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THE NON-ARCHIMEDEAN SPACE BC(X)
WITH THE STRICT TOPOLOG Y

N. DE GRANDE-DE KIMPE AND S . NAVARRO

Abstract
Let X be a zero-dimensional, Hausdorff topological space and K
a field with a non-trivial, non -archimedean valuation under whic h
it is complete . Then BC(X) is the vector space of the bounde d
continuous functions from X to K . We obtain necessary and suf-
ficient conditions for BC(X ) , equipped with the strict topology ,
to be of countable type and to be nuclear in the non-archimedean
sense .

Introductxon

Throughout the paper K is a complete non-archimedean valued field
with a valuation • which is nat trivial, and X is a zero-dimensional
Hausdorff topological space . We denote by C(X) (resp . BC(X )} the
space of the continuous (resp . bounded and continuous) functions from

X to K. For A c X and f E BC(A) we define IlfilA = supxEA lf(x)I .

All the specific definitions needed are included in the paper . Far more
general facts on locally convex spaces and Banach spaces we refer to [7 ]
and [81 .

We consider on BC(X )the strict topology r,3 (definition below) . Many
properties of the locally convex space BC(X), T,3 have already bee n
investigated. See e .g . [4], [5] and [fi] . But so far no attention was paid
to the properties "being of countable type " and "being nuclear" . This
paper fills that gap . The curious fact is that the conditions for the stric t
topology turn out to be the same as those obtained for the compact open

topology T~, in [3] .
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1 . The strict topology on BC(X)

1 .1 . Definitions and notations .
Denote by Bo(X ) the bounded functions ~ : X ---} K which vanish

at infinity. The strict topology T~ on BC(X) is then defined by the
family of semi -norms {p ; cp E Bfl (X) }, where f) = ~~ cp • f ii X , f E
BC (X) . The strict topology lies between the compact-open topology T~

( i .e . the topology of uniform convergence on compact subsets of X) and
the uniform topology Tu . Thus T~ Ç TQ Ç Tu .

In [4, p . 193], Katsaras shows that a basis for the zero-neighbourhoods
in BC(X), T~ consists of the sets of the form :

W(A,k) = n{f E BC(X) ; 11 f

	

len} ,

where A = (Aa ) is an increasing sequence of compact subsets of X and
k = (len) is a sequence of real numbers, increasing to infinity, with k l > 1 .

The next lemma follows easily.

1 .2 . Lemma.

The strict topology TQ on BC(X) can be determined by the family of
semi-norms pA, k with A and k as aboye and where

pA,k(f) = Sllp/Cn l ' IIfIIA, f E BC(X) .
n

1.3 . Remark .

Let k _ (kn ) be as aboye . Then, taking In = knj-/2 , the sequence
d = ( ln) gives us a continuous semi-norm pA , l on BC(X) , T,3 such that
pA,a (f) ~ PA,k(f) for all f E BC(X), and limn le n • 1 n—1 = oo . This
semi-norm will be used in Section 3 .

2 . Conditions for BC(X), Tp to be of countable type

2 .1 . Definition . ([8, p . 661) .

A normed space E over K is said to be of countable type if it is the
closed linear span of a countable set .

2 .2 . Example .
If X is compact then BC(X) = C(X), Tu is of countable type if and

only if X is ultrametrizable . ([S, 3 .T]) .
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2 .3 . Definition. ([8, p. 52]) .

Let (En, II ' lln) be a sequence of Banach spaces and put enEn
{(xn) ; xn E En for all n and lime

	

= 0}. This is a Banach space
for the norm II (x,) II = maxn ~~ xn~~n •

The following is easily proved .

2 .4. Proposition.

The space enEn, II • is of countable type if and only if E me, , ii

	

is

of countable type for all n .

2.5 . Notation .
Let E be a locally convex Hausdorff space over K, the topology o f

which is determined by a family of semi-norms P (E, P in short) . For

each p E P put Ep = E/ Kerp and denote by 7rp : E --~ Ep the canonical
surjection . The space Ep is then normed by Ii7rp(x) = p(x), x E E .

2.6 . Example .
Let PA , k be one of the semi-norms determining the strict topology TQ

on BC(X) . (See 1 .2) .
Then KerpA,k = {f E BC(X) ; f(x) = o for x E Un An } . Denote

by BC(A, k) the space BC(Un An), normed by PM . Then the normed

space BC(X)/ KerPA , k is linearly isometri c with a subspace of BC(A, k) .

Indeed we have a commutative diagram

BC(X)

BC(X)/KerpA,k

	

+
s

BC(A,k)

where ?rA , k is the canonical surjection and R is the restriction map

which sends f E BC(X) onto its restriction to Un An . Then S is the

desired isometry.

For later use we prove :

2 .7 . Lemma.

BC(A, k) is tinearZy isometric to a subspace of the space enC(An, kn) ,
where, for cal n, C(An, k n ) is the space C(An ), normed b y

g E C(An ) .
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Note that each of the spaces C(An, kn ) is a Banach space, linearly home-
omorphic to C(An ) , Tu .

Broof

For f E BC(A, k) let fn stand for the restriction of f to An.

Then fn E C(An , k n), and IIfII n = lIfIIAn • k,.z 1 ç Ilf II

	

An ' ~n ~ -
un

Hence lim n IIIn = 0, and we can define T : BC(A, k) —> enC(An, kn)

f —> (fTh) . This T is the desired linear isometry. ■

2.8. Definition. ([7, 4 .3]) .

The locally convex space E, P is said to be of countable type if each
of the normed spaces EP , II . II, p E P, is of countable type .

2 .9 . Theorem .

The following are equivalent :

i) BC(X), Tp is of countable type.
ii) BC(X), T~ is of countable type .

iii) Every compact subset of X is ultramerizable .

Broof

i) ~ ii} follows directly from the fact that

	

(See 1 .1) .

ii} <=> iii) : see [3, Prop . 3 .21 .

iii) ~ i) : Let PA , k be one of the seminorms determining (see 1 .2) .
We have to prove that the normed space BC(X)/ Ker p A,k is of countable
type. Now every subspace of a space of countable type, is of countable
type ([S, 3.16]) . Hence, by 2 .4, 2 . 6, and 2 .7 it suffices to show that each
of the normed spaces C(An,k n) is of countable type. Now make use of
the remark made in 2 .7 and apply 2 .2 . ■

2.10. Remark .

The conditions in Theorem 2 .9 are not equivalent to "BC (X) , Tu i s
of countable type" . Indeed, take X = the natural numbers with the
discrete topology. Then BC(X) , Tu = l°° , II . II which is not of countabl e
type. Also note that the strict topology on l°° coincides with the nat-
ural topology n (100, co ) in the sense of perfect sequence spaces ([1, p .
473] ) and that the compact open topology on is the weak topology
a-(1' , Ca) . Hence the inequalities in 1 .1 may be strict .
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3. The nuclearity of BC(X), T~

3.1 . Definitions .

Let E be a locally convex space over K. A subset B of E is called
compactoid if for every zero-neighbourhood U in E there exists a finite
subset S of E such that B c U + Co(S), where Co(S) is the absolutely
convex hull of S .

A linear map T from a normed space E to a normed space F is called
compact if if maps the unit ball of E into a compactoid subset of F .

The following is easily seen :

3 .2 . Lemma.

Let E, F and G be normed spaces over K, T : E—> F a linear map ,
and S : F G a linear isometry. lf SoT is compact, then so is T .

3.3 . Definition .

Let E, P be a locally convex space over K. If p E P and q is a
continuous seminorm on E with p Ç q . Then there exists a unique
continuous linear map („opq : Eq —> Ep which makes the diagram

	

Eq

	

Ep

The space E, P is called nuclear if for every p E P there exists a con-
tinuous seminorm q on E with p Ç q such that the map (ppq is compact .

3 .4 . Theorem.

The following are equivalent :

i) BC(X), .rp is nuclear.
ii} Every To-bounded subset of BC(X) is rQ -compactoid .

iii) BC(X), rG is nuclear .
iv) Every rc -bounded subset of BC(X) is Tc -compactoid.
v} C(X),

	

is nuclear .
vi) Every Tc -bounded subset of C(X ) is rc-compactoid.

vii) Every compact subset of X is finite .
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Proof:
i) ~ ii} and iii) ~ iv) are general properties of nuclear spaces (see [2 ,

5 .1]} .
ii) 4=> vi) is proved in [6, 2 .2] .
v} <=> vi) <=> vil) is proved in [3, 3 .31 .

We prove here vii) ~ i), v} ~ iii) and iv ~ fi) .

vil) ~ i) :
Let PA , k be one of the semi-norms determining T~ on BC (X) (see 1 .2 )

and let PA , 1 be the corresponding semi-norm given in 1 .3 . We prove that
the canonical ma p

cp k, l BC(X)/KerpA,1 —> BC(X)/KerpA, k

is compact .
Denote by B (A, l ) (resp . B (A, k)) the space of the bounded continuous

functions from Un An to K, normed by PA , 1 (resp . PILO . We first show
that the identity map I : B(A, l) ~ B(A, k) is compact .

Let B i (resp. B k ) denote the unit ball of B (A, l ) (resp . B (A, k)} . We
have to prove that Bz is compactoid in B(A, k) . Choose cx E K, cx O .
We need to find a finite subset S of B (A, k) such that

(*)

	

Bt c aBk + Co(S) .

We fix an index no such that Un' <

	

for n ~ no, and consider
A l c A2 c • • • c Ano . Note that Ano is finite by vii) .

Let Al = {x, . . . , xk i }, A2\A 1 = {x?, . . . , x1 2 }, . . . , Ano \Ana- 1 =

{x°, . . . , x nk
0

° } . Further denote by (x) the characteristic function o f

{4} and take

S = {l i (x), . . . , l ll(xk i ), 121`x1J,	 lnol(x~° a )} •

Then S c B (A, k) and it is easy to calculate that for this S condition
(*) is satisfied .

Now consider the diagram

BC(X)/ kerpA,t
(Pk,d

BC(X)/ Ker pA,k

18 k

BC(A, l)

	

BC(A.k)
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where Si (resp . Sk ) is the isometry described in 2 .6 and il (resp . ik ) is the
canonical injection . One sees easily that this diagram is commutative .
Now, since 1 is compact, the map 1 o i i o Sl is compact as well . Hence
i k o Sk o (pkz is compact. Since ik o Sk is an isometry we finally obtain
from Lemma 3.2 that Spl,k is compact .

V) -> 111 :

Follows from the fact that every subspace of a nuclear space is nuclear
([2, 5.7D .

iv) ~ ii) :
Let B be a r,3 -bounded subset of BC(X ) . Then B is 7u-bounded ([4 ,

2 .11] } and therefore the topologies T~ and T, coincide on B ([4, 2 .9]) .
On the other hand, since is coarser than Tp (see 1 .1) B is Tc-bounded .
So B is Tc-compactoid by iv) . It then follows from [7, 10.5] that B is
Tp-compactoid . ■

3.4 . Remarks .

3.4.1 . If the space BC(X ) , ro is complete the conditions in Theo-
rem 3 .3 are equivalent to

viii) X is a discrete topological space .
Indeed, BC(X), -r,@ is complete if and only if X is an ultra k-space ([5 ,

Prop . 91) . Then from vii) it follows, as in [3, 3 .3] , that X is discrete . On
the other hand, if X is discrete, then vii) follows trivially .

3 .4 .2 . From vii) it does not follow that ro coincides with the weak
topology o-(BC(X) , BC(X)'} where BC(X)' is the topological dual of
BC(X) , 'ro (compare with [3, 3 .3D .. To see this consider the exam-
ple in 2 .10 . There (l°°, Ta) ' = co and a-(l °° , co) is st rictly weaker than
n(1°°, co) = Ta ([1, Prop . 6]) .
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