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MAXIMAL FUNCTIONS AND

RELATED WEIGHT CLASSES

CARLO SBORDONE AND INGEMAR WI K

Abstract
The famous result of Muckenhoupt on the connection betwee n
weights w in Ap-classes and the boundedness of the maximal op-
erator in Lp (w) is extended to the case p = oo by the introduction
of the geometrical maximal operator . Estimates of the norm of
the maximal operators are given in terms of the A p - constants .
The equality of two differently defined A.- constants is proved .
Thereby an answer is given to a question posed by R . Johnson .
For non-increasing functions on the positive real line a paralle l
theory to the Ap-theory is established far the connection between
weights in Bp-classes and maximal functions, thereby extendin g
and developing the recent results of Ariño and Muckenhoupt .

1 . Introduction

Let f be a non-negative, locally integrable function defined on (o, oo) .
The well-known Carleman inequality (see [4, p . 250D
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in which e is the best possible constant, can be considered as the limit
case, as p tends to infinity, of the Hardy inequality for f
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In fact, the geometrical mean of f, exp(1 fo In f (t)dt), satisfies (see [4 ,
p . 139] }
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x

(1 .1)

	

lim ( 1 J f (t) P dt)P = exp(— flnf(t)dt) .
P-, oc x
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o

	

o

We recall that ( p~ 1 ) P is the best constant 1n Hardy's inequality and so
we deduce
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(1 .2) lim sup J ( 1 J g(t)dt)pdx = sup J exp( 1

11911P=1 o

	

x o

	

IIf111=1 o

	

xpom °°
f in f (t)dt)dx .
0

In the first part of the paper we study analogues of these results in n
dimensions for maximal functions and corresponding weights . To be
more precise we need some notations .

We let Q stand for a cube with axes parallell to the coordinate axes
and its Lebesgue measure . It is convenient to use a special sign for
the mean value over Q of a function f

ff(x)dx = QI J f (x)dx.

Q

	

Q

First we define, for g ELL(Ir) , q > o, the q-maximal function of g by

(1.3)

	

Mqg(x ) = sup( ig(t)I qdt) q ,
QDx

~

where the supremum extends over all cubes Q c R' . For q = 1 we get
the familiar Hardy-Littlewood maximal function Mg =

As a limit case as q tends to zero, we introduce the geometrical maxima l
function, Mog, by defining

Mog(x) = sup exp(f

Q

g(t) idt) .

For non-increasing, non-negative functions f on (O, oo) it is easy to show
that

M~ f (x) _ (ff(t)dt) P and Mo f (x) = exp f ln f (t)dt .
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The left and right hand sides of (1 .1) therefore are lim M ~ f(x) and
p-.->00

	

p

Mof(x) respectively . We prove in Theorem 2 that

plim M
P

f(x) = Mof(x) for x E W .

The corresponding limit relation to (1 .2) will be proved as a corollary to
this theorem, but in a much more general situation, where the Lebesgue
measure is replaced by a measure w(x)dx, with w a weight in the Aoo -
class of Muckenhoupt . In section 2 .2 we study the limit case as p tends
to infinity of the Ap- constant of a weight function w.

(1 .4)

	

AP (w) = sup + w(x)dx(-} W — ;1'T (x)dx) '
J

	

J

and define

A~(w) = sup fw(x)dxexp(1ln

Q

	

Q

dx) , A 00 = lim AP (w) .
1
(x

Jensen's inequality implies

Aoo (w) < 71,, ( w )

Johnson in [6] left it as an open problem whether there exists a constant
c such that A,,(w) Ç cA,,(w) . We settle that problem by showing in
Theorem 1, that the two quantities are actually equal .

In Theorem 3 we prove that the geometrical maximal function Mo
gives a bounded mapping of L 1 (w ) into L1 (w ) if and only if the weight
function belongs to thereby extrapolating from Ap the classical
result of Muckenhoupt [7] on the Hardy-Littlewood maximal function .

In the second part of the paper we restrict our concern to the case
of non-increasing, non-negative functions on (o, oo) . Following a recent
paper of Ariño and Muckenhoupt [1], we continue to study the classes
of weights for which the maximal operator is bounded on non-increasing
functions in Lp (w) . It turns out that we have here a more or less complet e
analogy with the Ap -classes . Also in this case we study the limit case
as p tends to infinity. Our final specialization is to the case when w is
non-decreasing .
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2. The general case

2.1 . Notations and definitions.

For a non-negative, locally integrable (weight)-function w we define
LP (w) as the class of all mensurable functions f such that

f f(x)w(x)dx < oo, with f ILP(w) = (f I
j~gn

	

pgn

Ap is the class of all weight functions w with finite Ap (w) . As p tends
to infinity in (1.4) the second factor on the right hand side tends to
exp(f ln

	

See [4, p. 71j . It is therefore natural to define the
Q

Aoo -constant of w as

(2 .1)

	

A~(w)=s~ f w(x)dx• exp(+1n W ~x ) dx) .

Q

	

Q

Usually A~ is not defined as the class of functions for which the right
hand side of (2 .1 ) is finite . However, it has been proved by S. V . Hruscev
[5], and J . Garcia-Cuerva- R. de Francia [3, p. 405] that this is an
alternative definition of A,, .

When studying the boundedness of the maximal operators it is con-
venient to have the following notations for weight functions w

mp(w) = sup JM1 f(x)w(x)dx .
IIfIILm =1R"

It is easy to see that

(2 .2)

	

sup fM1 f(x)w(x)dx = sup f(Mf(x))7'w(x)dx) .
IIfIILcm)= P

	

IIfIILPc, ) - 1

We therefore put

(2.3)

	

m,,,(w) = sup fMof(x)w(x)dx .
IIIIIL( .)=1R n

The non-increasing and non-decreasing rearrangements of a function f
will be denoted by f* and f * respectively and are defined by

f* (t) = sup ecs inff(x) , f* (t) = mf ecs cup f (x )

I E I=t E

	

IE I= t

	

E

and then become continuous to the right and left respectively.
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2.2 . A~ as a limit case of Ap .

It is well known that A,,,, can be defined as U Ap . Let w be a function
p> 1

in A~ . Then there exists a number p 1 , 1 Ç p1 C oo such that w E Ap
for p ~ p 1 . Since, by Hdlder's inequality, Ap (w) is a decreasing function
of p, we have two candidates for the Aoo -constant of w, namely

.4(w) = lim A P (w) and A,,,3 (w) as defined by (2 .1) .

By Jensen 's inequality

exp (1 Ing(x)dx)

	

g(x)dx .

Q

	

Q

We apply this with g =

	

, raise both sides to the power p and obtain

exp

	

In ~~
x) dx) Ç

	

w(xx ~
Q

	

42

	

)

which means that A,,(w) < AP + 1 (w) and thus A oo (w) < A00 (w) . It has
been an open question, [6, p . 98], whether there exists a constant c such
that fl c.° (cv) < cA co (w) . Here is the answer .

Theorem 1 . If w E A,„Q , then A,,(w) = Aco (w ) .

In the proof of the theorem we will use the following lemma .

Lemma 1 . Let f be a non-negative integrable function on (0,1 ) and
p a real number, p ~ 1 . Put

9(x) _ (f (x)' zf f (x) < e

{ e,

	

elsewhere.

1

(2 .4) (f Í (x )dx)P — (fg(x)dx)P P(f .f (x )dx) (f f(x)dx)
p— i

0

	

0

	

E

	

0

where E = {x E (0, 1) ; f(x) > e} .

Then
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Proof: This is an immediate consequence of the inequality

b p - ap Ç p{b - a}bp- 1 , for O Ça Cb, p_� 1 ,

f

b = J f(x)dx and a
= J

g(x)dx . ■

o

	

a

Proof of Theorem 1 : Suppose w is a function in Apx (Rn ) with A 1 -

constant A . We will show that, for every p ~ p i - 1, we have

dx
(2 .5)

	

su w(x)dx • (	 )p < (1 + (p,pi ,A)) . Aoo(w) ,
w (x ) P

where lim 5(p, p 1 , A) = O . This implies A.c.() (w) Ç Aoo (w ) which proves
p -+ o o

the theorem .

Except for the supremum the left hand side of (2 .5) is invariant under

changes of scale in Rn and also under multiplication of w by a positive

constant . Without loss of generality we may therefore assume that that

IQ1 =1 andw(Q) = fw(x)dx = 1 .
~

We denote here by w *(t), 0 < t Ç 1 the non-decreasing rear-

rangement of the restriction of w to Q . Then, from [10, p . 250] e .g ., and

the definition of A00 (w) , we conclude that

(2 .6)

	

w * (t) > A-i tpl-1 and exp (fin
w

~t~dt) < A~(c~) .

o

Since
es <1+x+x2 , for x<1,

we hav e

	 dtP - J exp (-in	 )dt< (1+
j

	

-

	

p w(t)

	

- 1

	

p ln	
~~

~-p2 (ln 	
~~ )2)dt

,
c.~ * t

	

w * t
0 W* `tJ

	

o

	

o

if w* (t) > e–p . This means that

1

	

1

	

11 dt	 ~p exppin(1 + fin	 1dt + 1 (ln(t))2dt) .	 1
p

o

	

W (t )

	

o

with
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The inequality : ln(1 + x) Ç x, for x > -1, implies

1

	

1

	

1

(2 .7)

	

(%	 dt1)p exp (fin	 1	 dt) - exp (1 J[(in	 1	 ) Z dt) .
w * (t)T,

	

w .(t)

	

p

	

w.(t )

We now use (2 .6) to find

[(in	 	
1

oJ

	

w. (t)
) 2 dt < f(lnA+ (p i – 1) In ~ ) Zdt = c (p l, A ) .

0

The second factor on the right hand side of {2 .7} therefore converges to
1 as p tends to infinity. This proves the theorem for functions w that are
bounded below by a positive constant a . (We just choose p so large that
e -p [ Q.} If that is not the case we construct a new function

{ w(x), if w(x) > e-P
e-P ,

	

if w(x) < e -P.

It is easy to check that (2 .7) is valid with w* replaced by (w) . After the
replacement we increase the right hand side of (2 .7) and use the second
inequality of (2 .G) to find

1

	

1

	

1

(2 .8) (1	 dt	 )~ exp (fin	 1w.(t)-dt) • exp (1 J[(in w,,I(t) ) 2dt) <
(wp) .(t) P

	

P

c A oo (w) • exp(c(p~A) ) .

We now take a closer look at the left hand side of this inequality. We
want to replace (wp) . by w* and estimate the difference in a way that
is independent of our particular choice of cube Q . For this we will use
Lemma 1, applied with f(x) = w* (t)- t, . From (2.6) we conclude that

(t)" 1 >e	 ~ A--1 tpI -1 [ e -p ---> t[

	

tp .

Hence E C (4, AP~x ~ e- P1~ 1 ) in the lemma and we have the estimate

t P
dt	

[ A l

	

d t

w ¡t p

	

(1 — p l
--1 .

)

	

.~ -- p 1 .~.~
E

	

*l)

	

a

	

p

c(p, p i , A) .
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This estimate is used in (2 .8) and, combined with Lemma 1, the conclu-
sion is

1

	

1

(J w*(~ > 1) P < A~(w) • exp
c(pp A ~ + d(p , p i, A)(f w*~t>p)P—1 ~

P

where d(p, p1i A) = p c(p, p1 , A) . This quantity obviously tends to zero
as p tends to infinity.

We now take an arbitrary E, o < E < 1, and choose p so large that

exp e(p l'A) C(1+ E) and d(p, pi , A) Ç E . Put v = ( f -- d-~-} p . Then
p

	

o w(t) P

v 3 1 by Hólder 's inequality and

v < (1 + E)A.(w) + evo c (1 + E)A,,(w) + ev ,

v < 1 +	 E' A,,(w) < (1 + 3e)Aoo (w) .

Now we take supremum over all cubes Q and get

Ap+ i (w) = ( 1 + 6 (P, PI , A)} . A.(w ) ç(1 + 3e) A,,,(w) ,

where 6(p, pi , A) tends to zero as p tends to infinity . This means that

lim Ap(w) ç A,,(w) ,
P-->00

which concludes the proof of the theorem. ■

It is also possible to have an estimate of the rate of convergence . A
simple analysis of the various inequalities will give us the estimat e

c(pi , A )
6(P, , A) � 	

P

where C~p 1 , A) is a constant depending only on pi and A.



MAXIMAL FUNCTIONS AND RELATED WEIGHT CLASSES

	

135

2.3 . Mo as a limit case af 1V1I .
p

Corresponding to the preceding paragraph, we present here a result
on the geometrical maximal function, Mof, the precise importance o f
which is demonstrated in Theorem 3 at the end of this paragraph .

Theorem 2. Suppose that f lies in
Lzoc(Rn )

, for some a > O . Then
we have

Pi ,m MP f(x) _ Mo .f ( x ), Vx .

Proof: By Jensen's inequality

exp In f(x)dx (ff(x)dx)P.

We take the supremum over all Q that contain x and obtain

Mo f(x) ~~I x f(x) , Vx,

and letting p tend to infinity this gives

(2 .9)

	

Mof(x) Ç Iim N.fY f (x), Vx .
p-+oo p

It remains to prove the opposite inequality of (2 .9) . We assume first that
the number a in the theorem equals one. Then we use Lemma 2 below ,
according to which we have, far every E E (0,1) and cube Q:
2 .10)

i

	

1
( f (x)dx)P < exp In fE (x)dx • exp

(ln€)2 +

	

p
	 p	

+
ep—	 1 f f(x)dx,

Q

	

Q

	

Q

where
f (x),

	

if f> e f f (x)dx

J-f(x ) dx elsewhere .
QQ

From this we conclude

su

	

t dt P Csu exP fin

	

(lnE)
2 ~-1

	

p
P~ f~~ ~

	

P~

	

f£(t)dt•exp	 +epij[f(t)dt) .
Q

	

Q

fE is independent of p . Letting p tend to infinity therefore gives us

lim MI. f(x) sup exp( 1n fE (t)dt) .p—}oo p

	

Q3x
Q
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Now we let E tend to zero . By monotone convergence

(2 .11)

	

1m M~ f(x) Ç Mof(x), Vx .
p

This concludes the proof if a = 1 . For a ~ 1 we put g = fa and use

(2 .11) oil g . This gives

lim sup(-F f (t)dt) P < supexp1 ln fa (t)dt
QD x

or, with q = pEx-1 ,

lim M1 f(x) Ç Mo f(x), Vx .

	

q—roó

	

q

This is (2 .11), which thus is valid for all a > D . Combined with (2 .9)

this gives the desired equality .

What remains of the proof therefore is the main step, namely to prove

the lemma . ■

Lemma 2 . Suppose that f is a locally integrable function, defined on

Rn . Then (2 .10) is valid for every c E(0,1) and every cube Q in Rn .

Proof: The homogenity of (2 .10) allows us to assume that IQ I = 1 and

iQ f (x)dx = 1 . VLTe may, by turning to the non -increasing rearrangement

of the restriction of f to Q, even assume that we are dealing with . a non-

increasing function on (0, 1) . This means that it is sufficient to prove

that if E E(0,1) and f0' f (x)dx = 1 then

1

	

1

(2 .10') (fdx)P exp 1n f£ (x)dx exp
(inc)2

+
1

+	 p

	

Ç

	

p

	

eP -1
,

0

	

0

Jf(x), if f ~ E

1

	

elsewhere .

where

fE(x )

Put
E, = {x E (Q,1) ; f(x) ~ E} and IE,1 = 1 - - l ( E ) .

We first assume that 0 Ç f(x) Ç eP on (0,1) . Since fp (x) = exp
ln f ( x)

P

we can use the inequality ex Ç 1 + x + x2 , for x Ç 1, to find

(ffP(x)dx)P (el(c) + ft, (x)dx}P Ç ((e p — 1)1(E) + 1+

o

	

E,
¡

	

/'

J
1 dx+ J (ln f)2 d )p

.p

	

p2

E E

+

.Ee
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By assumption e P — 1 G 0 and by definition fE > f . Thus

i
f

( .f P (x ) dx ) p Ç (1+ J pf dx + J
(in 2 	o

	 	 .f)a dx)p =

E

	

E,
1

	

1¡

	

[dx) .J l	 dx+ J	 pp2
0

p

	

0

What is inside the last parenthesis obviously is positive and we can use
the inequality : ln(1 + x) Ç x for x > -1, to obtain

	

1

	

1

	

Ï hf1€ 2
(2 .12)

	

(

	

J

	

)dx)P G exp J ln fE (x)dx • exp
0

It is easy to see that (mt)2 < t if t > 1 . Therefore

)(mnf€)2dx

	

1

< (1n€)2 EE 1 + f f (x)dx < (ln€)2 + 1 .

o

	

o

When we plug that into formula (2 .12) we get something which is a
little stronger than (2.10') . However, we have to get rid of our extra
assumption that f < ep on (0, 1) . We consider the truncated function

gp(x)

	

f (x)

	

if f (s) G ep{
ep , elsewhere .

We can apply exactly the same arguments as before to the function gp
and obtain

1

(2 .13)

	

(fg(x)dx)P < (exP(f1ngPdx)) • exp (lnc)2
+ 1

p
0

	

E E

Since gp (x) f (x), we can replace gp by f on the right hand side . To

estimate the left hand side we use Lemma 1 with f (x) replaced by f (x) .

Then g(x) of the lemma will be g; (x) and the result

1

	

1

	

~y

	

1

(ff*(x)dx)P ç~ f 9p (x)dx)P + p f f (x)dx ' (J f P (x)dx )P-1 ,

0
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where xP = sup{x E (0,1) ; f (x) > ep } . For x E (0, xP ) we have

f P(x) f(

	 f (x	 f

	

) 1)	 i, < (x )
which, when integrated, gives

x p

J f p (x)dx Ç e
1

1

o

Also, by Hólder 's inequality ,

f P (x)dx < 1 f(x)dx)P = 1 .

0

	

0

Therefore
11 f (x)dx)P Ç (Jg~(x)dx)P +

0

	

0

which, combined with (2 .13) gives

1

	

1

(ff(x)dx) P <(exP(f ln fE (x)dx)) • exp

(i)2i
+ ep

o

	

o

So we have proved (2.10') and the proof is complete . ■

Corollary .

(2 .14)

	

h m mp (Lc1) = m,,(w) .
p

Proof: Choose an arbitrary E > 0. As an immediate consequence o f

Hdlder ' s inequality and the monotone convergence theorem there exists ,

for every f, a number po, such that

f
M~ f(x)w(x)dx — J Mof(x)w(x)dxl <

~+ o
1[8n

	

Il8n

In particular we can take an f with ,I f hm= 1 such that the second

integral differs from m oo (w) with at most E . Since

	

f ~ Mof we
p

obviously have
m,,(w) ~ mayo (w) < moo (w) + 2€ .

p
ep-1'
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However, e > o is arbitrary and we obtain (2.14) . ■

Muckenhoupt [7, p. 222] has shown that the maximal operator M
gives a bounded mapping from LP (w) to LP(w) if and only if w E Ap . In
other words :

w E Ap <

	

sup _ f(Mf(x))Pw(x)dx) < oo .
IIfIILP ( w ) — i

DI
,

Put here g = fP and take into account that M~ g = (Mg)P . Then, using

our terminology (1 .4) and (2.2), Muckenhoupt 's result can be rephrased
as

Theorem M. A weight function w is in Ap if and only if

(2 .15)

	

mp(w) = sup fM1f(x)w(x)dx<oo
IIfIILcw>=1Rn

	

p

and we have

A P (W) m p (w) 9(AP(W),P,n) •

In the theorem below we will show that the limit case, p = oo, (M1p
replaced by Mfl ), of this theorem is true. Furthermore, we will give a n
estimate of moo (w ) in terms of the A co-constant of w .

Theorem 3 . A weight function w is in A~ if and only if

(2 .16)

	

m oo (w) = sup fMof(x)w(x)dx<oo .
Ilf IIL ( w ) = 1

R
n

and we have

A.(W ) C moo(W) ~ ci (n)(Ac,(W))
150 n

where C1 (n) is a constant, depending only on n .
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Broof For the sufficiency we just note that, by the corollary aboye ,
m,,(w) C oo implies mp (w) C oo for p large enough and by Theorem M
it foliows that w E Ap for p large enough and

Ap(w) < mP (w) .

The sufficiency part and the first inequality of the theorem now follo w
from (2 .14) and Theorem 1 by letting p tend to infinity in this formula .

For the necessity part we assume that w is in A oo with A,,,(w ) = A .
We use the result by Hruscev [5, p . 2551, according to which, for a subset
E of any cube Q, we have

1E1 ~ 1
—

w(E) ~ 1 ~ w(E) ] 1

IQl - 2

	

w(Q) - 1 + 4A 2

	

w(Q) - 5A2

Now we can use the estímate in theorem 3 of [10, p . 252] to deduce that
for

	

(n + 2) log2 (5A2 ) _ ~3o we have, for any E C Q

w(E) >	 1
(

-1E1
)

p

w (Q) - 5A2 IR I

According to corollary 1, p . 250 of the same paper this implies that w i s
in Ap for p ~ 00 and with

(2 .17)

	

AP(W ) c (5A 2 )(	 p - 1)P-1 < 5AZe2po ~ (5Az)3n+7 = B

for p ~ »o .

Buckley, [2, p . 9], has shown that the maximal operator is of weak

type (p,p) on LP (w) with weak-norm (C(n)A(w)) . We use this result
and Marcinkiewicz interpolation theorem (see Torchinsky [9, p . 87] ) to
interpolats in the interval (po =)3 /3o C 2po C oo and find that

m2pv <
(8eij 2 2)0C(n)2Bp 1

Taking into account po = 3,c3o and the definition (2 .17) of B, this implies

mP (w) < Cl (n)ASOn+loo for p > 300 .

Hence

140

moo(w) �.C1(n)(A,,(w))'50n . Z
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3. The case of non-increasing functions on (0, oo) .

3 .1 . Notations and definitions.
For non-negative, non- increasing functions on (o, oo) the maximal

functions Mqf and Mo f satisfy

x

	

x

Mq f(x) -- (ff(t)dt)

	

and

	

Mo f(x) = exp in f (t)dt .
o

	

o

Ariño and Muckenhoupt [1, p . 727®7341 have shown that in this case
and for 1 Ç p < oo a necessary and sufficient condition on w to secure
that there exists a constant C, such that

(3 .1)

	

f(Mf(x))Pw(x)dx < C J f P (x)w(x)dx

0

	

0

is valid, for all non-negative, non-increasing functions in LP (w) on (0, o)) ,
is the existente of a constant B, such that

(3 .2)

	

fw(t)

t
	 dt < B fw(t)dt , Vx > O .

x

	

o

They also proved that a sufficient condition on w is

x

	

x

(3 .3)

	

sup[ w(t)dt] [

	

= Ap(w) C oc ,
x>o

o

	

o

and that this condition is also necessary if the weight function w is non
decreasing .

We will denote by Bp , o C p < oo and Ap , 1 Ç p < oc the class of al l
functions w satisfying (3.2) and (3 .3) respectively . (For p = 1 the second
factor to the left in (3 .3) should be interpreted as ess sup

W

1t
. ) We also

oCtCx ~ }
say that w lies in Bp with constant B(w) if Bp (w) is the minimal constant
for which (3.2) is valid . Let p tend to infinity in (3 .3) . This natura l
way leads us to the definition of Aloa as those non-negative, measurable
functions w that satisfy

1
>ó[-} w(t)dt] [expf ln C(t) dti — A' (w) < oo .

J
0

	

0
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In analogy with the n-dimensional case we define, for p ~ 0

00

m' (w) = sup

	

f (x)w(x)dx ,
P

0

but now the supremum is taken over all non-increasing f on (0, oo) wit h

II f II L(w) = 1 . We note that m 'P (w) is the infimum of all C such that (3 .1 )

holds . Correspondingly we define

00

m'oo (w) = sup I-Mof (x)w(x)dx ,

f o

where the supremum is taken over the same class .

3 .2 . The analogy between Ap and Bp .

In Lemma (2.1) of [1] there is a proof, of the fact that w E Bp implies
that w E Bp_ E for some E > 0 (a similar result is in Strdmberg-Torchinsky
[S, p . 12D.. We give here a short and sharp proof of that lemma .

Lemma 3. Suppose that 0 C p < oo and w is a function in Bp such

that

(3 .4)

	

J w(t )tPdt

< B f (t)dt,

	

Vx > 0 .

x

	

0

Then w E Bp_ E for E C -B-'+—1 i.e . w E Bpl for pi C B+~ p and Bp(w) Ç

	 Bp	 The upper bound of E is best possible .p -E(B+1) •

Proof: Choose E < B+1, multiply (3 .4) by x E -1 and integrate from

r to infinity. A change of the order of integration on both sides the n

results in
~

	

r

	

7w(t)
1 ~ W~t~ (tE r E )dt <	 B(f W	

(t)
dt +

W

	

fdt),
e

	

tP

	

p — E

	

rP-E

	

tP- E
T

	

0

	

r

which gives us, after once more using (3 .4)

00

	

00

	

r
( 1 — B) w(t) dt < rE w(t)

dt +	 B	 w()d
p - E ' 1 tP-1

	

E f tP

	

(p _ € )rp_Ef t t
r

	

r 0
r

1

	

1

	

B
< ( + p	 )

	

f w(t)dt .

0
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This is to say that w E Bp_, for ~ C ~--- and Bp (w) C p—
B	

B+~

	

— Eus
p
+i} •

To show that the limit is best possible we just take w(x) = xa, a > -1 ,

and p > a+ 1 . Then the Bp-constant of w is p	 'á% . By the result aboye
we see that w E Bp , for

	 p	 =a+1 .a+i
p-cx—i

+ 1

Of course no smaller p's are possible, if the left side of (3 .G) is to con-
verge . ■

We will extend the results of [1] to the geometrical maximal function
Mqf (and also in some cases to 0 < p Ç 1 . To make apparent the
parallellity with the ordinary Ap-classes, we introduce a class Boc . I t
will soon become evident that the corresponding to the definition of Aoo
would be to define B~ as the class of weight functions, for which ther e
exist two constants r < 1 and k > 0 such that

t
fw(u)du

1> t r

	

°	 > k .
x fw(u)du

o

This is equivalent to the following definition, which is more easy to grasp .

Definition . B~ is the class of non-negative, locally integrable func-
tions w on (O, oo) with the property that there exist two constant s
r,OCrC 1 andC> Osuchthat

f f

(3.5)

	

C J w(t)dt > J w(t)dt, dx > O .

0

	

0

Remark. We could equally well have made the definition with r =
instead of being arbitrary. This would seemingly be more restrictive
for r >

	

However if w satisfies our definition with an r > we can
iterate the inequality approximately (— log 2 r) —1 of times to see that i t
is satisfied for r = but with a larger C .

Definition . The doubling constant, d(w) is the minimum of all C

such that (3 .5) is valid with r = If d(w) is finite we will say that w
has the doubling property.

It is immediately evident from the definition that Bp , c Bp and also
that Bp(w) Ç Bpl (w) if p i C p .
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A function in Bp obviously has the doubling property . (Just relax in
the definition (3.2) by reducing the interval of integration on the left in
(3 .2) to become (x, 2x) . However, we can do much better and obtain an
estimate of C in (3.5), an estimate that depends on r and also can be
used as an alternative characterization of Bp . (Compare corollary 1, p .
250 of [10} . }

Theorem 4 . A weight function w is in Bp , if and only if there exist
constants p i , 0 <p i C p, and C such that

t

	

x

(3 .6)

	

fw(u)dú > C(~)pl fw(n)du,

	

for x > t .

o

	

o

If Cpl (w) is the maximal C for which (3 .6) holds, the n

Cp
1
(w) >	 1	 for p i >

2B +
and Bp (w) <	 p	

2BP (W) -}- 1

	

2B ~ -
	 21p

	

CPl (w)(p —
	 pi )

Proof.• Suppose first that w E Bp and put Bp(cv) = B . By the preced-
ing lemma we know that, for pi = 2s+a

zs+i
p < p , w E Bp , with constant

2B. Thus

2B
f

w(u )du > 91
Iw(tt)

du >

	

2 r(k+1)p1 fw(u)du
up

	

~_

	

1 _~

	

_
o

	

x

	

k =o

	

x2 k

N–1 x2 k + 1

�. E 2–(k+1)P1 fw(u)du .

	

k=o

	

x2 k

This gives, for every x ~ 0 ,

N–1 x2 k

	

x2 N

(1 — 2--p1) E 2 -kp1

	

w(u)du + 2–Np1

	

w(u)du Ç

k=l

	

o

	

0
x

C (2B + 2–P1 ) weu,}du .

0

Therefore, taking only the last term on the left into account and replacing

x by x2-N, we find

x2-N

	

x
1

J w(u)du
> 2NP1(2B + 1) f w(u)du

.

o

	

o

144

x

	

o0

	

0o

	

x2 k+1
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For x2 -(N+1) c t C x2 - N we have

t

	

x2- ( N}1 )

	

x
1

fw(u)du > J w(u)du > 2
Np1(2B + 1) fw(u)du >

o

	

o
x

	

>

	

	 1	 ( t ) P f()du.
2B+1 x

o

Thereby we have proved the necessity of the condition and the firs t
inequality between the constants .

To prove the suffiency we assume pi < p and

t

	

x

fw(u)du~C(y'1 fw(u)du , for 0 < t < x .
x

o

Multiply this inequality by t rpx xpx -1-p . We get

t

	

x

1 Ctpl. x1+ p-Pl fw(u)du > xp+l fw()du .

o

	

o

This inequality is valid for o Ç t Ç x . We integrate with respect to x

over the interval (t, o()) and change the order of integration in the right

member . The result is

t

	

t

	 1	 p f w(u)du > 1 f w(u) du + 1 J w(u)du .
C'

(p pi)
t

	

P

	

t

	

p

	

u
o

	

o

	

t

Hence
w(u)du

C	 p	 . 1 w(u)du ._ C' . (p _ pi ) tPu
t

	

o

This completes the proof of the necessity and the second inequality be-
tween the constants . ■

We complete the analogy by

Theorem 5 .
B~ =U Bp

o

o

p>o
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.Proof• Suppose w E Bp for some p > O . It is immediate from Theorem
4 that w satisfies the requirements for being in Boa . Thus

p> 0

Suppose on the other hand that w E B~ with d(w) = C, i .e .

zx

	

x

fw(t)dt C J w(t)dt .

o

	

o

146

This means that
2x

f w(t)dt (C —

x

1) f w(t)dt .

o

Thus

00

J W p
)
dt =

t
x

2 k+i ac

	

2k+ix

w
(t)O

°

	

1
dt

çtp

	

E 2kpxp

	

w(t)dt Ç (C —1)
00

k=0 2kx

	

k =o

	

2 k x

2 k x

	

x

	

x

	

2kPxP Jw(t)dt < (C — 1) E00	 2 kCpxp J t= (2 P
	 G, )x)p fw(t)dt

k—0

	

o

	

k—0

	

o

	

o

for p > log2 C. So w E Bp for p > log 2 C and

Boo C

	

Bp .
p>o

and the proof is complete . ■

3.3. m'00 as limit case of mp .

In Chis section we will for convenience use a special notation, Ld (w) ,
for the set of all non-negative, non-increasing functions in L (w) .

Theorem 6 . Ilrlo is a bounded operator on Ld (w), (i .e . m'o,, C oo), if
and only ifw E Boa an d

d(w) < (2m(w) — 1 )2 Ç co(d(W))
s .a
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where Co is an absolute constant.

Proof of part 1 : We give first a short proof of the first part of the
theorem without estimates of the constants . Suppose therefore that Mo
is a bounded operator on Ld (w) . Since

	

f(x) tends monotonicall y
p

to Mo f(x) as p tends to infinity, it is an immediate consequence of the
monotone convergence theorem that

lim mp' (w) = mcc (w ) C cc .
p—too

Thus mp (w) C oo for p large enough . By [11 this implies that w E Bp for
p large enough and then, by Theorem 5, w E Boo .

If on the other hand w E Boo , then, by Theorem 5 again, w E Bp
for p large enough and the result in [1] implies mp' (w) < oa . Hence
moo (w) C oa, which means that Mo is bounded on Ld (w) . ■

We will now present a complete proof of Theorem 6 that does not
rely on the results of Arino and Muckenhoupt, but is based on another
technique . It has the advantage that it gives estimates of m'.(w) in
terms of d(w) . To complete the proof we need the following lemma .

Lemma 4. Suppose E a k is a positive series with sum A . Foren a
-Do

new series with the convoluted terres

am
E 2Ef k-m 1 '

m=—oa

2E+ 1

b k _ .~ ak,

	

2 -E < bk+1 C 2 € and

	

bk Ç	 A .— —

	

~bk

	

2~ — 1

Proof:

bk = . . . + ak—22—2E + ak-12-E + ak + ak + 1 2 —2' + ak+22
--2E . . .

Now the two first properties are trivial and the third follows from a
change of order of summation . ■

Proof of Theorem 6 : Suppose first that m'oo (w) = K < oo . Then

00

	

Do

(3 .7)

	

JMof(x)w(x)dx < K J f (x)w(x)dx, Vf E Ld(W) .

0

	

0

bk =

Then

k= —oo
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Choose a in o < a < 1 and put

1, oCxÇ r
f(x) = a, r<x<2r

o,' x > 2r .

Then f E Ld (w) and

{ Í1a,
l-z 7 , r

o

C

C

x

x C r

O,

	

x > 2r .

2 r Mof~x) = a

	

r

We apply formula (3 .7) and obtai n

3 2r r 2rf w(x)dx + J al- =w(x)dx < K( J w(x)dx+ faw(x)dx) .

3 0 r

Thus
2r

	

r

af (a= — K)w(x)dx < (K — 1) J w(x)dx .
r

	

0

We choose a = (2K) -2 . Since > we obtain

2r

	

f

fw(x)dx < 4K(K — 1) J w(x)dx ,
r

	

O

which means that w E .B0,0 with doubling constant at most (2K — 1) 2 . It

also follows from this inequality that K has to be strictly greater than

1, otherwise w has to be identically zero

Suppose on the other hand that w E Boo with doubling constant C .

Choose the sequence {a k} "2 o such that

a k

fw(x)dx C-k .

o

Using the doubling property we see

ale

	

ak+ 1

	

2a k+ i

C-k = w(x)dx = C

	

w(x)dx ~

	

w(x)dx .

0

	

0

	

0
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Therefore

(3 .8)

	

ak ~ 2ak+ 1 .

Take an arbitrary f E L d (w) and put

oa

J f (x)w(x)dx = K.

0

Since f is non- increasing this means that

aCO

	

k
1 °°

	

¡E f(Cxk )

	

w(x)dx = c ---- E f (ak)C_ k .
k=-oo

	

C
ak+l

	

k = —oo

Now we can use Lemma 4 with ak = f(ak)C —k and obtain b k ~ ak with

KC 2' + 1E b k < 	—

	

E

—~
C—12 - 1

We can define a new non-increasing function g with g(x) ~ f(x) and
g(c) = C k bk . Obviously Mog ~ Mof . Jensen 's inequality gives

ak

	

a k

Mo9(ak) =expf ing(x)dx c (1 gP(x)dx) p <
0

	

0

1 oa i

	

1 O°

	

~

	

¡¡

	

¡

	

¡

	

(

	

m+ 1

	

C l

	

E g P
(
am+1 )lam — Cxm+1 ))P Ç L

	

P bm+I am )P •
ak

m=k

	

~~ m =1c

By (3 .8), the terms in the last series of this estimate decrease geometri-

cally with a quotient that is at most C1T; 212 —1 . Thus

¡¡	 1

M®f(ak) Ç Ck+1bk+1(-
1 C~

i
2

E
2 —I

)P y
— ~

if p is large enough . We are still free to choose E and p . We can for

example choose E = and p == 3 in C if C ~ e 8 . If C < e 8 we Cake

p = 10 . Some elementary calculations then show that

MO f(ak) < DCk+1
bk+1C

3 . 7

K~
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where D is an absolute constant . Therefor e

f Mo f(x)w(x)dx ~ DC C, 1 ~ Mo .Í(ak+i)C–kcic+lbk-I-1C3 .7 =

o

	

k=–oo

= DC3 ' 7 (C — 1) E b k EC4 .7K,
-00

where E is an absolute constant . We deduce

m ',,(w ) ç BC4 . 7

and the theorem is proved . ■

Now that we have the tools, it is tempting to prove theorem (1 .7) in
[11, for 0 C p < oo . We will use Theorem 4 and the technique of Theorem
6 .

Theorem 7. For 0 C p Ç oo,

	

is a bounded operator on Ld(w) if
p

arad only ifw E Bp .

Proof: p = oo is already treated in Theorem G .
In the easy necessity part, we have nothing new to offer . It follow s

directly by chosing f = x (o ,$) in (3.1) .
For the sufficiency part we suppose that w E Bp with Bp (w) = B. In

Theorem 4 we take E = 4($+1), and put p 1 = p - 2E and p 2 = p - E . The
conclusion is that BP1 (w) Ç 2B and

J

	

1
w(u)du >

2B + 1

fX

	

= r2
2B
	 J w(u)du for r 1 .

0

We now choose ro < 1 so small that 712' (2B + 1) = 1 . This gives

r Q x

f
J w (u)du > rw(u)du, b'x > 0 .

o

a k
Put r~ 2 = C 1 and choose {ak}oc so that f w(u)du = C-k . Then we

o
have

«k+ 1
a,

	

aic+i

	

r a

fw(x)dx=co

	

w(x)dx ~

	

w(x)dx

q

	

o

	

o

rX
P~

	

rP 1 -rp1

	

~ p2

	

'

2B -~ -~-~ - 1 0
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and therefore

(3 .9) ak+ 1 Ç roak .

Now we can proceed as in the proof of Theorem 6 (with C replaced by
Co ) to find

1 °O

	

m+1 1

Mif(ak) ç Mlg(ak) < (- E Co P bm+ 1 G1Gm) P .
P

	

p

	

a k m= k

By the definition of Co and (3.9) we deduce that the terms of this series
1— u

decrease geometrically with a quotient that is at most ro ~ 2 -7:. . We
have not yet decided what E > 0 (in Lemma 4) should be . We just have
to take E < (p2 — p)

Il to be sure of obtaining geometrical decreasing .
Take for instance E equals half that quantity. Then we hav e

M1 f(ak) C (B, p)
Có+1b

k+1 ,p
where C(B, p) is a constant, depending only on the indicated quantities .
This gives

0o

	

oo

f MP .Í ( x ) W ( x ) dx C(B,p) E Có+2 b,+zco; k < Ci(B , p)K =

o

	

-00

oo

= C 1 (B, p) f (x)w (x)dx ,
0

by which we have proved the sufficiency part of the theorem . ■

3.4 . A~ and non-decreasing weights .
We end this paper by proving two theorems, the first of which is an

extension to g = oo of Theorem (1 .10) in [11 . The second is an analogy
with Theorem 5 far non-decreasing weights w.

Theorem S . If w E A'o‹) , then mp' (w) C oc for p large enough .
A nonwdecreasing w lies in A~ if and only if m'.(w) < oo and then

m'co (w) �. A'oo (w) .

Theorem 9 . For w non-decreasing we have
wEA'. <=> w E U Ap .

The proofs of these two theorems are based on the following lemma :
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Lemma 5 . Suppose that wE 14'. with constant K. Then, fór évery
r ~ 1 there is a constant C, depending on K and r, such that

rx

	

x

fw(t)dt C J w(t)dt .

0

	

0

For r = 2, C = 4K 3 will do .

Proof: Choose an arbitrary r ~ 1 . Far every x

	

the assumption
and Jensen's inequality give

(t)dt exp fin W (lt)dt < K < K f w(t)dt exp -} In ~~t ~ dt .J
o

rx

	

x

fw(t)dt = ca and J w(t)dt = a .
o

	

a

Then
rx

	

rx

fw(t)dt=(c—1)a and fw(t)dt=
— 1)a

What we want to estimate is the exponential of

rx

	

x

	

rx

	

x

In	 1 dt — In 1 dt = 1 In	 1dt — r—	 1 In 1dt =
o

	

w(t)

	

,f w(t)

	

rx
f

w(t)

	

r x
	 f

w(t )

rx

	

x

rr1 (t ln w(t) dt - -} In w(t) dt) .
J

	

J
x

	

0

We now treat the two members on the left, the first by Jensen's inequality

rx

	

rx

	

rx

rexp -}1n
w

~t~dt > (fw(t)dt) —1
= (c—1)a

	

f ln W~t~ dt > ln
(r—1)

x—1)a
x

The second satisfies by assumpt ion

x

	

x

ex

	

1n 1 dt < Kx i . e .

	

1n 1 dt C In K 1n
~

.A

	

w(t) — a

	

w(t) _ + a
o

	

o
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o
(3 .10 )

Put
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We therefore obtain

rx

	

x

rr	 1 (-fin a ltdt -
Jin

pitdt > rr 	 1 ln Kr~	 1 1

x

	

o

and inequality (3 .10) gives

r- 1
cr

	

rrx
C K

Kc -~- 1 }

	

,~

	

)

or r

	

1 r x
cr ( c 1)

r
C K2-

r

For any r ~ 1 we see that c cannot be arbitrarily large, but has to
be smaller than some number, which depends ori r and K. r = 2 ,
for example, gives the doubling constant d(w) < Ç . This proves the4
lemma . ■

Proof of Theorem 8: Suppose that w 'E A~ with constant K . By
Lemma 5 , w E B00 with d(w) Ç 43 . By Theorem 6, m',,,(w) C cc .

Suppose noW that w is a non-decreasing function with finite m'00 (w) .
Then we use the inequality

oá

fMof(t)w(t)dt < mL(w) J f (t)w(t)dt

0

	

0

with the non-increasing function f = lx(O,x) to obtain

t

f exp(Jinds)w(t)dt
w(s)

	

<
m'00 (w ) x .

0

	

0

Since w is non-decreasing and t Ç x in the integratio n

	

t

	

x

ln W ~
S)

ds

	

ln W~
S)

ds .

	

0

	

0

This gives
x

	

x

w t dt exp	 	 1dt m' w~ }

	

p

	

w(t)

	

~~ ) ,

O

	

o
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and thus
A '. (w) ç m ',„. (w) .

Thereby we have proved Theorem 8 . ■

Proof of Theorem 9: This is now more or less a corollary. By Jensen's
inequality A',,(w) Ç Ap' (w) and therefore Ap c A too , dp > 1 . On the
other hand, by Lemma 5 and Ariño-Muckenhoupt ' s resul t

wEA '00 {w E~-3p forsomep~ 1} ~wEA 'p .

Therefore, for non-decreasing w , A~ c U Ap' and the proof is com-
plete . ■

It is natural to ask whether w E A 'oo implies w E A'p far some p > 1 ,
i.e. if Theorem 8 could be strengthened to comprise also the case of
weight functions that are not non-decreasing . This, however, is not true .
We can for example take

exp —	 ~	 , D C x C 1 ,
w(x)

	

1,

	

x > 1 .

This function clearly lies in A',,. but not in Ap far any p ~ 1, but it i s
easy to see that B(w) is finite for every p ~ 1 and therefore mp' (w) C o0

	

for every p ~ 1 . This éxample also shows that A',,(c.o )

	

lirn Ap' (w) .
p-->o o
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