z/4)$$

$$\downarrow t_{\#} \qquad \qquad \downarrow +$$

$$\pi_*(B\Sigma_{\infty}^+; Z/4) \xrightarrow{K_*(Z[1/2, \zeta_4]; Z/4)} K_*(Z[1/2, \zeta_4]; Z/4)$$

and since $(B\sum_{\infty}\int \mathbf{Z}/4)^+ \simeq Q_0(B\mathbf{Z}/4_+)$ and $b \in \pi_2^s(B\mathbf{Z}/4_+; \mathbf{Z}/4)$ originates in $\pi_2(B\mathbf{Z}/4; \mathbf{Z}/4)$ then $\eta_\#(b) = 0$ and hence $\eta_\#(b^4) = 0$ also.

Therefore, we have the formula:

$$(d_2)_{\#}t_{\#}(b^4) = (d_1)_{\#}(b^4),$$

which is essentially (3.12) in [16] and is used to derive Lemma (3.13) of [16] and its consequences.

I thank professor Snaith for communicating the above results to me.

v) Now, using the formula in (iv) we have:

$$\beta_1 = (d_1)_{\#}(b^4) = (d_2)_{\#}t_{\#}(b^4) = (d_2)_{\#}(\hat{\sigma})$$

by (2.12) where $\hat{\sigma} = j \circ A_1$, with A_1 an Adams map (2.10). vi) Now, $d_2: B \sum_{\infty}^+ \to BGL\mathbf{Z}[1/2, \zeta_4]^+$ is the base-point component of the 0-th spaces of the unit

$$D: \mathbf{S}^0 \to \mathbf{KZ}[1/2, \zeta_4]$$

of the algebraic K-theory ring spectrum of $A = \mathbf{Z}[1/2, \zeta_4]$. Therefore,

$$\beta_1 = (d_2)_{\#}(\hat{\sigma}) = D_{\#}(\hat{\sigma})$$

2.14. Now, to have the desired description for the higher Bott elements $\beta_n \in K_*(A; \mathbf{Z}/4^n)$ of (2.4) for n > 1, we proceed as in [16, Section 3] as follows: We want $\beta_n \in D_\#(\pi^s_{8\cdot 4^{n-1}}(S^0; \mathbf{Z}/4^n))$ where

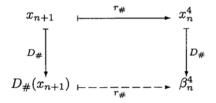
$$D_{\#}: \pi_*^s(S^0; \mathbf{Z}/4^n) \to K_*(A; \mathbf{Z}/4^n).$$

By induction on n suposse $\beta_n \in D_\#(\pi^s_{8.4^{n-1}}(S^0; \mathbf{Z}/4^n))$ and consider $\beta_{n+1} \in K_{8.4^n}(A; \mathbf{Z}/4^{n+1})$.

Let $r_{\#}: \pi_*(-; \mathbf{Z}/4^{n+1}) \to \pi_*(-; \mathbf{Z}/4^n)$ be the reduction map.

Let $x_n \in \pi_{8.4^{n-1}}^s(S^0; \mathbf{Z}/4^n)$ be such that $D_\#(x_n) = \beta_n$, and consider $x_n^4 \in \pi_{8.4^n}^s(S^0; \mathbf{Z}/4^n)$. Since the differentials in the homotopy Bockstein spectral sequence are derivations [12] then $\partial_n(x_n^4) = 0$ since $\pi_*^s(S^0; \mathbf{Z}/4)$ is a $\mathbf{Z}/4$ module. Thus, there exists $x_{n+1} \in \pi_{8.4^n}^s(S^0; \mathbf{Z}/4^{n+1})$ such that $r_\#(x_{n+1}) = x_n^4$. Now, since $D_\#$ is a ring map we have $D_\#(x_n^4) = \beta_n^4$.

Therefore, by naturality we have:



i.e., $D_{\#}(x_{n+1})$ is an element of $K_{8\cdot 4^n}(A; \mathbf{Z}/4^{n+1})$ that reduces mod-4 to β_n^4 .

Therefore, we may choose $\beta_{n+1} = D_{\#}(x_{n+1})$ since this element reduces to β_n^4 which itself reduces to $(\beta_1^{4^{n-1}})^4 = \beta_1^{4^n}$ by (2.4).

2.15. Remark. Analogously to [16, Section 3], we can see that for $n \geq 1$, a suitable choice for $x_n \in \pi_*^s(S^0; \mathbf{Z}/4^n)$ is given by an Adams map, i.e. by $a_n = j \circ A_n$ where j and A_n are maps in the diagram:

$$P^{(sd_n+8)4^{n-1}}(4^n) = - \xrightarrow{A_n} P^{sd_n \cdot 4^{n-1}}(4^n)$$

$$\downarrow j$$

$$\downarrow j$$

$$\downarrow j$$

$$\downarrow j$$

$$\downarrow j$$

$$\downarrow s$$

$$\downarrow j$$

$$\downarrow$$

where $d_n = \max(8, 4^{n-1}) = \deg(A_n)$, and A_n an Adams map.

2.16. Now, let X be a commutative A-algebra, $A = \mathbb{Z}[1/2, \zeta_4]$. Then $\mathbb{K}X$ is a $\mathbb{K}A$ -module. We denote this action by

$$\mu : \mathbf{K}A \wedge \mathbf{K}X \to \mathbf{K}X$$
.

Let $[g] \in K_i(X; \mathbf{Z}/4^n) = \pi_i(\mathbf{K}X; \mathbf{Z}/4^n)$ be represented by a map of spectra $g: \mathbf{P}(4^n) \to \mathbf{K}X$ of degree i. Consider a representative $\beta_n: \mathbf{P}(4^n) \to \mathbf{K}A$ of the Bott element $\beta_n \in K_{8\cdot 4^{n-1}}(A; \mathbf{Z}/4^n)$ of (2.4). We have a commutative diagram of spectra:

$$P(4^{n}) \xrightarrow{\chi} P(4^{n}) \wedge P(4^{n}) \xrightarrow{\beta_{n} \wedge g} KA \wedge KX \xrightarrow{\mu} KX$$

$$A_{n} \wedge 1 \qquad A_{n} \wedge 1 \qquad$$

where the composite of the top row represents the product

$$\beta_n \cdot [g] \in K_{i+d}(X; \mathbf{Z}/4^n),$$

 \mathbf{S}^0 is the sphere spectrum, χ is the copairing of Moore spectra of [4], μ is the multiplication induced by the action of A on X, A_n and j are the maps of spectra of (2.15) and $a_n \simeq j \cdot A_n$ in (2.15), and D is the unit of $\mathbf{K}A$.

It follows that A'_n is also an Adams map between Moore spectra. From the commutativity of this diagram it follows that:

$$\beta_n \cdot [g] = [g \cdot A'_n] = A'^*_n[g] \in K_{i+d}(X; \mathbf{Z}/4^n)$$

i.e., multiplication by β_n is precomposition with an Adams map A'_n . From this remark, we obtain the analogue of Snaith's theorem [16, 3.22]:

2.17. Theorem. Let X be a commutative $\mathbf{Z}[1/2,\zeta]$ -algebra. Suppose that there exists a map of Moore spaces $A_n: P^{q+d}(4^n) \to P^q(4^n)$ with $d=8\cdot 4^{n-1}$, such that its stable homotopy class is $A'_n: \mathbf{P}(4^n) \to \mathbf{P}(4^n)$ an Adams map of Moore spectra as in (2.11). Suppose $i \geq q$. Then:

$$K_i(X; \mathbf{Z}/4^n)[1/\beta_n] \approx \varinjlim_{k} (K_{i+kd}(X; \mathbf{Z}/4^n) \xrightarrow{(\Sigma^{i+kd-q} A_n)^*} K_{i+(k+1)d}(X; \mathbf{Z}/4^n))$$

Proof: First, recall that there exist Adams maps

$$A_n: P^{q+d}(4^n) \to P^q(4^n)$$

for $d = \max(8, 2^{2n-1})$ and q large enough.

Now, by choosing appropriate compositions of suspensions of these Adams maps we get maps

$$A'_n: P^{q+8\cdot 4^{n-1}}(4^n) \to P^q(4^n)$$

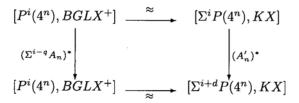
that still induce isomorphisms in K-theory, i.e. they are Adams maps. Now, by the remark (2.16)

$$\beta_n \cdot [g] = A_n^{\prime *}[g] = [g \cdot A_n^{\prime}]$$

and since the isomorphisms

$$K_i(X; \mathbf{Z}/4^n) = [P^i(4^n), BGLX^+] \approx [\Sigma^i \mathbf{P}(4^n), \mathbf{K}X]$$

are such that the following diagram commutes



provided $i \geq q$, since we are assuming that the stable homotopy class of the map A_n is A'_n . Therefore the result follows.

References

- 1. J. F. Adams, "Stable Homotopy and Generalized Homology," The University of Chicago Press, Chicago, 1974.
- 2. J. F. Adams, On the group J(X) IV, Topology 5 (1966), 21–71.
- S. Araki and H. Toda, Multiplicative structures in mod-q cohomology theories I, Osaka Journal of Math. 2 (1965), 71–115; II Osaka Journal of Math. 3 (1966), 870–120.
- W. BROWDER, Algebraic K-Theory with coefficients Z/p, in "Geometric applications of homotopy theory," Lecture Notes in Mathematics 657, Springer Verlag, Berlin-Heidelberg-New York, 1978, pp. 40-84.
- 5. M. C. CRABB AND K. KNAPP, Adams periodicity in stable homotopy, *Topology* **24** (1985), 475–486.
- W. G. DWYER, E. M. FRIEDLANDER, V. P. SNAITH AND R. W. THOMASON, Algebraic K-theory eventually surjects onto topological K-theory, *Invent. Math.* 66 (1982), 481–491.
- B. HARRIS AND G. SEGAL, K_i groups of rings of algebraic integers, Ann. of Math. 101 (1975), 20-33.
- 8. D. KAHN AND S. PRIDDY, The transfer and stable homotopy theory, *Math. Proc. Camb. Phil. Soc.* 83 (1978), 103-111.
- A. LIULEVICIUS, A theorem in homological algebra and stable homotopy groups of projective spaces, Trans. Am. Math. Soc. 109 (1963), 540-552.
- J. L. Loday, K-théorie algébrique et représentations de groupes, Ann. Sci. École Norm. Sup. 9 (1976), 309–377.
- 11. J. Neisendorfer, Primary homotopy theory, Mem. Am. Math. Soc. 232 (1980).
- 12. S. OKA, Multiplications in the Moore spectrum, Mem. of the Fac. of Sci. Kyushu Univ. Ser. A. 38 (1984), 257-276.

- 13. D. QUILLEN, On the cohomology and K-theory of the general linear group over a finite field, Ann. of Math. 96 (1972), 552–586.
- V. P. Snaith, Algebraic cobordism and K-theory, Mem. Am. Math. Soc. 221 (1979).
- 15. V. P. Snaith, Algebraic K-theory and localized stable homotopy theory, *Mem. Am. Math. Soc.* **280** (1983).
- V. P. SNAITH, Unitary K-homology and the Lichtenbaum-Quillen conjecture on the algebraic K-theory of schemes, in "Proc. Algebraic Topology," Lecture Notes in Mathematics 1051, Springer-Verlag, Berlin-Heidelberg-New York, 1984, pp. 128-155.
- 17. R. W. THOMASON, The Lichtenbaum-Quillen conjecture for $K/\ell_*[\beta^{-1}]$, in "Current Trends in Algebraic Topology," Can. Math. Soc. Conference Proceedings Vol. 2 Part 1, 1984, pp. 117–140.
- 18. R. W. THOMASON, Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985), 437–452.
- H. Toda, "Composition methods in homotopy groups of spheres," Annals of Mathematics Studies 49, Princeton University Press, 1962.
- 20. F. Zaldívar, The stable Homotopy of BZ/4, Aportaciones Matemáticas. Comunicaciones 5 (1988), 95–108.

Departamento de Matemáticas Universidad Autónoma Metropolitana-I 09340 México D. F. MÉXICO

fzc@ xanum.uam.mx

Primera versió rebuda el 2 de Novembre de 1993, darrera versió rebuda el 7 d'Abril de 1994