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THE NON-ARCHIMEDEAN SPACE BC(X)
WITH THE STRICT TOPOLOGY

N. DE GRANDE-DE KIMPE AND S. NAVARRO

Abstract

Let X be a zero-dimensional, Hausdorff topological space and K
a field with a non-trivial, non-archimedean valuation under which
it is complete. Then BC(X) is the vector space of the bounded
continuous functions from X to K. We obtain necessary and suf-
ficient conditions for BC(X), equipped with the strict topology,
to be of countable type and to be nuclear in the non-archimedean
sense.

Introduction

Throughout the paper K is a complete non-archimedean valued field
with a valuation | - | which is not trivial, and X is a zero-dimensional
Hausdorff topological space. We denote by C(X) (resp. BC(X)) the
space of the continuous (resp. bounded and continuous) functions from
X to K. For A C X and f € BC(A) we define || f|la = sup,ea | f(2)].

All the specific definitions needed are included in the paper. For more
general facts on locally convex spaces and Banach spaces we refer to (7]
and [8].

We consider on BC(X) the strict topology 75 (definition below). Many
properties of the locally convex space BC(X), 73 have already been
investigated. See e.g. [4], [5] and [6]. But so far no attention was paid
to the properties “being of countable type” and “being nuclear”. This
paper fills that gap. The curious fact is that the conditions for the strict
topology turn out to be the same as those obtained for the compact open
topology 7, in [3].
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1. The strict topology on BC(X)

1.1. Definitions and notations.

Denote by By(X) the bounded functions ¢ : X — K which vanish
at infinity. The strict topology 73 on BC(X) is then defined by the
family of semi-norms {p,; ¢ € By(X)}, where p,(f) = |l¢ - flx, f €
BC(X). The strict topology lies between the compact-open topology 7,
(ie. the topology of uniform convergence on compact subsets of X) and
the uniform topology 7,,. Thus 7. < 75 < 7.

In [4, p. 193], Katsaras shows that a basis for the zero-neighbourhoods
in BC(X), 73 consists of the sets of the form:

W(A,k) = ({f € BC(X); liflla. < kn},

where A = (A,) is an increasing sequence of compact subsets of X and
k = (kn) is a sequence of real numbers, increasing to infinity, with k; > 1.

The next lemma follows easily.

1.2. Lemma.

The strict topology T3 on BC(X) can be determined by the family of
semi-norms par with A and k as above and where

pak(f) = sgpk;f Nflla., fe€BCX).

1.3. Remark.

Let k = (k,) be as above. Then, taking I, = 31/2, the sequence
l = (ln) gives us a continuous semi-norm p4,; on BC(X), 7 such that
Pau(f) = par(f) for all f € BC(X), and lim, k, - I;! = co. This
semi-norm will be used in Section 3.

2. Conditions for BC(X), 75 to be of countable type

2.1. Definition. ([8, p. 66]).

A normed space E over K is said to be of countable type if it is the
closed linear span of a countable set.

2.2. Example.

If X is compact then BC(X) = C(X), 7, is of countable type if and
only if X is ultrametrizable. ([8, 3.T]).
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2.3. Definition. ([8, p. 52]).

Let (En,| - |ln) be a sequence of Banach spaces and put ®,E, =
{(zn); Tn € E, for all n and lim, ||z,||» = 0}. This is a Banach space
for the norm ||(z,)|| = max, ||z, |n-

The following is easily proved.

2.4. Proposition.

The space ®nEn, || - || is of countable type if and only if En, || - ||» is
of countable type for all n.

2.5. Notation.

Let E be a locally convex Hausdorff space over K, the topology of
which is determined by a family of semi-norms P (E, P in short). For
each p € P put E, = E/ Kerp and denote by 7, : E — E, the canonical
surjection. The space E, is then normed by |7,(z)|l, = p(z), = € E.

2.6. Example.

Let pa,x be one of the semi-norms determining the strict topology 73
on BC(X). (See 1.2).

Then Kerpayx = {f € BC(X); f(z) = 0 for z € |J, An}. Denote
by BC(A, k) the space BC(|J,, A»), normed by pa k. Then the normed
space BC(X)/ Ker pa is linearly isometric with a subspace of BC(A4, k).
Indeed we have a commutative diagram

m/ \

BC(X)/Kerpa,k T BC(A,k)

where 74k is the canonical surjection and R is the restriction map
which sends f € BC(X) onto its restriction to |J, An. Then S is the
desired isometry.

For later use we prove:

2.7. Lemma.

BC(A, k) is linearly isometric to a subspace of the space ®,C(An, kn),
where, for all n, C(An,k,) is the space C(A,), normed by

lglln = llglla, 52> 9 € C(An)-
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Note that each of the spaces C(An, kn) is a Banach space, linearly home-
omorphic to C(Ap), Tu-

Proof:
For f € BC(A, k) let f, stand for the restriction of f to Ay,.

Then fn € C(An,kn), and || fulln = [l fallAn - k31 < [Iflly_a, - *a

Hence limy, || fn|ln = 0, and we can define T : BC(A, k) — ©,C(An, kn) :
f — (fn). This T is the desired linear isometry. ®

2.8. Definition. ([7, 4.3]).

The locally convex space E, P is said to be of countable type if each
of the normed spaces Ey, || - ||, p € P, is of countable type.

2.9. Theorem.
The following are equivalent:

i) BC(X), 13 is of countable type.
il) BC(X), 7. is of countable type.
iii) Every compact subset of X is ultramerizable.

Proof:
i) = ii) follows directly from the fact that 7. < 75. (See 1.1).

il) < iii): see [3, Prop. 3.2].

iii) = i): Let pa i be one of the seminorms determining 75 (see 1.2).
We have to prove that the normed space BC(X)/ Kerpa . is of countable
type. Now every subspace of a space of countable type, is of countable
type ([8, 3.16]). Hence, by 2.4, 2.6, and 2.7 it suffices to show that each
of the normed spaces C(A,, k) is of countable type. Now make use of
the remark made in 2.7 and apply 2.2. B

2.10. Remark.

The conditions in Theorem 2.9 are not equivalent to “BC(X), 7, is
of countable type”. Indeed, take X = the natural numbers with the
discrete topology. Then BC(X), 7, = I°°, || - || which is not of countable
type. Also note that the strict topology on [*° coincides with the nat-
ural topology n (I°°,co) in the sense of perfect sequence spaces ([1, p.
473]) and that the compact open topology on [*° is the weak topology
(I, cp). Hence the inequalities in 1.1 may be strict.
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3. The nuclearity of BC(X), 7,

3.1. Definitions.

Let E be a locally convex space over K. A subset B of E is called
compactoid if for every zero-neighbourhood U in E there exists a finite
subset S of E such that B C U + Co(S), where Co(S) is the absolutely
convex hull of S.

A linear map T from a normed space E to a normed space F is called
compact if if maps the unit ball of E into a compactoid subset of F.

The following is easily seen:

3.2. Lemma.

Let E, F and G be normed spaces over K, T : E — F a linear map,
and S : F — G a linear isometry. If SoT is compact, then so is T.

3.3. Definition.

Let E, P be a locally convex space over K. If p € P and q is a
continuous seminorm on E with p < ¢. Then there exists a unique
continuous linear map ¢, : E; — E, which makes the diagram

7N

The space F, P is called nuclear if for every p € P there exists a con-
tinuous seminorm g on E with p < g such that the map ¢, is compact.

3.4. Theorem.
The following are equivalent:

i) BC(X), 73 is nuclear.

) Every tg-bounded subset of BC(X) is Tg-compactoid.
iii) BC(X), 7. is nuclear.
iv) Ewvery 7.-bounded subset of BC(X) is 1.-compactoid.
v) C(X), 7 is nuclear.
vi) Every 7.-bounded subset of C(X) is 1.-compactoid.

)

vii) Every compact subset of X is finite.
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Proof:

i) = ii) and iii) = iv) are general properties of nuclear spaces (see [2,
5.1]).

ii) < vi) is proved in [6, 2.2].

v) & vi) < vii) is proved in [3, 3.3].

We prove here vii) = i), v) = iii) and iv = ii).

vii) = i):
Let p4,x be one of the semi-norms determining 74 on BC(X) (see 1.2)

and let p4; be the corresponding semi-norm given in 1.3. We prove that
the canonical map

k1 : BC(X)/Kerpa, — BC(X)/Kerpa i

is compact.

Denote by B(A, 1) (resp. B(A, k)) the space of the bounded continuous
functions from J,, A, to K, normed by pa, (resp. pai). We first show
that the identity map I : B(4,l) — B(A4, k) is compact.

Let B; (resp. By) denote the unit ball of B(A, 1) (resp. B(A,k)). We
have to prove that B; is compactoid in B(A, k). Choose a € K, a # 0.
We need to find a finite subset S of B(A, k) such that

(%) B; C aBy, + Co(S).

We fix an index np such that l,k;! < |a| for n > ng, and consider
Ay C Ay C--- C Ap,. Note that A,, is finite by vii).

Let A] = {x},...,x}cl}, Ag\Ag_ = {a"‘%!'-'!w'lzcg})“‘:AﬂU\Aﬂo—l =

{m’:°, ... ,3:220}. Further denote by £ (:cf ) the characteristic function of
{27} and take
S= {Elg(xi)! RS El‘f(x}:l)ﬁ 126(3:?): recgyee. :1?105(“1230 )}

Then S C B(A, k) and it is easy to calculate that for this S condition
(*) is satisfied.

Now consider the diagram

BC(X)/kerpay —=— BC(X)/Kerpa

s B

BC(A4,1) BC(Ak)

i [

B(Al) ——  B(AK)
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where S; (resp. Si) is the isometry described in 2.6 and ; (resp. ix) is the
canonical injection. One sees easily that this diagram is commutative.
Now, since I is compact, the map I o4, o S is compact as well. Hence
ik © Sk 0 @k is compact. Since iz o S is an isometry we finally obtain
from Lemma 3.2 that ¢ is compact.

v) — iii):
Follows from the fact that every subspace of a nuclear space is nuclear
([2, 5.7).

iv) — ii):

Let B be a 7-bounded subset of BC(X). Then B is 7,-bounded ([4,
2.11]) and therefore the topologies 73 and 7. coincide on B ([4, 2.9)).
On the other hand, since 7. is coarser than 75 (see 1.1) B is 7.-bounded.
So B is 7.-compactoid by iv). It then follows from [7, 10.5] that B is
Tg-compactoid. W

3.4. Remarks.

3.4.1. If the space BC(X), 73 is complete the conditions in Theo-
rem 3.3 are equivalent to

viii) X is a discrete topological space.

Indeed, BC(X), 7 is complete if and only if X is an ultra k-space ([5,
Prop. 9]). Then from vii) it follows, as in [3, 3.3], that X is discrete. On
the other hand, if X is discrete, then vii) follows trivially.

3.4.2. From vii) it does not follow that 75 coincides with the weak
topology o(BC(X), BC(X)") where BC(X)' is the topological dual of
BC(X), 73 (compare with [3, 3.3]). To see this consider the exam-
ple in 2.10. There (I°°,73)" = ¢y and o(I°°,¢g) is strictly weaker than
n(1%°,¢o) = 7 ([1, Prop. 6]).
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