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MAXIMAL FUNCTIONS AND
RELATED WEIGHT CLASSES

CARLO SBORDONE AND INGEMAR WIK

Abstract

The famous result of Muckenhoupt on the connection between
weights w in Ap-classes and the boundedness of the maximal op-
erator in Ly(w) is extended to the case p = oo by the introduction
of the geometrical maximal operator. Estimates of the norm of
the maximal operators are given in terms of the Ap-constants.
The equality of two differently defined Aoc-constants is proved.
Thereby an answer is given to a question posed by R. Johnson.
For non-increasing functions on the positive real line a parallel
theory to the Ap-theory is established for the connection between
weights in Bp-classes and maximal functions, thereby extending
and developing the recent results of Arifnio and Muckenhoupt.

1. Introduction

Let f be a non-negative, locally integrable function defined on (0, co).
The well-known Carleman inequality (see [4, p. 250])

7exp(i j In f(£)dt)dz < ef f(z)dz,
0 i}

0

in which e is the best possible constant, can be considered as the limit
1
case, as p tends to infinity, of the Hardy inequality for f»

8

€T

ff(tﬁdt}”dx < (p’il)p/f(a:)dm.

(

8]

o
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In fact, the geometrical mean of f, exp( [, In f(t)dt), satisfies (see [4,
p. 139))

x

1/ 1
(1.1) lim (= [ f(t)?dt)P =exp(= [ In f(t)dt).
p—oo E_([ x_/

0

We recall that (ﬁ—l)p is the best constant in Hardy’s inequality and so
we deduce

oo x o0 T

(1.2) lim sup /(l/g(t)dt)?’d:r: sup /exp(lflnf(t)dt)dx.
P70 gllp=1 5 * d [1fll=1 rd z d

In the first part of the paper we study analogues of these results in n
dimensions for maximal functions and corresponding weights. To be
more precise we need some notations.

We let @@ stand for a cube with axes parallell to the coordinate axes
and |Q| its Lebesgue measure. It is convenient to use a special sign for
the mean value over  of a function f

)[f(m}d$= ﬁ/f(w)dx.
Q Q

First we define, for g € L} (R™), g > 0, the g-mazimal function of g by

loc

(1.3) Mg(z) = sup‘(f lo(t)|9dt)?,
Q3z 2

where the supremum extends over all cubes @ C R™. For ¢ = 1 we get
the familiar Hardy-Littlewood maximal function Mg = M;g.

As a limit case as g tends to zero, we introduce the geometrical mazimal
function, Myg, by defining

Mog(z) = sup exp(][ In|g(t)|dt).
Q

For non-increasing, non-negative functions f on (0, 00) it is easy to show
that

r

M f(z) = (f fr(t)dt)? and Myf(z) = exp )[ In f(t)dt.

0
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The left and right hand sides of (1.1) therefore are lim M

1
p—+00 P

f(z) and
My f(z) respectively. We prove in Theorem 2 that

lim M, f(z) = Myf(z) for z € R™.

p—o0 P

The corresponding limit relation to (1.2) will be proved as a corollary to
this theorem, but in a much more general situation, where the Lebesgue
measure is replaced by a measure w(z)dz, with w a weight in the A,-
class of Muckenhoupt. In section 2.2 we study the limit case as p tends
to infinity of the A,-constant of a weight function w.

(1.4) () = sup  w(@)da(f w71 @)z

Q

and define

dz) , Ax(w) : lim A,(w).

w(x) p—oo

Ax(w) = sgp)[w(z)dx exp(+In
Q Q

Jensen’s inequality implies
Aoo(©) < TAos(w)

Johnson in [6] left it as an open problem whether there exists a constant
¢ such that Ao (w) < cAoo(w). We settle that problem by showing in
Theorem 1, that the two quantities are actually equal.

In Theorem 3 we prove that the geometrical maximal function M,
gives a bounded mapping of L'(w) into L!(w) if and only if the weight
function belongs to A.,, thereby extrapolating from A, the classical
result of Muckenhoupt 7] on the Hardy-Littlewood maximal function.

In the second part of the paper we restrict our concern to the case
of non-increasing, non-negative functions on (0,c0). Following a recent
paper of Arifio and Muckenhoupt [1], we continue to study the classes
of weights for which the maximal operator is bounded on non-increasing
functions in LP(w). It turns out that we have here a more or less complete
analogy with the Ap-classes. Also in this case we study the limit case
as p tends to infinity. Our final specialization is to the case when w is
non-decreasing,.
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2. The general case

2.1. Notations and definitions.

For a non-negative, locally integrable (weight)-function w we define
LP(w) as the class of all measurable functions f such that

[ @Puta)dz < o, with | £ lis= ([ F@Pu(@))?.
R" R"
A, is the class of all weight functions w with finite A,(w). As p tends

to infinity in (1.4) the second factor on the right hand side tends to
exp ;}iln Flsyde). See [4, p. 71]. It is therefore natural to define the

Ao -constant of w as

1
(2.1) Avo(w) = sg,quw(m)dx- exp(Z In w_"(..fr;idx)'

Usually A is not defined as the class of functions for which the right
hand side of (2.1) is finite. However, it has been proved by S. V. Hruiev
[5], and J. Garcia-Cuerva- R. de Francia [3, p. 405] that this is an
alternative definition of Ay

When studying the boundedness of the maximal operators it is con-
venient to have the following notations for weight functions w

mp(w) = sup /M; f(z)w(z)dz
”f",r,(u]=lmn ?

It is easy to see that

(2.2) sup /Mi f(@)w(z)dz =

l1f]|L(u)=1Rn

ﬁwwwmn

IL£N LP(u)=1R“

We therefore put

(2.3) Moo () = mmf%m
||f|lL{wJ—1

The non-increasing and non-decreasing rearrangements of a function f
will be denoted by f* and f. respectively and are defined by

F1(t) = sup essinff(a) , fu(t) = inf esssup f(z)
E E

|B|=t

and then become continuous to the right and left respectively.
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2.2. A, as a limit case of 4,.

It is well known that A, can be defined as |J Ap. Let w be a function
p>1
in As. Then there exists a number p;, 1 < p; < oo such that w € A4,

for p > p1. Since, by Hélder’s inequality, A,(w) is a decreasing function
of p, we have two candidates for the A,.-constant of w, namely

Ao (w) = plirrgo Ap(w) and A, (w) as defined by (2.1).

By Jensen’s inequality

exp (f Ing(o)dz) < )f 9(x)da.
Q Q

We apply this with ¢ = w v , raise both sides to the power p and obtain

1 dz »
exp (g[ In rsdo) < (Qf yert

which means that Ay (w) < Apy1(w) and thus A (w) < Aeo(w). It has
been an open question, [6, p. 98], whether there exists a constant ¢ such
that Ao (w) < cAso(w). Here is the answer.

Theorem 1. Ifw € Ay, then Ao (w) = Aco(w).
In the proof of the theorem we will use the following lemma.

Lemma 1. Let f be a non-negative integrable function on (0,1) and
p a real number, p > 1. Put

s = { 1 1)<

e, elsewhere.

Then

1 1

(24) ( / £ (@)dz)? — ( / 9(@)da)P < p( / F(@)dz) - ] f(@)dzp,
0 E

0 0

where E = {z € (0,1) ; f(z)>e}.
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Proof: This is an immediate consequence of the inequality

W —a? <plb—a)p?™!, for 0<a<b, p=>1,

bzflf(a:)da: and a=jg(:c)d9:. [ |
0 0

Proof of Theorem 1: Suppose w is a function in Ay, (R™) with Ay, -
constant A. We will show that, for every p > p; — 1, we have

with

(2.5) SUp)[w(z )z - (][w ) S W S A Al
Q

where lim &(p,p1, A) = 0. This implies Ao (w) < Aoo(w) which proves
p—o0
the theorem.

Except for the supremum the left hand side of (2.5) is invariant under
changes of scale in R™ and also under multiplication of w by a positive
constant. Without loss of generality we may therefore assume that that

Q] =1 and w(Q) = [w(z)dx =
Q

We denote here by w.(t), 0 <t < |Q| = 1 the non-decreasing rear-
rangement of the restriction of w to Q. Then, from [10, p. 250] e.g., and
the definition of A (w), we conclude that

1.

' 1
(2.6) we(t) > A"~ and exp (/ln mdt) < A (w).
D *
Since
e <l+z+a% for z<1,
we have
f dt 1 1 1 i 1 1 1 1
- = [exp(=In dtg/ 1+-In——+—=(n 2)dt
!m(ﬂf" f Gram= et E e

if w.(t) > e~P. This means that

1
dt
(‘D/ w*(t)v )P <exppln(l+ fl ot dt+ /(ln

)2dt).
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The inequality: In(1 + z) < z, for z > —1, implies

1 1

en lw‘(t% /mw' dt) - exp i[

0 0

We now use (2.6) to find

/olan w 1(t)

The second factor on the right hand side of (2.7) therefore converges to
1 as p tends to infinity. This proves the theorem for functions w that are
bounded below by a positive constant a. (We just choose p so large that
e P < qa.) If that is not the case we construct a new function

wy(z) = { w(z), ifw(z)>e?

e?, ifw(z)<e™?

1
Pat< [(nA+ (= 1)1n )2t =, A).
0

It is easy to check that (2.7) is valid with w, replaced by (wp).. After the
replacement we increase the right hand side of (2.7) and use the second
inequality of (2.6) to find

1

(2.8) (/w _1_3’<exp(/ln dt} exp %/ dt) <
p)«(t)® o
< Am(w)-exp(%)-

We now take a closer look at the left hand side of this inequality. We
want to replace (wp)« by w. and estimate the difference in a way that
is independent of our particular choice of cube Q. For this we will use
Lemma. 1, applied with f(z) = w, (t)_%. From (2.6) we conclude that

1 I_,, _ — 1 _ __P
wi(t)TF >e = AT <P = t< ATiTe BT =t

1 __Pr_ .
Hence E C (0,AP1-T¢” 71-7) in the lemma and we have the estimate

_p-1

w,(t)v —LF ( B=) Tp-p+1

= c(p:plsA)'
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This estimate is used in (2.8) and, combined with Lemma 1, the conclu-
sion is

( / B < A(w) -expi(ﬂ;‘f‘l + d(p, p1, A)( f - "(‘;)1)*’-1,

£
*
=Y
—
b0
k-]

where d(p,p1, A) = p- ¢(p,p1, A). This quantity obviously tends to zero
as p tends to infinity.

We now take an arbitrary ¢, 0 < ¢ < 1, and choose p so large that
1

exp C(g;;fll < (1+¢€) and d(p,p1,A) < e Put v = (f %r)p_ Then
0 we(t)?
v > 1 by Holder’s inequality and

v < (14 ¢)Acc(w) + e’ 7 < (14 ¢e)Ax(w) + ev,

i.e.

l4¢

v — EAc.c,(w) < (14 3e)As(w).

Now we take supremum over all cubes @) and get
App1(w) = (1 +6(p,p1, 4)) - Aso(w) < (1 + 36) Aso(w),
where §(p,p1, A) tends to zero as p tends to infinity. This means that

plin;o Ap(u) S Aoo(w):

which concludes the proof of the theorem. B

It is also possible to have an estimate of the rate of convergence. A
simple analysis of the various inequalities will give us the estimate

C(p1, A
6(?,1)1,44-) < _%._),

where C(p;, A) is a constant depending only on p; and A.
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2.3. My as a limit case of M..

Corresponding to the preceding paragraph, we present here a result
on the geometrical maximal function, My f, the precise importance of
which is demonstrated in Theorem 3 at the end of this paragraph.

Theorem 2. Suppose that f lies in L (R™), for some o > 0. Then
we have
lim M;f( )= Myf(z), Vaz.

p—oo

Proof: By Jensen’s inequality

expfln f(z)dz < (ffr'l’(;v)d:c)?’
Q Q

We take the supremum over all Q that contain z and obtain
Mof(z) < M1y f(z), Vz,
and letting p tend to infinity this gives
(2.9) Mof(z) < lim M, f(z), Vaz.
p—oo P
It remains to prove the opposite inequality of (2.9). We assume first that
the number a in the theorem equals one. Then we use Lemma 2 below,

according to which we have, for every € € (0,1) and cube Q:
(2.10)

1 (lne)2 +1 P
((]?[fv (z)dz)P < expg[ In fe(z)dz - exp ’ t o (Z[f(:c)dx,

where

f(z), if f> eg:f(a:)dm

fel@) = Ff(z)dz elsewhere.
Q

From this we conclude

ggg(g[f B (t)dt)P < ggpz(exp g[lnfe(t)dt-exp (Ine)’ ][f(t)dt

fe is independent of p. Letting p tend to infinity therefore gives us

Pp—00 P

lim M, f(z) < sup exp(]( In f.(t)dt).
Q3z 5
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Now we let € tend to zero. By monotone convergence

(211) lim My f(z) < Mof(z), Va.

This concludes the proof if @ = 1. For a # 1 we put g = f* and use
(2.11) on g. This gives

lim sup(+4 f7 (t)dt)P < sup expj[ln fe(t)dt
P Qaz Q3z

or, with ¢ = pa~!,

lim M%f(m) < Myf(z), Vz.

gq—o0
This is (2.11), which thus is valid for all @ > 0. Combined with (2.9)
this gives the desired equality.
What remains of the proof therefore is the main step, namely to prove
the lemma. W

Lemma 2. Suppose that f is a locally integrable function, defined on
R™. Then (2.10) is valid for every € € (0,1) and every cube Q in R™.

Proof: The homogenity of (2.10) allows us to assume that |Q| = 1 and
fQ f(z)dz = 1. We may, by turning to the non-increasing rearrangement
of the restriction of f to Q, even assume that we are dealing with a non-
increasing function on (0,1). This means that it is sufficient to prove
that if € € (0,1) and [, f(z)dz = 1 then

1

(2.10)  ( / £#(z)dz)P < exp / In f.(z)dz - exp

0

(Ine)? +1 P
er -1’

where fa), itf>
z), iff>e
fe(@) = { 1 elsewhere.
Put
E.={z€(0,1);f(z) > €} and |E]=1-I(e).
We first assume that 0 < f(z) < e? on (0,1). Since f%(m} = exp ln—fpﬁl
we can use the inequality e® < 14z + 22, for z < 1, to find

( f f? (z)dz)P < (31(e) + [ F(@)dz)? < (68 — i) + 1+
0 E.

In f (Inf)* .,
+E] pd$+E/—p2 dz)P.
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By assumption €r —1<0and by definition f. > f. Thus

1

(O/f%(w)dm)” ¢ +E[ ln?fdz+k{ (o ) fye =

p

1 1

In f. (In fe)?
=14 [ —dz+ | —dz)?.
[5re[5

What is inside the last parenthesis obviously is positive and we can use
the inequality: In(1 + z) < z for £ > —1, to obtain

1

(2.12) (ff%(x)dx)p < exp/ln fe(z)dz - exp;%/(ln fe(z))?dz.
0 0

0

It is easy to see that (Int)? < ¢ if ¢ > 1. Therefore

1 ' 1
/(ln fo)?dz < (In€)?|E.| + / f(z)dz < (In€)? + 1.
0 0

When we plug that into formula (2.12) we get something which is a
little stronger than (2.10’). However, we have to get rid of our extra
assumption that f < e? on (0,1). We consider the truncated function

fz), if fz) <eP

eP, elsewhere.

9p(z) = {

We can apply exactly the same arguments as before to the function 9p
and obtain

@13 ([ o @) < (el [10g5d0)) - exp 2L
0

EC

Since g,(z) < f(z), we can replace g, by f on the right hand side. To
estimate the left hand side we use Lemma 1 with f(z) replaced by 7 (z).

Then g(z) of the lemma will be gZ (z) and the result

1

([ 1} @anp < (/lg

0

T

(2)dz)P +p / fH@)de - ( ] £3 (2)dn) 1,
0 0
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where z, = sup{z € (0,1); f(z) > e?}. For z € (0,z,) we have

f@) . 1@

f;(x) = f(x)l_% - F:

which, when integrated, gives

Tp

1 1
ff"(w)dl‘f 1
0

Therefore .

1
3 P 3 (2\dz)P + —P—
(off (2)dz) s(ofgp()d) +

er—1’

which, combined with (2.13) gives
1

1
; (Ine)? +1 P
(| f7(a)dz)? < (exp( [ In fe(z)dz)) - exp 4

ep—1’

So we have proved (2.10") and the proof is complete. B

Corollary.

(2.14) lim mpy(w) = Meo(w).
p—oo
Proof: Choose an arbitrary € > 0. As an immediate consequence of
Hélder’s inequality and the monotone convergence theorem there exists,
for every f, a number pg, such that

| / My f(e)o(e)ds - / Mof(z)w(z)da] < e.
Rn Rn

In particular we can take an f with || f [|1()= 1 such that the second
integral differs from me,(w) with at most e. Since M%f > Mof we
obviously have

mw(w) < My, (Ld) < Meo(w) + 2¢.
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However, € > 0 is arbitrary and we obtain (2.14). B

Muckenhoupt [7, p. 222] has shown that the maximal operator M
gives a bounded mapping from LP(w) to LP(w) if and only if w € A,. In
other words :

w€Ap < sup /(Mf(x))”w(:c)dm) < o0
A1

Lp(u)=1w‘

Put here g = f? and take into account that M. g = (Mg%)p. Then, using

our terminology (1.4) and (2.2), Muckenhoupt’s result can be rephrased
as

Theorem M. A weight function w is in A, if and only if

(2.15) mp(w) = sup /Ml f(@)w(z)dz < oo
1Nl y=1

and we have

Ap(w) < my(w) < g(Ap(w), p,n).

In the theorem below we will show that the limit case, p = oo, (M2
P

replaced by My ), of this theorem is true. Furthermore, we will give an
estimate of my(w) in terms of the A -constant of w.

Theorem 3. A weight function w is in A if and only if

(2.16) Meo(w) =  sup /Mgf(n: z)dz < oo.
ey =1

and we have
Ao (W) < Meo(w) < C1()(Aco(w)) ",

where C1(n) is a constant, depending only on n.
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Proof: For the sufficiency we just note that, by the corollary above,
Meo(w) < 00 implies my(w) < oo for p large enough and by Theorem M
it follows that w € A, for p large enough and

Ap(w) < mp(w).

The sufficiency part and the first inequality of the theorem now follow
from (2.14) and Theorem 1 by letting p tend to infinity in this formula.

For the necessity part we assume that w is in Ay, with A (w) = A.
We use the result by Hruséev [5, p. 255}, according to which, for a subset
FE of any cube ¢, we have

|E| 51 w(E) 51 w(E) S L

Q1527 w(@Q) “1+442  w(Q) = 54

Now we can use the estimate in theorem 3 of [10, p. 252] to deduce that
for B > (n + 2)log,(5A4%) = By we have, for any E C Q

|E|\p
2Ql

According to corollary 1, p. 250 of the same paper this implies that w is
in A, for p > By and with

— ( )P

@17)  Ayw) < (542 E=L

- ﬁ )p—l < 5/—1282’60 < (5A2)3n+7 = B
- M0

for p > 30,.
Buckley, [2, p. 9], has shown that the maxirna.l operator is of weak

type (p,p) on LP(w) with weak-norm (C(n)Ap(w)) We use this result
and Marcinkiewicz interpolation theorem (see Torchinsky (9, p. 87] ) to
interpolate in the interval (pg =)38 < 2po < co and find that

Map, < (8¢2)*°C(n)*Bp;y*
Taking into account pg = 38y and the definition (2.17) of B, this implies
mp(w) < C(n)A3"+100  for p > 30,.

Hence
Meo(w) < Cl(n)(Aw(w))ISU“‘ [ ]
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3. The case of non-increasing functions on (0, ).

3.1. Notations and definitions.

For non-negative, non-increasing functions on (0,00) the maximal
functions M, f and My f satisfy

T

M,f(z) = (f fa(t)dt)s and  Mof(z) = exp][In f(t)dt.
0

0

Arifio and Muckenhoupt [1, p. 727-734] have shown that in this case
and for 1 < p < oo a necessary and sufficient condition on w to secure
that there exists a constant C, such that

(3.1) / (M@ ulalde < C [ Pa)o(e)is
0 0

is valid, for all non-negative, non-increasing functions in LP(w) on (0, c0),
is the existence of a constant B, such that

(3.2) ]uﬂdt < E/w(t}dt , Yz >0.
174 TP
x o

They also proved that a sufficient condition on w is
(63)  suplf w(Od] [ w(O) Hrap = Ay(w) < oo
z>0
0 0

and that this condition is also necessary if the weight function w is non
decreasing.

We will denote by Bp,0 < p < co and A4;,,1 < p < oo the class of all
functions w satisfying (3.2) and (3.3) respectively. (For p = 1 the second

factor to the left in (3.3) should be interpreted as ess sup ﬁlﬁ) We also
0<t<z
say that w lies in B, with constant By (w) if By(w) is the minimal constant

for which (3.2) is valid. Let p tend to infinity in (3.3). This natural
way leads us to the definition of A’_ as those non-negative, measurable
functions w that satisfy

T

21;[3[][w(t}dt] [expj[ln ﬁdt] = A (w) < oo
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In analogy with the n-dimensional case we define, for p > 0
my(w) = sup/M%f w(x)dz,
0

but now the supremum is taken over all non-increasing f on (0, co0) with
Il f ll(w)= 1. We note that my,(w) is the infimum of all C such that (3.1)
holds. Correspondingly we define

i) = sup [ Mos(@ywiayas,
]

where the supremum is taken over the same class.

3.2. The analogy between A, and B,.

In Lemma (2.1) of [1] there is a proof, of the fact that w € B, implies
that w € B,_. for some € > 0 (a similar result is in Strémberg-Torchinsky
[8, p. 12]). We give here a short and sharp proof of that lemma.

Lemma 3. Suppose that 0 < p < oo and w is a function in By, such
that

Tw)., B [
(3.4) / i< = f w(t)dt, Vo> 0.
Ed 0

Then w € By for e < ghy i.e. w € By, forpy < 555p and By(w) <
mﬁgﬁ. The upper bound of € is best possible.

Proof: Choose € < gh7, multiply (3.4) by z¢~! and integrate from
r to infinity. A change of the order of integration on both sides then

results in
Efw(t)( €)dt < _6(/ :"p(f / ()dt)

r

which gives us, after once more using (3.4)

o0 T

1B Tul), rTe®,, B [,
(E p—e)ftp—edtse/ m dt+(p—e)rr—e0/ (t)dt <
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This is to say that w € By for € < &5 and By(w) < p——fﬁa-—l)‘

To show that the limit is best possible we just take w(z) = %, a > —1,
and p > a+1. Then the B,-constant of w is pf;‘ll . By the result above
we see that w € B, for

p
M>P~ 7

=a+ 1.
—a-T1 +1

Of course no smaller p’s are possible, if the left side of (3.6) is to con-
verge. R

We will extend the results of [1] to the geometrical maximal function
Myf (and also in some cases to 0 < p < 1. To make apparent the
parallellity with the ordinary Ap-classes, we introduce a class By. It
will soon become evident that the corresponding to the definition of Ao
would be to define B, as the class of weight functions, for which there
exist two constants » < 1 and k& > 0 such that

This is equivalent to the following definition, which is more easy to grasp.

Definition. B is the class of non-negative, locally integrable func-
tions w on (0,00) with the property that there exist two constants
r,0<r<1and C > 0 such that

xT

(3.5) C | w(t)dt > | w(t)dt, Vz >0.
[<ouz]

Remark. We could equally well have made the definition with r = %
instead of being arbitrary. This would seemingly be more restrictive
for r > % However if w satisfies our definition with an r > % we can
iterate the inequality approximately (—log,r)~! of times to see that it

is satisfied for r = %, but with a larger C.

Definition. The doubling constant, d(w) is the minimum of all C
such that (3.5) is valid with r = 3. If d(w) is finite we will say that w
has the doubling property.

It is immediately evident from the definition that B,, C B, and also
that By(w) < By, (w) if p1 < p.
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A function in B, obviously has the doubling property. (Just relax in
the definition (3.2} by reducing the interval of integration on the left in
(3.2) to become (z,2z). However, we can do much better and obtain an
estimate of C in (3.5), an estimate that depends on r and also can be
used as an alternative characterization of B,. (Compare corollary 1, p.
250 of [10].)

Theorem 4. A weight function w is in By, if and only if there exist
constants p1, 0 < py < p, and C such that
t T
(3.6) [ w(u)di > C(i—)”‘ / wuw)du, for x>t
a .

(2]

If Cp, (w) is the mazimal C for which (3.6) holds, then

___pr
Cp (W)(p—p1)

Proof: Suppose first that w € B, and put B,(w) = B. By the preced-
ing lemma we know that, for p; = 2B£lp < p | w € B, with constant

1 2B+1
> _— <
Cp, (w) 2 B (0) + 1 for py > p and Bp(w) <

2B. Thus o
z 0 z2k+!
ZB/w(u)du > :rm/ w(u )du > 22 (k+1)py / (u)du >
0 T k=0 22k
N— z2k+?
Z —(k+1)py / (u)du.
k=0 z2k
This gives, for every z > 0,
z2* z2™
(1—27P1) Z 9~k /w(u Ydu + 2-NP / w(u)du <
0 0

< (2B +27P) fw(u)du.
0

Therefore, taking only the last term on the left into account and replacing
z by 27V we find

z2~N

/w(u)du > mojw(u)du.

0
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For 22~ (N+1) < ¢ < 22N we have

£~ (N+1)

jw(u)du > / w(u)du > m jw(u)du >
0 0

0
x

1

- 1(%)?1 f w(u)du.
0

2

Thereby we have proved the necessity of the condition and the first
inequality between the constants.

To prove the suffiency we assume p; < p and

xT

]
[w(u)du > C(%)”1 /w(u)du , for 0<t<z.
0 0

Multiply this inequality by ¢t~P*zPr~1-P, We get

t z

1 1
W/W(u)du > o /w(u)du‘
0 0

This inequality is valid for 0 < ¢t < z. We integrate with respect to z
over the interval (t,00) and change the order of integration in the right
member. The result is

t

1 1 tw(’u) 1 ww(u)
s [z [ [

0 0 t

Hence
[e'+] t

/wg)du < C-(pp— o) t%o/w(u)du.

t

This completes the proof of the necessity and the second inequality be-
tween the constants. W

We complete the analogy by

Theorem 5.
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Proof: Suppose w € B, for some p > 0. It is immediate from Theorem
4 that w satisfies the requirements for being in By,. Thus

B 2 | By

p>0

Suppose on the other hand that w € By, with d(w) = C, i.e.

2z T
fw(t)dt < C]w(t)dt
0 0
This means that
2z
f (t)dt < (C —1) /w
T 0
Thus
2!:-;—1I
w(t 1
/ it = Z / zkp p / w(t)dt < (C —1)
z 2k z
= 1 © ok 2(C-1) ]
1 -1
> s [ <(C-DY o f it = oo /w(t)dt
k=0 0 k=0 0 0

for p > log, C. So w € B, for p > log, C and

Bw C | J By.

p>0
and the proof is complete. W

! H = !
3.3. m, as limit case of My,

In this section we will for convenience use a special notation, Lg(w),
for the set of all non-negative, non-increasing functions in L(w).

Theorem 6. M, is a bounded operator on Lg(w), (i.e. m., < o0), if
and only if w € By and

d(w) < (2mg(w) = 1)* < Co(d(w))™*,
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where Cy 15 an absolute constant.

Proof of part 1: We give first a short proof of the first part of the
theorem without estimates of the constants. Suppose therefore that My
is a bounded operator on Lg(w). Since M1 f(z) tends monotonically

P

to Mo f(z) as p tends to infinity, it is an immediate consequence of the
monotone convergence theorem that
pli{lgo m,(w) = me,(w) < oo.

Thus m;,(w) < oo for p large enough. By [1] this implies that w € By, for
p large enough and then, by Theorem 5, w € B

If on the other hand w € By, then, by Theorem 5 again, w € B,
for p large enough and the result in [1] implies m(w) < oco. Hence
Meo(w) < 00, which means that My is bounded on Lg(w). B

We will now present a complete proof of Theorem 6 that does not
rely on the results of Arino and Muckenhoupt, but is based on another
technique. It has the advantage that it gives estimates of m{,(w) in
terms of d(w). To complete the proof we need the following lemma.

oc
Lemma 4. Suppose Y. ax is a positive series with sum A. Form a
]
new series with the convoluted terms

by = Z %

m=—00
Then
bk > ax, 2‘555’;’%525 and i b < 2:1,4.
k=—o00
Proof:
b = -+ Qr—22" % 4 ko127 + ak + Q41272 + Qg2

Now the two first properties are trivial and the third follows from a
change of order of summation. W

Proof of Theorem 6: Suppose first that m[ (w) = K < co. Then

(3.7) /Mof(x)w(x)dx < K/f(m)w(x)dz, Vf € La(w).
0 0
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Choose a in 0 < a < 1 and put

L,
f(z)=4q a,
0,
Then f € Lg{w) and
1,
Mof(z) =< a'~

0,

We apply formula (3.7) and obtain

T 2r
fw(x)dx+]a1"5
0 T

Thus

2r
a/(a‘i - K)uw(
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O<z<r
r<e<2r
x> 2r.

O<z<r

I or<z<2r

H

x> 2r.

w(z)dz < K(/Tw(x.)dm—k 7&{&(:3)(13:)

dx({K—l/w

0

We choose a = (2K)~2. Since £ > 1 we obtain

2r

T

/w(x)dx <4AK(K - l)/w(x)d:c,

e

0

which means that w € By, with doubling constant at most (2K —1)2. It
also follows from this inequality that K has to be strictly greater than
1, otherwise w has to be identically zero

Suppose on the other hand that w € By, with doubling constant C.

Choose the sequence {ay }°°,

Qg

such that

/w(z)dz =C*.

0

Using the doubling property we see

Qi je

Qr+1

ck= /w(m)dx =C /

0 0

2ap41

w(z)dz > /w(m)dm

0
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Therefore
(3.8) ax > 2041

Take an arbitrary f € L4(w) and put

ff (z)w(z)de =

Since f is non-increasing this means that

Ok

K2 Y flaw) [ w@is=S22 3 fac

k=—o0 =—
Qk+1 . >

Now we can use Lemma 4 with ax = f(ax)C~* and obtain b, > a; with

We can define a new non-increasing function g with g(z) > f(z) and
g(ax) = C*b;. Obviously Mog > My f. Jensen’s inequality gives

.

Mog(aw) = exp f Ing(a)dz < ()[ } (@)da)? <

1]

1 b L
= (5 2 3" 9% (@ms1)(@m — am1))? < (— Z Co b7 0m)P.

=k

By (3.8), the terms in the last series of this estimate decrease geometri-
cally with a quotient that is at most C%2%2-!. Thus

1
Mo f(ou) < Ck+1bk+1(f)p;
1-C?272"1

if p is large enough. We are still free to choose ¢ and p. We can for
example choose € = 1 and p = 3InC if C > €. If C < €® we take
p = 10. Some elementary calculations then show that

Mo f(ax) < DC¥H1b 1 C3 7,
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where D is an absolute constant. Therefore

-1 &
_(_)6'_ E Mof(ak_,.l)C_kaHleCs'T:

k=—0oo

/Mof(:.c)w(:c)da: <D

=DC*"(C—1)) b < EC*'K,

where F is an absolute constant. We deduce
mL, (w) < EC*7

and the theorem is proved. B

Now that we have the tools, it is tempting to prove theorem (1.7) in
[1], for 0 < p < co. We will use Theorem 4 and the technique of Theorem
6.

Theorem 7. For 0 <p < oo, M: is a bounded operator on L4(w) if
and only if w € By,

Proof: p = oo is already treated in Theorem 6.

In the easy necessity part, we have nothing new to offer. It follows
directly by chosing f = x(o,z) in (3.1).

For the sufficiency part we suppose that w € B, with By(w) = B. In
Theorem 4 we take € = Z(‘B% and put p; = p—2¢ and p; = p—e€. The
conclusion is that B, (w) < 2B and

T
fpl

z -_;-Pl—Pz g
> = rP2 fi <1.
/w(u)du_2B+1/0 w(u)du =r 2B+1]0 w(u)du for r<1
0

We now choose 79 < 1 so small that 75> "?*(2B + 1) = 1. This gives

QT

f w(u)du > r2? ] w(u)du, Yz > 0.
J 0
ag
Put 782 = Cy' and choose {ax}*, so that [ w(u)du = Cy*. Then we
0

have
Gkl
Qg Q41 To

fw(x)dﬂ::C’u / w(z)dz > fw(x)da:
0

0 0
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and therefore
(3.9) Q41 < ToQk.

Now we can proceed as in the proof of Theorem 6 (with C replaced by
Cy) to find

M3 fax) < Mig(ak) < Z Co” bE10m)P.

By the definition of Cy and (3.9) we deduce that the terms of this series

B2
decrease geometrically with a quotient that is at most 7y, ”* 25. We
have not yet decided what € > 0 (in Lemma 4) should be. We just have

to take € < (p2 — p) m‘l to be sure of obtaining geometrical decreasing.

Take for instance € equals half that quantity. Then we have
M, f(ax) < C(B,p)Cg " bes,
P
where C(B, p) is a constant, depending only on the indicated quantities.

This gives

/Ml f(&? di < C B P ZCU+2I)’°+ZCO < Cl(B p)K =

B,p) / f (@)w()dz,

by which we have proved the sufficiency part of the theorem. W

3.4. A/ and non-decreasing weights.

We end this paper by proving two theorems, the first of which is an
extension to g = oo of Theorem (1.10) in [1]. The second is an analogy
with Theorem 5 for non-decreasing weights w.

Theorem 8. Ifw € A, then my(w) < oo for p large enough.

A non-decreasing w lies in AL, if and only if m_ (w) < oo and then
Mo (W) 2 Ao (W)

Theorem 9. For w non-decreasing we have

! /
weEAL P WE UAp.

p>1

The proofs of these two theorems are based on the following lemma:
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Lemma 5. Suppose that w € AL with constant K. Then, for every
T > 1 there is a constant C, depending on K and r, such that

T

x
/w(t)dtSC/wtdt
0

0
Forr =2, C=4K3 will do.
Proof: Choose an arbitrary r > 1. For every = > 0, the assumption
and Jensen’s inequality give

TT rr 1 T T 1
. —dt < < —
(3.10) fw(t)dtexp][ln o) dt < K < wa(t)dtexpf]n o0 dt
0 0 0 0

Put

w(t)dt = ca and /w(t)dt =q.
0 0
Then

T

/ w(t)dt = (c— D)o and 7( w(t)dt:g:ﬂ:.

T

What we want to estimate is the exponential of

T

1 ro 11 r—1 f 1
In—-dt—4+In—dt=— | In—dt— —— [ In——dt =
7{ "o )[ Ok m/ T R / 1o
0 0 0

@
T

- Tr;l(j(mc%dt —jln ﬁdt).

T

We now treat the two members on the left, the first by Jensen’s inequality

The second satisfies by assumption

T

1 [ 1 '
exp][ln —dt < Ex i.e. fln —dt<InK+In E.
w(t) o w(t) o
0
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We therefore obtain

r—1. 1. 1 [
T{fln mdt—ﬂfln m.dt) > " In K1)

and inequality (3.10) gives

<K
ke = K
or 1
T oe— r'l
< K27,

For any 7 > 1 we see that ¢ cannot be arbitrarily large, but has to

be smaller than some number, which depends on r and K. r = 2,
. : 2 y

for example, gives the doubling constant d(w) < KT. This proves the

lemma. B

Proof of Theorem 8: Suppose that w € AL, with constant K. By
Lemma 5 , w € By, with d(w) < KTJ. By Theorem 6, m. (w) < oco.

Suppose now that w is a non-decreasing function with finite m/_(w).
Then we use the inequality -

/ Mof(tw(t)dt < m’_(w) ] F(tw(t)dt

with the non-increasing function f = % x(0,z) to obtain

: ]exp(f In — ds]w(t)dt <ml (w)z.

Since w is non-decreasing and ¢ < z in the integration

t z

1 1
g[lnmds Z-flnw(s)ds

€T T

fw(t)dt exp][ln idt < ml,(w),
0 .

] w®

This gives
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and thus
A (W) < my(w).

Thereby we have proved Theorem 8. B

Proof of Theorem 9: This is now more or less a corollary. By Jensen’s
inequality Ay (w) < Aj(w) and therefore A, C Ay, Vp > 1. On the
other hand, by Lemma 5 and Arino-Muckenhoupt’s result

we A, = {weB, forsomep>1}=we A,

Therefore, for non-decreasing w , A;, C |JA; and the proof is com-
plete. ®

It is natural to ask whether w € A, implies w € A}, for some p > 1,
i.e. if Theorem 8 could be strengthened to comprise also the case of
weight functions that are not non-decreasing. This, however, is not true.
We can for example take

exp————, 0<z<]l,
w(m) = P (1-z)
1, z> 1

This function clearly lies in A, but not in Aj, for any p > 1, but it is

easy to see that Bp(w) is finite for every p > 1 and therefore m;,(w) < oo

for every p > 1. This example also shows that Al (w) # lim A} (w).
p—o0
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