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EXISTENCE DOMAINS
FOR HOLOMORPHIC L? FUNCTIONS

NicHOLAS J. DARAS

Abstract

If  is a domain of holomorphy in C?, having a compact topolog-
ical closure into another domain of holomorphy U C C™ such that
(©2,U) is a Runge pair, we construct a function F holomorphic in
€ which is singular at every boundary point of {2 and such that
F is in LP(), for any p € (0, +o0).

1. Statement of the problem

The following notation and terminology will be used without further
explanation. The open polydisc in C" with center & and radious r is
denoted by A™(a;r); if n = 1, then we use the notation A(a;r). For
every open set D in C", §(D) denotes the space of all holomorphic func-
tions in D. If K is a compact subset of D, we define the 6(D)-hull K
of K by Kp := {2z € D; |f(2)] £ supyex |f(w)|, for all f € §(D)}. For
p € (0, +00], we set §LP(D) := 6(D)NLP(D). Obviously, §L°°(D) equals
the algebra H*°(D) of bounded holomorphic functions in D. If D car-
ries a function F' € §LP(D), which cannot be holomorphically extended
across the boundary of D, then D is said to be an existence domain for
@LP or of type 6L7.

Asking for the conditions under which a bounded domain of holomor-
phy § is of type 6LP, we recall the following result: If & cc C™ is
a domain of holomorphy with C* boundary and (o, € Q; v € N) is
a sequence such that (limy_e @) € O, then there exists a function
F € 0L2(Q) satisfying im, —, oo | F ()| = 400 ([4]). The question we are
interested is the following: Is any bounded domain of holomorphy in C"
ezistence domain for QLP, for every p € (0,+00)? In [1] Catlin showed
that any smoothly bounded domain of holomorphy in C" is of type 6L
(, and consequently of type 8LP, for every p € (0,+0cc)). However in [6],
Sibony showed that there is a bounded Runge complete Hartogs domain
of holomorphy Qs C A2%(0;1) (s # A?(0;1)) such that all bounded
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holomorphic functions in s extend holomorphically to the open unit
bidisc, that is Qg is not of type 6L>°.

The concern of this note is to give an answer to the above question.
Our approach illustrates a partial extension of Catlin’s improvement.
More precisely, we shall prove that any domain of holomorphy Q CC C™,
having a compact topological closure into another domain of holomorphy
U such that (Q,U) is a Runge pair, is of type OL? for any p € (0, +00).

2. Unbounded holomorphic functions in Runge domains

Let © CC U be domains of holomorphy in C". Assume that Q is a
bounded Runge domain relative to U.

Let (zm; m € N) be a dense sequence in €2, such that every point of the
sequence is counted infinitely many times. Let r,, be the largest number
with A™(2m;Tm) C Q. Q can be exhausted by compact sets Ej;, so that

E; C Ej;.. Letting K, := Ej, we find a point w; € A™(zy571) — RI,U-
Obviously, there exists a j; > 1, with wy € Ej,. Put K, := Ej,. Now,
there is a point wg € A™(29;72) — Kop. If we set K3 := Ej, (, j2 > j1),
then wp € Ej,. Continuing like this, we find an exhaustive sequence
(Km;m € N) of compact subsets of Q and a sequence (wm; m € N) of
points of €2, with the following properties:

- Wm € Kmi1 — Knmu (,m €N),

- whenever w € QN A™(&; p) for a polydisc A™(§;p) and V is a
connected component of QN A™(E; p) clustering at w, there exists
a subsequence of (wp,; m € N) converging to w in V.

To each wy, there corresponds a holomorphic function f,, € 8(U), such
that | fm(Wm)| > sup,ck, |fm(2z)| = 1. Ifwelet 0 < é&p < |fm(wm)| -1,
then |fm(2)| < |fm(Wm) — €m|, whenever z € K,,. Hence, for suitably
choosen numbers v, > 0, the series

F(z)= ) ([fm(@)]"™ /[fm(wm) = €m]"™)

1

converges absolutely and compactly on 2 and |F(wy,)| > m, for any m.
It follows that whenever w € 9§, A™(§;p) is a polydisc containing w
and V is a connected component of 2 N A™(§; p) clustering at w, F is
unbounded in V. So, F is a function holomorphic on €, which is singular
(unbounded) at every boundary point of Q ([3]).
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3. Runge domains of type 6LP

Let the notations and assumptions be as in Section 2. The principal
purpose of this paragraph is to announce the following:

Theorem 1. Let Q2 CC U be domains of holomorphy in C™ such that
(Q,U) is a Runge pair. Then, F € LP(Q), for any p € (0, +00).

Proof: The evaluation of more useful choice of v,,, is our first aim. Let
6 > 2. For each m € N, choose vy, 50 that |fom(wm| — m|'™ 2 6™. It is
easily seen that the power series

hQ) = Y [fm(wm) — €m) " - ™

m=1
converges into the disc A(0;8). Define a linear functional
Ap: P(C) —-»C;, z™ - Ah(zm) = [fm(wm) - 5m]numa

where P(C) is the vector space of complex polynomials in C. In order to
prove the theorem two lemmas play crucial role:

Lemma 1. ([2]) The functional Ap, is continuous and there is o con-
tinuous extension of Ay, into 6(A(0;6-1)). Further, for each { € A(0;6)
there holds Ap((1 —xz¢)™Y) = h(¢) (, z € A(0;671)).

Proof of Lemma 1: Let » < §. If p(z) is a polynomial in z € C, then
by Cauchy’s integral formula we have

[An(p)] £ M(r) - JST? |h(z)] g lsgp_l Ip(z),

where the constant M (r) depends only on r. Hence, by density, there is
a continuous extension of Ay on #(A(0;6-1)). If now ¢ € A(0;6) and if
¢ is fixed, then the number Ap((1 — x¢)~?) is well defined (: Aj acts on
the variable z € A(0;6—) and ¢ is regarded as a parameter). By the
continuity of Ay, we obtain Ax((1 —z¢)"Y) =h((). m

The next lemma is a consequence of Lemma 1, but is much more useful
since the choice of the functional Ay is eliminated.
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Lemma 2. If z € Q, then there holds

FEISF(3): Z””‘ 2l

for any T € (2,6) and where the constant £ () depends only on T but is
independent of z.

Proof of Lemma 2: Assuming that z € Q, z € A(0;67!) and 7 € (2,6),
we have by Cauchy’s integral formula and by Lemma 1:

IF(2)| =Y An(@™) - [fm(2)]""| =
1
=|—" 1 z)) m(2)]'™ - ™
i /|C|=‘ r(1/(¢ - (mi*l,[f (2)] C)
<r(L .(Su A (Lo )(u{ |[fm(z 1m|})
HL(T) ICI=p%| r(1/(¢ — x))] ICIPT E
that is

|F(,_}|<£() Z|{fm(z]m| .

End of Proof of Theorem 1: Let 0 < p < +00. By Lemma 2 and by
Fatou’s Theorem, it is enough to show that

sup {/51 (ﬂé 4|[fm£2]"m l) d\(z); vE N} < o0,

for some 7 € (2,68). (dA(:) is the Lebesgue measure in C*).

Suppose 7 € (2,6). For any v € N, choose a positive number —“—Zkkﬂ_l
(, ky € N), such that

js; (wgl ”fm(Z)]vm])p ) < (2}:1;6; 1)29.

This choice permits us to obtain the following inequalities

fn (i __—”f"”(;)]v“')p dA(z) < (%T_I)P <1,
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for any v € N. Therefore,

J (Z —_u'{fm(j)l”“')p dXz) £1,

for any v € N and consequently,

f(Z W)pdm)él,
@ \m=1 T

for any v € N, which completes the proof. &

We are now in position to formulate the main result of this note, which
is an immediate consequence of Theorem 1:

Theorem 2. Let @ CC U be domains of holomorphy in C". Assume
that Q is a bounded Runge domain relative to U. Then, Q is an existence
domain for 8LP?, for any p € (0, +00). In particular, any bounded Runge
domain of holomorphy is of type OLP, for any p € (0, +00).

We finally turn to the question whether Sibony’s example Qg in [6]
is an existence domain of LP holomorphic functions. The answer is a
direct consequence of Theorem 2: Since Sibony’s example is a bounded
Runge domain of holomorphy, it is an existence domain for 8L?, for any
p € (0,+00).
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