WEIGHTED NORM INEQUALITIES FOR MAXIMAL FUNCTIONS FROM THE MUCKENHOUPT CONDITIONS

Y. RAKOTONDRATSIMBA

Abstract _____

For some pairs of weight functions u, v, which satisfy the wellknown Muckenhoupt conditions, we derive the boundedness of the maximal fractional operator M_s $(0 \le s < n)$ from L_v^p to L_u^q with q < p.

0. Introduction

Let u, v weight functions on $\mathbb{R}^n, n \ge 1$ (i.e. nonnegative locally integrable functions). The fractional maximal operator M_s $(0 \le s < n)$ is given by

$$(M_sf)(x) = \sup\left\{|Q|^{rac{s}{n}-1}\int_Q |f|; \quad Q ext{ a cube with } Q
i x
ight\}$$

Throughout this paper Q will denote a cube with sides parallel to the co-ordinate planes.

Let $1 < p, q < \infty$, with $\frac{1}{p} - \frac{1}{q} \leq \frac{s}{n}$. It is fundamental in analysis to give a characterization of the pairs of weights (u, v) which satisfy

(0) $||M_s f||_{L^q_u} \le C ||f||_{L^p_v}$ for all functions f, C = C(s, n, p, q, u, v) > 0.

Here $||g||_{L^r_w}$ denotes $\left(\int_{\mathbb{R}^n} |g|^r w \, dx\right)^{\frac{1}{r}}$, with dx the Lebesgue measure on \mathbb{R}^n .

In the case of $1 Sawyer [Sa2] showed that the inequality (0) holds if and only if <math>(u, v) \in S(s, n, p, q)$ i.e

$$\|(M_s v^{-\frac{1}{p-1}} \mathbb{I}_Q) \mathbb{I}_Q\|_{L^q_u} \le C \|v^{-\frac{1}{p-1}} \mathbb{I}_Q\|_{L^p_v} = \|\mathbb{I}_Q\|_{L^p_v^{-\frac{1}{p-1}}} < \infty$$

for all cubes Q, here S = S(s, n, p, q, u, v) > 0. A known necessary but not sufficient condition for (0) [**Mu**] is $(u, v) \in A(s, n, p, q)$ i.e

$$|Q|^{\frac{s}{n}+\frac{1}{q}-\frac{1}{p}}\left(\frac{1}{|Q|}\int_{Q}u\right)^{\frac{1}{q}}\left(\frac{1}{|Q|}\int_{Q}v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}} \le A \text{ for all cubes } Q,$$

with A = A(s, n, p, q, u, v) > 0.

As we will recall in Section 2, this condition is verified more easily than the first one. Pérez [**Pe**] (see also [**Sa1**]) proved that $(u, v) \in A(s, n, p, q)$ implies the inequality (0) whenever $d\sigma = v^{-\frac{1}{p-1}} dx \in A_{\infty}$ i.e. for some $\delta > 0$:

$$\frac{|E|_{\sigma}}{|Q|_{\sigma}} \leq \left(\frac{|E|}{|Q|}\right)^{\delta} \text{ for all cubes } Q \text{ and for all measurable sets } E \subset Q$$

here $|E|_{\sigma}$ denotes $\int_{Q} \sigma$. In fact the equivalence between (0) and $(u, v) \in A(s, n, p, q)$ is also valid with a weaker condition on $d\sigma$, for instance in **[Ra3]** it was proved that it is sufficient $d\sigma \in B_{\delta}$ i.e.

$$\frac{|Q'|_{\sigma}}{|Q|_{\sigma}} \leq \left(\frac{|Q'|}{|Q|}\right)^{\delta} \text{ for all cubes } Q, \, Q' \text{ with } Q' \subset Q$$

with $\left[1-\frac{s}{n}\right] \leq \delta$. As we will see in Section 2, measures $d\mu$ can be found such as $d\mu \in B_{\delta}$ but $d\mu \notin A_{\infty}$. The condition $\frac{1}{p} - \frac{1}{q} \leq \frac{s}{n}$ can be derived from the inequality (0) by the Lebesgue differentiation theorem. Hence for s = 0 (M_0 is the Hardy-Littlewood maximal operator), the inequality (0) must only considered for $q \leq p$. The case p = q was studied by Muckenhoupt [**Mu**] for u = v and by Sawyer [**Sa2**] for general weights u, v. For q < p, a characterization of the pairwise of weights (u, v)satisfying the inequality (0) was given by the author [**Ra1**]; but the condition used is difficult to check.

Therefore $1 < q < p < \infty$ a natural question is: "does $(u, v) \in A(s, n, p, q)$ imply (0) whenever $d\sigma \in A_{\infty}$. In this paper we give a positive answer with the additional assumptions $u \, dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} \, dx \in B_{\rho}$ with $0 < \nu$, ρ and $\left[1 - \frac{s}{n}\right] < \rho\left(1 - \frac{1}{p}\right) + \nu \frac{1}{p}$.

We state our main result in Section 1. In Section 2 we give some useful remarks and observations about the weight condition B_{ρ} . The proof of our main result is in Section 3. A paper of Verbitsky [Ve] concerning the characterization of the problem (0) with q < p and for general weights u, v appeared when this manuscript was written.

Acknowledgement. The author would like to thank the referee for his helpful comments and suggestions.

1. The main result

To include many classical maximal functions, we deal with the operator

$$(M_{\Phi}f)(x) = \sup \left\{ \Phi(Q)|Q|^{-1} \int_{Q} |f|; \quad Q \text{ a cube with } Q \ni x \right\}$$

where Φ is a map defined on the set of cubes, taking its value in $]0, \infty[$ and satisfying the following growth conditions:

 \mathcal{H}_1 there is C > 0 such as

$$\Phi(Q_1) \leq C\Phi(Q_2)$$
 for all cubes Q_1, Q_2 with $Q_1 \subset Q_2$;

$$\mathcal{H}_2$$
 there are $C_1, C_2 > 0, \lambda, \eta \ge 0$ such as
 $C_1 t^{n\lambda} \Phi(Q) \le \Phi(tQ) \le C_2 t^{n\eta} \Phi(Q)$ for all cubes Q and all $t \ge 1$.

When $\Phi(Q) = 1$ the Hardy-Littlewood maximal operator is obtained. The fractional maximal operator M_s (0 < s < n) is given by $\Phi(Q) = |Q|^{\frac{s}{n}}$. Maximal operators connected to the Bessel potential operator [**Ke-Sa**] are defined by $\Phi(Q) = \int_0^{|Q|^{\frac{1}{n}}} \varphi(s) ds$; and generally M_{Φ} arises in studies of other potential operators [**Ch-St-Wh**].

Let $1 < p, q < \infty$. We say that the inequality $P(M_{\Phi}, p, q, u, v)$ holds for a constant C > 0 when

 $||M_{\Phi}f||_{L^q_u} \leq C ||f||_{L^p_u}$ for all functions f

and we write $(u, v) \in A(\Phi, p, q)$ if for some constant A > 0

$$\Phi(Q)|Q|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{1}{|Q|}\int_{Q}u\right)^{\frac{1}{q}}\left(\frac{1}{|Q|}\int_{Q}v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}} \le A \text{ for all cubes } Q.$$

In this paper we always adopt the convention $0.\infty = 0$. By $P(M_{\Phi}, p, q, u, v)$ and the Lebesgue theorem, we see that if $u \neq 0$ it is necessary to suppose

$$(\mathcal{H}_3) \qquad \qquad \lim_{|Q|\to 0} \left(\Phi(Q) |Q|^{\frac{1}{q} - \frac{1}{p}} \right) < \infty$$

For instance \mathcal{H}_3 is satisfied if $\frac{1}{p} - \frac{1}{q} \leq \lambda$. For $\Phi(Q) = 1$, the hypothesis \mathcal{H}_3 implies $q \leq p$, and for $\Phi(Q) = |Q|^{\frac{s}{n}}$ it means $\frac{1}{p} - \frac{1}{q} \leq \frac{s}{n}$.

Let $\rho > 0$ and w be a weight function. As in Section 0, we write $w \, dx \in B_{\rho}$ if there is C > 0 such as

$$rac{|Q'|w}{|Q|w} \leq \left(rac{|Q'|}{|Q|}
ight)^{arepsilon} ext{ for all cubes } Q,\,Q' ext{ with } Q' \subset Q.$$

Now our main result can be stated:

Y. RAKOTONDRATSIMBA

Theorem.

Let $1 < p, q < \infty$ and Φ be a function which satisfies $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$.

- A) If the inequality $P(M_{\Phi}, p, q, u, v)$ holds for a constant C > 0 then $(u, v) \in A(\Phi, p, q)$ with the constant A = C.
- B) Let $1 < q < p < \infty$ and $d\sigma = v^{-\frac{1}{p-1}} dx \in A_{\infty}$. Moreover assume $u \, dx \in B_{\nu}, v^{-\frac{1}{p-1}} \, dx \in B_{\varrho}$ with $0 < \nu, \varrho$ and $(1-\lambda) < \varrho \left(1 \frac{1}{p}\right) + \nu\left(\frac{1}{p}\right)$. If $(u, v) \in A(\Phi, p, q)$ then the inequality $P(M_{\Phi}, p, q, u, v)$ holds for a constant Ac, $c = c(\Phi, n, p, q, u, v) > 0$. The part B) is also valid when $d\sigma \in B_{\varrho}$ with $1 \lambda \leq \varrho$.

Actually the constant c depends on the fact that $u dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} dx \in B_{\varrho}$ but not directly on u and v. The result stated in the introduction is now easily derived from the theorem by taking $\Phi(Q) = |Q|^{\frac{s}{n}}$.

Let 0 < s < n and I_s the fractional integral operator defined by

$$I_s = \int_{\mathbb{R}^n} |x - y|^{s - n} f(y) \, dy.$$

In the case of $1 it is known [Pe] that the inequality <math>P(I_s, p, q, u, v)$, i.e.

 $\|I_s f\|_{L^q_u} \leq C \|f\|_{L^p_u}$ for all nonnegative functions f

holds if and only if $(u, v) \in A(s, n, p, q)$ whenever $u \, dx$, $v^{-\frac{1}{p-1}} \, dx \in A_{\infty}$. By the results in **[Ra2]** and **[Ra3]** this equivalence also holds if $u \, dx \in B_{\nu} \cap D_{\infty}$, $v^{-\frac{1}{p-1}} \, dx \in B_{\varrho}$ with $1 - \frac{s}{n} < \nu$ and $1 - \frac{s}{n} \leq \varrho$ (see also **[Pe]** for such a result). The condition $w \, dx \in D_{\infty}$ means:

$$|2Q|_w \leq C|Q|_w$$
 for all cubes Q.

2Q is the cube with the same center as Q but the edge lenght expanded twice. As a consequence of our theorem, for 1 < q < p we have

Corollary.

Let $1 < q < p < \infty$, 0 < s < n and u dx, $v^{-\frac{1}{p-1}} dx \in A_{\infty}$. Moreover assume $u dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} dx \in B_{\varrho}$ with $0 < \nu, \varrho$ and $\left(1 - \frac{s}{n}\right) < \varrho \left(1 - \frac{1}{p}\right) + \nu \left(\frac{1}{p}\right)$. Then the inequality $P(I_s, n, p, q, u, v)$ holds if and only if $(u, v) \in A(s, n, p, q)$. This equivalence also holds when $u dx \in B_{\nu} \cap D_{\infty}$, $v^{-\frac{1}{p-1}} \in B_{\varrho}$ with $1 - \frac{s}{n} < \nu$ and $1 - \frac{s}{n} \leq \varrho$.

For seeing this, it is sufficient to remind that the Muckenhoupt-Wheeden inequality [Mu-Wh]

$$||I_s f||_{L^q_u} \le C ||M_s f||_{L^q_u}$$

holds whenever $u \, dx \in A_{\infty}$. This is also the case when $u \, dx \in B_{\nu} \cap D_{\infty}$ with $1 - \frac{s}{n} < \nu$ (see [**Pe**] or [**Ra2**]).

2. On $A(\Phi, p, q)$ and B_{ϱ} conditions

Now we also assume the functions Φ defined on the set of balls by $\Phi(B) = \Phi(Q)$ whenever Q is the smallest cube which contains the ball B. A weight function w satisfies the condition C when there are constants c, C > 0 so that

$$\sup_{\frac{1}{4}R < |x| \le 4R} w(x) \le \frac{C}{R^n} \int_{|y| \le cR} w(y) \, dy.$$

Many of usual weight functions w satisfy this growth condition, since nonincreasing and nondecreasing radial functions are included. Condition $(u, v) \in A(\Phi, p, q)$ for u and v satisfying C can be easily realized, mainly for radial weights. Indeed we have

Proposition 2.1.

Let 1 < p, $q < \infty$ and $\frac{1}{p} - \frac{1}{q} \leq \lambda$. Assume u, v satisfying the growth condition C. Then $(u, v) \in A(\Phi, p, q)$ for a constant A > 0 if and only if $(u, v) \in A_0(\Phi, p, q)$; i.e

$$\Phi(B(0,R))R^{n\left(\frac{1}{q}-\frac{1}{p}\right)}\left(\frac{1}{R^{n}}\int_{|y|< R}u\right)^{\frac{1}{q}}\left(\frac{1}{R^{n}}\int_{|y|< R}v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}} \le A_{0}$$

for all R > 0, where $A_0 = A \times c(\Phi, n, p, q, u, v)$.

As an example for $0 \leq s < n$, $\frac{1}{p} - \frac{1}{q} \leq \frac{s}{n}$, $-n < \alpha < n(p-1)$, $ps - n < \alpha$, $\beta = \frac{q}{p}(n+\alpha) - qs - n$, $u(x) = |x|^{\beta}$, $v(x) = |x|^{\alpha}$ then $(u,v) \in A(s,n,p,q)$.

Now let us discuss how we can verify in practise, for usual weights the condition $w \, dx \in B_{\varrho}$, $\varrho > 0$. To do this, we first recall some known classes of weights.

The Muckenhoup class A_p .

Let us recall that $w \, dx \in A_p$ $(1 if and only if <math>(w, w) \in A(0, n, p, p)$. It is known [Ga-Rb] that $A_{\infty} = \bigcup_{r>1} A_r$.

The reverse Holder class RH_r .

We write $w \, dx \in RH_r$ $(1 < r < \infty)$ if and only if

$$\left(\frac{1}{|Q|}\int_{Q}w^{r}\right)^{\frac{1}{r}} \leq R\left(\frac{1}{|Q|}\int_{Q}w\right) \text{ for all cubes } Q \quad C = C(w) > 0.$$

The classes RH_r and A_p are related; for instance $w dx \in RH_r$ if and only if $w^{-1} dx \in A_{\frac{r}{r-1}}$. If $w dx \in A_p$ then it is known [**Ga-Rb**] that $w dx \in RH_{1+\rho}$ for some $\rho > 0$; the converse is also true.

The reverse doubling class RD_{ϱ} . We write $w \, dx \in D_{\rho} \ (\varrho > 0)$ if and only if

$$Ct^{n\varrho}|Q|_w \leq |tQ|_w$$
 for all cubes Q and all $t \geq 1$, $C = C(w) > 0$.

If $w \, dx \in RH_{\frac{r}{r-1}}$ then, by the Holder inequality, $w \, dx \in RD_{\frac{1}{r}}$. Suppose $w \, dx \in D_{\infty}$ with the doubling constant D, i.e

$$|2Q|_w \leq D|Q|_w$$
 for all cubes $Q \quad D = D(w) > 1$,

then [St-To] $w \, dx \in RD_{\varrho}$ for some $\varrho > 0$. Precisely [Ra3] we can take $\varrho = \frac{1}{\ln 2^n} \ln \frac{D^c}{D^c - 1}$ where $c = 4 + \frac{\ln 3}{\ln 2}$. But the reverse doubling condition RD_r is weaker than the doubling condition D_{∞} (take for instance $w(x) = e^{|x|}$).

Thus it is clear that $w \, dx \in A_{\infty}$ implies $w \, dx \in B_{\varrho}$ for some ϱ . On the other hand we can state

Proposition 2.2.

If $w \, dx \in B_{\varrho}$ for some $\varrho > 0$ then $w \, dx \in RD_{\varrho}$. Conversely if $w \, dx \in RD_{\varrho} \cap D_{\infty}$ then $w \, dx \in B_{\varrho}$.

So in practice to obtain $w \, dx \in B_{\varrho}$ it is sufficient to get $w \, dx \in RD_{\varrho} \cap D_{\infty}$. By the above condition $w \, dx \in RD_{\varrho} \ (0 < \varrho \leq 1$, with the precise value of ϱ) can be realized from $w \, dx \in RH_{\frac{1}{1-\varrho}}$ or $w \, dx \in D_{\infty}$. Consequently, it is interesting to know when we have $w \, dx \in D_{\infty}$. It is well known [Ga-Rb] that $w \, dx \in D_{\infty}$ when $w \, dx \in A_{\infty}$. But we can find $w \, dx \in D_{\infty}$ with $w \, dx \notin A_{\infty}$ [Wi]. As a tool for $w \, dx \in D_{\infty}$ Stromberg and Wheeden [St-Wh] proved that $|x|^{\alpha}u(x), \left(\frac{|x|}{1+|x|}\right)^{\alpha}u(x) \in D_{\infty}$ when $u \, dx \in RD_{\varrho} \cap D_{\infty}$ and $\alpha > -np$. By adapting an argument in [St-Wh], this result can be extended for weights $w(x) = \theta(|x|)u(x)$ where $u \, dx \in RD_{\varrho} \cap D_{\infty} \ (\varrho > 0)$, and θ essentially constant on annuli and satisfying a condition like: $\sum_{k>0} 2^{-kn_{\varrho}}\theta(2^{-k}L) \leq \theta(L)$ for all L > 0.

3. Proofs of results

Our main theorem is a direct consequence of the inequalities (3.1), (3.2), (3.3) in the following propositions.

Proposition 3.1.

Let $1 < q < p < \infty$. Assuume Φ be a function which satisfies hypotheses \mathcal{H}_1 , \mathcal{H}_2 , \mathcal{H}_3 . Let define

$$\Theta(x) = \sup\{\Phi(Q)|Q|^{-1}|Q|_{\sigma}^{1-\frac{1}{p}}|Q|_{u}^{\frac{1}{p}}; \quad Q \text{ a cube with } Q \ni x\},$$

 $d\sigma = v^{-\frac{1}{p-1}} dx$ and $\tilde{u}(x) = \Theta^{-p}(x)u(x)$. Then $\tilde{u} \in L^1_{\text{loc}}(\mathbb{R}^n, dx)$ and

$$(3.1) \|M_{\Phi}f\|_{L^q_u} \le \|M_{\Phi}f\|_{L^p_u} \|\Theta\|_{L^r_u} \text{ for all functions } f,$$

where $r = \frac{qp}{p-q}$.

Proposition 3.2.

Let $1 and <math>\tilde{u}$ defined as above. Assume $d\sigma \in A_{\infty}$ or $d\sigma \in B_{\varrho}$ with $1 - \lambda \leq \varrho$ (λ is the exponent in the hypothesis \mathcal{H}_2). Then there is $c = c(\Phi, n, p, q, u, v) > 0$ such that

(3.2)
$$\|M_{\Phi}f\|_{L^p_{\omega}} \leq c\|f\|_{L^p_{\omega}} \text{ for all functions } f.$$

Proposition 3.3.

Let $1 < q < p < \infty$. Assume

- i) Φ be a function which satisfies \mathcal{H}_1 , \mathcal{H}_2 , \mathcal{H}_3 ;
- ii) $u \, dx \in B_{\nu}, v^{-\frac{1}{p-1}} \, dx \in B_{\varrho} \text{ with } 0 < \nu, \varrho \text{ and } (1-\lambda) < \varrho \left(1 \frac{1}{p}\right) + \nu\left(\frac{1}{p}\right);$
- iii) $(u,v) \in A(\Phi,p,q)$ for a constant A > 0. Then there is $C(\Phi,n,p,q,u,v) > 0$ so that

(3.3)
$$\|\Theta\|_{L^r_u} \le CA \quad r = \frac{qp}{p-q}.$$

Proof of Proposition 3.1:

Let us first observe the locally integrability of the function \tilde{u} . Indeed for each cube Q with $\left(\Phi(Q)|Q|^{-1}|Q|_{\sigma}^{1-\frac{1}{p}}|Q|_{u}^{\frac{1}{p}}\right) > 0$ and for each $x \in Q$:

$$\Theta^{-1}(x) \le \left(\Phi(Q)|Q|^{-1}|Q|_{\sigma}^{1-\frac{1}{p}}|Q|_{u}^{\frac{1}{p}}\right)^{-1} > 0$$

and so

(3.4)
$$|Q|_{\tilde{u}} = \int_{Q} \Theta^{-p}(x) u \, dx \le \left(\Phi(Q) |Q|^{-1} |Q|_{\sigma}^{1-\frac{1}{p}} |Q|_{u}^{\frac{1}{p}} \right)^{-p} < \infty.$$

Note that for $|Q|_u = 0$, by the convention $0.\infty = 0$, we immediatly have $|Q|_{\tilde{u}} = 0$.

Inequality (3.1) comes from the Holder inequality, indeed for $1 < q < p < \infty$ and $r = \frac{qp}{p-q}$ we get

$$\begin{split} \|M_{\Phi}f\|_{L^{q}_{u}}^{q} &= \int_{\mathbb{R}^{n}} \left[(M_{\Phi}f) \tilde{u}^{\frac{1}{p}} \Theta u^{\frac{1}{q}-\frac{1}{p}} \right]^{q} \, dx \leq \\ &\leq \|(M_{\Phi}f) \tilde{u}^{\frac{1}{p}}\|_{L^{p}}^{q} \|\Theta u^{\frac{1}{q}-\frac{1}{p}}\|_{L^{r}}^{q} = \\ &= \|M_{\Phi}f\|_{L^{p}_{x}}^{q} \|\Theta\|_{L^{r}_{u}}^{q}. \end{split}$$

Proof of Proposition 3.2:

First let us note that by (3.4), $(\tilde{u}, v) \in A(\Phi, p, p)$ i.e.

$$\left(\Phi(Q)|Q|^{-1}|Q|^{1-rac{1}{p}}_{\sigma}|Q|^{rac{1}{p}}_{ ilde{u}}
ight)>0 ext{ for all cubes }Q.$$

For $d\sigma \in A_{\infty}$, an easy modification of the proof in [**Pe**] yields to the conclusion (3.2). For $d\sigma \in B_{\varrho}$ with $1 - \lambda \leq \varrho$, we get $(\tilde{u}, v) \in S(\Phi, p, p)$ [**Ra3**] and then by a similar argument as in [**Sa2**] the inequality (3.2) holds for a constant $c = c(\Phi, n, p, \tilde{u}) > 0$.

Proof of Proposition 3.3:

For each R > 0, let us define

$$\Theta_R(x) = \sup\{\Phi(Q)|Q|^{-1}|Q|_{\sigma}^{1-\frac{1}{p}}|Q|_{u}^{\frac{1}{p}}; Q \text{ a cube with } Q \ni x, |Q|^{\frac{1}{n}} \le R\}.$$

The conclusion appears once we obtain

(3.3')
$$\|\Theta_R\|_{L^r_u} \le cA \quad c = c(\Phi, n, p, q, u, \sigma) > 0, \quad r = \frac{qp}{p-q}$$

Then in order to prove (3.3'), we take a cube Q_0 with $|Q_0|^{\frac{1}{n}} = R$. Then

$$\|\Theta\|_{L^r_x}^r = \theta_{1,R} + \Theta_{2,R}$$

where $\Theta_{1,R} = \int_{Q_0} \Theta_R^r u \, dx$, $\Theta_{2,R} = \int_{\mathbb{R}^n \setminus Q_0} Q_R^r u \, dx$.

Estimate of $\Theta_{1,R}$.

Let $x \in Q_0$, Q a cube with $Q \ni x$ and $|Q|^{\frac{1}{n}} \leq R$. Note that $Q \subset (3Q_0)$. Now using i), ii), iii) we get

$$\begin{split} \Lambda(Q) &= \Phi(Q) |Q|^{-1} |Q|_{\sigma}^{1-\frac{1}{p}} |Q|_{u}^{\frac{1}{p}} \leq \\ &\leq c(\Phi, n, \sigma, u) \left(\frac{|Q|}{|Q_{0}|}\right)^{[\lambda-1+\varrho(1-\frac{1}{p})+\nu\frac{1}{p}]} \Lambda(3Q_{0}) \leq \\ &\leq c(\Phi, n, \sigma, u) \Lambda(3Q_{0}). \end{split}$$

Thus $\Theta_R(x) \leq c(\Phi, n, \sigma, u) \Lambda(3Q_0)$, and consequently

(3.5)

$$\Theta_{1,R} \leq c'(\Phi, n, \sigma, u) \left(\Lambda(3Q_0) | 3Q_0 |_u^{\frac{1}{q}} \right)^r = c'(\Phi, n, \sigma, u) \left(\Phi(3Q_0) | 3Q_0 |_{\sigma}^{1-\frac{1}{p}} | 3Q_0 |_u^{\frac{1}{q}} \right)^r \leq c'(\Phi, n, \sigma, u) A^r.$$

Estimate of $\Theta_{2,R}$.

First we can write

$$\Theta_{2,R} = \sum_{k\geq 0} \int_{(2^{k+1}Q_0)\setminus(2^kQ_0)} \Theta_R^r u \, dx.$$

Let $k \in \mathbb{N}$, $x \in (2^{k+1}Q_0) \setminus (2^kQ_0)$ and $Q \ni x$ with $|Q|^{\frac{1}{n}} \leq R$. Then $Q \subset (32^{k+1}Q_0) = (6Q_0)$. As the above computation we have

$$\Lambda(Q) \le c'(\Phi, n, \sigma, u) 2^{-kn[\lambda + \varrho(1 - \frac{1}{p}) + \nu \frac{1}{p}]} \Lambda(62^k Q_0).$$

Next, since $1 - \lambda < \rho \left(1 - \frac{1}{p} \right) + \nu \frac{1}{p}$, then (3.6)

$$\begin{split} \Theta_{2,R} &\leq c'(\Phi, n, \sigma, u) \sum_{k \geq 0} 2^{-kn[\lambda + \varrho(1 - \frac{1}{p}) + \nu\frac{1}{p}]} \left(\Lambda(62^k Q_0) |(62^k Q_0)|_{u}^{\frac{1}{p}} \right)^r \leq \\ &\leq c'(\Phi, n, \sigma, u) A^r \sum_{k \geq 0} 2^{-kn[\lambda + \varrho(1 - \frac{1}{p}) + \nu\frac{1}{p}]} \leq \\ &\leq c'(\Phi, n, \sigma, u) A^r. \end{split}$$

Inequalities (3.5) and (3.6) yield (3.3'), and consequently by a limiting argument we get (3.3).

Proof of Proposition 2.1:

Let us assume the condition $(u, v) \in A(\Phi, p, q)$ holds for a constant A > 0. It is also equivalent to ask (*)

$$\Phi(B)|B|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{1}{|B|}\int_{B}u\right)^{\frac{1}{q}}\left(\frac{1}{|B|}\int_{B}v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}} \leq A' \text{ for all balls } B,$$

here $A' = Ac(\Phi, n, p, q)$.

If $|x_0| \leq 2R$ then $B \subset B(0,3R)$ and hence the first member of (*) is majorized by

$$c(\Phi, n, p, q) imes$$

$$\times \Phi(B(0,3R))(3R)^{n\left(\frac{1}{q}-\frac{1}{p}\right)} \left(\frac{1}{(3R)^n} \int_{|y|<3R} u\right)^{\frac{1}{q}} \left(\frac{1}{(3R)^n} \int_{|y|<3R} v^{1-\frac{1}{p}}\right).$$

If $2R < |x_0|$ then $2^j R < |x_0| \le 22^j R$ for some $j \in N^*$ and hence for each $y \in B : \frac{1}{4}2^j R < |x| \le 42^j R$. Using the growth condition C for u and $v^{-\frac{1}{p-1}}$ it is found c = c(u, v) > 0, C = C(u, v) > 0 such as

$$\left(\frac{1}{|B|} \int_{B} v^{-\frac{1}{p-1}}\right) \le C\left(\frac{1}{(c2^{j}R)^{n}} \int_{|y| < (c2^{j}R)} v^{-\frac{1}{p-1}}\right)$$

 and

$$\left(\frac{1}{|B|}\int_{B}u\right) \leq C\left(\frac{1}{(c2^{j}R)^{n}}\int_{|y|<(c2^{j}R)}u\right).$$

Note that c, C depend on the constants on the growth condition C for u and $v^{-\frac{1}{p-1}}$ but not directly on these weights. Consequently in the case $2R < |x_0|$, the first number of (*) is now majorized by

$$C(\Phi, n, p, q, c, C) 2^{-jn[\lambda + \frac{1}{q} - \frac{1}{p}]} \Phi(B(0, c2^{j}R)) \times \\ \times (c2^{j}R)^{n(\frac{1}{q} - \frac{1}{p})} \left(\frac{1}{(c2^{j}R)^{n}} \int_{|y| < (c2^{j}R)} u \right)^{\frac{1}{q}} \left(\frac{1}{(c2^{j}R)^{n}} \int_{|y| < (c2^{j}R)} v^{-\frac{1}{p-1}} \right)^{1 - \frac{1}{p}}$$

Since $\frac{1}{q} - \frac{1}{p} \leq \lambda$, we can see that inequality (*) is satisfied once $(u, v) \in A_0(\Phi, p, q)$ i.e.

$$\Phi(B(0,R))R^{n\left(\frac{1}{q}-\frac{1}{p}\right)}\left(\frac{1}{R^{n}}\int_{|y|< R}u\right)^{\frac{1}{q}}\left(\frac{1}{R^{n}}\int_{|y|< R}v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}} \le A_{0}$$

for all R > 0, here $A_0 = Ac'(\Phi, n, p, q, u, v)$.

Proof of Proposition 2.2:

Let $w \, dx \in B_{\varrho}$ for some $\varrho > 0$ i.e.

$$\frac{|Q_1|_w}{|Q_0|_w} \leq B\left(\frac{|Q_1|}{|Q_0|}\right)^{\varrho} \text{ for all cubes } Q_0, \, Q_1 \text{ with } Q_1 \subset Q_0.$$

Let Q be a cube and $t \ge 1$. Taking $Q_1 = Q$ and $Q_0 = tQ$ we obtain

$$t^{n\varrho}|Q|_w \le R|Q|_w$$

with R = B, hence $w \, dx \in RD_{\nu}$.

Conversely let $w \, dx \in RD_{\varrho}$ for a constant R > 0. Also if $w \, dx \in D_{\infty}$ then for $Q_1 \subset Q_0$ and for all cubes Q_2 having the same center as Q_1 and with $|Q_2| = |Q_0|$

$$\begin{aligned} |Q_1|_w &\leq R \left(\frac{|Q_1|}{|Q_0|} \right)^{\varrho} |Q_2|_w \leq \\ &\leq R \left(\frac{|Q_1|}{|Q_0|} \right)^{\varrho} |3Q_0|_w \leq \\ &\leq RD|Q_0|_w. \end{aligned}$$

Here D depends on the constant which is in the doubling condition for $w \, dx$. Consequently $w \, dx \in B_{\rho}$ with the constant B = RD.

References

- [Ch-St-Wh] S. CHANILLO, J. O. STROMBERG AND R. L. WHEEDEN, Norm inequalities for potential type operators, *Rev. Mat. Iberoamericana* 3(4) (1987), 311–335.
- [Ga-Rb] J. GARCÍA-CUERVA AND J. L. RUBIO DE FRANCIA, "Weighted norm inequalities and related topic," North Holland Math. Studies 116, 1985.
- [Ke-Sa] R. KERMAN AND E. SAWYER, Weighted norm inequalities for potentials with applications to Scrodinger operators, Fourier transforms and Carleson measure, Ann. Inst. Fourier 36 (1986), 207–228.
- [Mu] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–227.
- [Mu-Wh] B. MUCKENHOUPT AND R. L. WHEEDEN, Weighted norm inequalities for fractional integrals, *Trans. Amer. Math. Soc.* 191 (1974), 261–274.

- [Pe] C. PÉREZ, Two weighted norm inequalities for Riesz potential and uniform L^p weighted Sobolev inequalities, Indiana Univ. Math. J. 39(1) (1990), 31-44.
- [Ra1] Y. RAKOTONDRATSIMBA, Inégalités à poids pour des opérateurs maximaux et des opérateurs de type potentiel, Thèse de Doctorat, 1991.
- [Ra2] Y. RAKOTONDRATSIMBA, On Muckenhoupt and Sawyer conditions for maximal operators, *Publicacions Matemàtiques* 37(1) (1993), 57-73.
- [Sa1] E. SAWYER, Weighted norm inequalities for fractional maximal operators, Proc. CMS 1 (1981), 283-309.
- [Sa2] E. SAWYER, A characterization of a two weight norm inequality for maximal operators, *Studia Math.* **75** (1982), 1–11.
- [St-Wh] J. O. STROMBERG AND R. L. WHEEDEN, Fractional integrals on weighted H^p and L^p spaces, *Trans. Amer. Math. Soc.* **287** (1985), 293–321.
- [St-To] J. O. STROMBERG AND A. TORCHINSKY, "Weighted Hardy spaces," Lecture Notes in Math. 1385, 1989.
- [Ve] I. E. VERBITSKY, Weighted norm inequalities for the maximal operators and Pisier's theorem on factorization through $L^{p\infty}$, Integr. Equat. Oper. Th. 15 (1992), 124–153.
- [Wi] I. WIK, On Muckenhoupt's classes of weight functions, Studia Math. 54 (1989), 245-255.

Université d'Orléans-Département de Mathématiques U.F.R. Faculté des Sciences B.P. 6759 45067 Orléans Cedex 2 FRANCE

Primera versió rebuda el 16 de Març de 1993, darrera versió rebuda el 3 de Febrer de 1994