WEIGHTED NORM INEQUALITIES FOR MAXIMAL FUNCTIONS FROM THE MUCKENHOUPT CONDITIONS

Y. RAKOTONDRATSIMBA

Abstract

For some pairs of weight functions u, v , which satisfy the wellknown Muckenhoupt conditions, we derive the boundedness of the maximal fractional operator M_s ($0 \leq s < n$) from L^p_v to L^q_u with $q < p$.

0. Introduction

Let u, v weight functions on \mathbb{R}^n , $n \geq 1$ (i.e. nonnegative locally integrable functions). The fractional maximal operator M_s ($0 \leq s < n$) is given by

$$
(M_sf)(x)=\sup\left\{\vert Q\vert^{\frac{s}{n}-1}\int_Q\vert f\vert;\quad Q\,\,\text{a cube with }Q\ni x\right\}
$$

Throughout this paper Q will denote a cube with sides parallel to the co-ordinate planes .

Let $1 < p, q < \infty$, with $\frac{1}{p} - \frac{1}{q} \leq \frac{s}{n}$. It is fundamental in analysis to give a characterization of the pairs of weights (u, v) which satisfy

(0) $||M_s f||_{L^q_x} \leq C ||f||_{L^p_x}$ for all functions $f, C = C(s, n, p, q, u, v) > 0$.

Here $||g||_{L^r_w}$ denotes $\left(\int_{\mathbb{R}^n} |g|^r w \, dx\right)^{\frac{1}{r}}$, with dx the Lebesgue measure on \mathbb{R}^n .

In the case of $1 < p \le q < \infty$ Sawyer [Sa2] showed that the inequality (0) holds if and only if $(u, v) \in S(s, n, p, q)$ i.e

$$
\|(M_s v^{-\frac{1}{p-1}} \mathbb{I}_Q) \mathbb{I}_Q\|_{L^q_u} \leq C \|v^{-\frac{1}{p-1}} \mathbb{I}_Q\|_{L^p_v} = \|\mathbb{I}_Q\|_{L^p_{v^{-\frac{1}{p-1}}}} < \infty
$$

for all cubes Q, here $S = S(s, n, p, q, u, v) > 0$. A known necessary but

not sufficient condition for (0) [Mu] is
$$
(u, v) \in A(s, n, p, q)
$$
 i.e

$$
|Q|^{\frac{s}{n} + \frac{1}{q} - \frac{1}{p}} \left(\frac{1}{|Q|} \int_Q u\right)^{\frac{1}{q}} \left(\frac{1}{|Q|} \int_Q v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}} \leq A \text{ for all cubes } Q,
$$

with $A = A(s, n, p, q, u, v) > 0$.

As we will recali in Section 2, this condition is verified more easily than the first one. Pérez [Pe] (see also [Sa1]) proved that $(u, v) \in A(s, n, p, q)$ implies the inequality (0) whenever $d\sigma = v^{-\frac{1}{p-1}} dx \in A_{\infty}$ i.e. for some $\delta > 0$:

$$
\frac{|E|_{\sigma}}{|Q|_{\sigma}} \le \left(\frac{|E|}{|Q|}\right)^{\delta} \text{ for all cubes } Q \text{ and for all measurable sets } E \subset Q
$$

here $|E|_{\sigma}$ denotes $\int_{Q} \sigma$. In fact the equivalence between (0) and $(u, v) \in$ $A(s, n, p, q)$ is also valid with a weaker condition on $d\sigma$, for instance in [Ra3] it was proved that it is sufficient $d\sigma \in B_{\delta}$ i.e.

$$
\frac{|Q'|_{\sigma}}{|Q|_{\sigma}} \le \left(\frac{|Q'|}{|Q|}\right)^{\delta} \text{ for all cubes } Q, \ Q' \text{ with } Q' \subset Q
$$

with $\left[1 - \frac{s}{n}\right] \le \delta$. As we will see in Section 2, measures $d\mu$ can be found such as $d\mu \in B_\delta$ but $d\mu \notin A_\infty$. The condition $\frac{1}{p} - \frac{1}{q} \leq \frac{s}{n}$ can be derived *from the inequality (0) by the Lebesgue differentiation theorem. Hence* for $s = 0$ (M_0 is the Hardy-Littlewood maximal operator), the inequality (0) must only considered for $q \leq p$. The case $p = q$ was studied by *Muckenhoupt* [**Mu**] for $u = v$ and by Sawyer [Sa2] for general weights *u, v.* For $q < p$, a characterization of the pairwise of weights (u, v) *satisfying the inequality (0) was given by the author [Rai]; but the condition used is difficult to check.*

Therefore $1 \leq q \leq p \leq \infty$ *a natural* question is: "does $(u, v) \in$ $A(s, n, p, q)$ *imply* (0) whenever $d\sigma \in A_{\infty}$. In this paper we give a positive answer with the additional assumptions $u dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} dx \in B_{\rho}$ with $0 < \nu, \rho \text{ and } [1-\frac{s}{n}] < \rho \left(1-\frac{1}{p}\right) + \nu \frac{1}{p}.$

We state our main result in Section ¹ . In Section ² we give some useful remarks and observations about the weight condition B_ρ . The proof of *our main result is in Section 3. A paper of Verbitsky [Ve] concerning the characterization of the problem* (0) with $q < p$ and for general weights *u, v appeared when this manuscript was written.*

Acknowledgement. The author wauld like to thank the referee for his helpful comments and suggestions.

1. The main result

To include many classical maximal functions, we deal with the operator

$$
(M_{\Phi}f)(x) = \sup \left\{ \Phi(Q)|Q|^{-1} \int_{Q} |f|; \quad Q \text{ a cube with } Q \ni x \right\}
$$

where Φ is a map defined on the set of cubes, taking its value in $[0, \infty)$ and satisfying the following growth conditions:

 \mathcal{H}_1 there is $C > 0$ such as

here is
$$
C > 0
$$
 such as
\n $\Phi(Q_1) \leq C\Phi(Q_2)$ for all cubes Q_1, Q_2 with $Q_1 \subset Q_2$;

 \mathcal{H}_2 there are C_1 , $C_2 > 0$, λ , $\eta \geq 0$ such as $C_1 t^{n\lambda} \Phi(Q) \leq \Phi(tQ) \leq C_2 t^{n\eta} \Phi(Q)$ for all cubes Q and all $t \geq 1$.

When $\Phi(Q) = 1$ the Hardy-Littlewood maximal operator is obtained. The fractional maximal operator M_s ($0 < s < n$) is given by $\Phi(Q)$ = $|Q|^{\frac{s}{n}}$. Maximal operators connected to the Bessel potential operator [**Ke-Sa**] are defined by $\Phi(Q) = \int_0^{|Q| \frac{1}{n}} \varphi(s) ds$; and generally M_{Φ} arises in studies of other potential operators [Ch-St-Wh].

Let $1 < p, q < \infty$. We say that the inequality $P(M_{\Phi}, p, q, u, v)$ holds for a constant $C > 0$ when

 $||M_{\Phi}f||_{L_x^q} \leq C||f||_{L_x^p}$ for all functions f

and we write $(u, v) \in A(\Phi, p, q)$ if for some constant $A > 0$

$$
\Phi(Q)|Q|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{1}{|Q|}\int_Q u\right)^{\frac{1}{q}}\left(\frac{1}{|Q|}\int_Q v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}} \leq A \text{ for all cubes } Q.
$$

In this paper we always adopt the convention $0.\infty = 0$. By $P(M_{\Phi}, p, q, u, v)$ and the Lebesgue theorem, we see that if $u \neq 0$ it is necessary to suppose

necessary to suppose
\n
$$
(\mathcal{H}_3) \qquad \qquad \lim_{|Q|\to 0} \left(\Phi(Q)|Q|^{\frac{1}{q}-\frac{1}{p}} \right) < \infty.
$$

For instance \mathcal{H}_3 is satisfied if $\frac{1}{p} - \frac{1}{q} \leq \lambda$. For $\Phi(Q) = 1$, the hypothesis \mathcal{H}_3 implies $q \leq p$, and for $\Phi(Q) = |Q|^{\frac{q}{n}}$ it means $\frac{1}{p} - \frac{1}{q} \leq \frac{s}{n}$.

Let $\rho > 0$ and w be a weight function. As in Section 0, we write $w dx \in B_{\rho}$ if there is $C>0$ such as

$$
\frac{|Q'|w}{|Q|w} \le \left(\frac{|Q'|}{|Q|}\right)^{\varrho} \text{ for all cubes } Q, Q' \text{ with } Q' \subset Q.
$$

Now our main result can be stated:

Y. RAKOTONDRATSIMBA

Theorem.

Let $1 < p, q < \infty$ *and* Φ *be a function which satisfies* $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$.

- *A)* If the inequality $P(M_{\Phi}, p, q, u, v)$ holds for a constant $C > 0$ then $(u, v) \in A(\Phi, p, q)$ *with the constant* $A = C$.
- *B) Let* $1 < q < p < \infty$ *and* $d\sigma = v^{-\frac{1}{p-1}} dx \in A_{\infty}$ *. Moreover assume* $u dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} dx \in B_{\varrho}$ with $0 < \nu$, ϱ and $(1-\lambda) < \varrho(1-\frac{1}{p}) + \varrho$ $\nu\left(\frac{1}{p}\right)$. If $(u, v) \in A(\Phi, p, q)$ then the inequality $P(M_{\Phi}, p, q, u, v)$ *holds for a constant Ac,* $c = c(\Phi, n, p, q, u, v) > 0$ *. The part B) is also valid when* $d\sigma \in B_o$ *with* $1 - \lambda \leq \rho$.

Actually the constant *c* depends on the fact that $u dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} dx \in B_\rho$ but not directly on u and v. The result stated in the introduction is now easily derived from the theorem by taking $\Phi(Q) = |Q|^{\frac{s}{n}}$.

Let $0 < s < n$ and I_s the fractional integral operator defined by

$$
I_s = \int_{\mathbb{R}^n} |x - y|^{s - n} f(y) \, dy.
$$

In the case of $1 < p \leq q < \infty$ it is known [Pe] that the inequality $P(I_s, p, q, u, v)$, i.e.

 $||I_s f||_{L^q_x} \leq C ||f||_{L^p_x}$ for all nonnegative functions f

holds if and only if $(u, v) \in A(s, n, p, q)$ whenever $u dx$, $v^{-\frac{1}{p-1}} dx \in A_{\infty}$. By the results in [Ra2] and [Ra3] this equivalence also holds if $u dx \in$ $B_{\nu} \cap D_{\infty}$, $v^{-\frac{1}{p-1}} dx \in B_{\varrho}$ with $1-\frac{s}{n} < \nu$ and $1-\frac{s}{n} \leq \varrho$ (see also [Pe] for such a result). The condition $w dx \in D_{\infty}$ means:

$$
|2Q|_w \leq C|Q|_w
$$
 for all cubes Q .

 $2Q$ is the cube with the same center as Q but the edge lenght expanded twice. As a consequence of our theorem, for $1 < q < p$ we have

Corollary.

 $\label{eq:2.1} \begin{array}{l} Let \ 1 \ < \ q \ < \ p \ < \ \infty, \ 0 \ < \ s \ < \ n \ \ and \ u \, dx, \ v^{-\frac{1}{p-1}} \, dx \ \in \ A_{\infty}. \end{array}$ Moreover assume $u dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} dx \in B_{\varrho}$ with $0 < \nu, \varrho$ and Moreover assume $u dx \in B_{\nu}$, $v^{\nu-1} dx \in B_{\varrho}$ with $0 < \nu, \varrho$ and $(1-\frac{s}{n}) < \varrho(1-\frac{1}{p}) + \nu(\frac{1}{p})$. Then the inequality $P(I_s, n, p, q, u, v)$ holds if and only if $(u, v) \in A(s, n, p, q)$. This equivalence also holds when $u dx \in B_{\nu} \cap D_{\infty}$, $v^{-\frac{1}{p-1}} \in B_{\varrho}$ with $1-\frac{s}{n} < \nu$ and $1-\frac{s}{n} \leq \varrho$.

For seeing this, it is sufficient to remind that the Muckenhoupt-Wheeden inequality [Mu-Wh]

$$
\|I_sf\|_{L^q_u}\leq C\|M_sf\|_{L^q_u}
$$

holds whenever $u dx \in A_{\infty}$. This is also the case when $u dx \in B_{\nu} \cap D_{\infty}$ with $1 - \frac{s}{n} < \nu$ (see [Pe] or [Ra2]).

2. On $A(\Phi, p, q)$ and B_{ρ} conditions

Now we also assume the functions Φ defined on the set of balls by $\Phi(B) = \Phi(Q)$ whenever Q is the smallest cube which contains the ball B. A weight function w satisfies the condition $\mathcal C$ when there are constants $c, C > 0$ so that

$$
\sup_{\frac{1}{4}R<|x|\leq 4R}w(x)\leq \frac{C}{R^n}\int_{|y|\leq cR}w(y)\,dy.
$$

Many of usual weight functions w satisfy this growth condition, since nonincreasing and nondecreasing radial functions are included. Condition $(u, v) \in A(\Phi, p, q)$ for *u* and *v* satisfying *C* can be easily realized, mainly for radial weights. Indeed we have

Proposition 2.1.

Let $1 < p$, $q < \infty$ and $\frac{1}{p} - \frac{1}{q} \leq \lambda$. Assume *u*, *v* satisfying the growth *condition* C . Then $(u, v) \in A(\Phi, p, q)$ for a constant $A > 0$ *if and only if* $(u, v) \in A_0(\Phi, p, q)$; *i.e*

$$
\Phi(B(0,R))R^{n(\frac{1}{q}-\frac{1}{p})}\left(\frac{1}{R^n}\int_{|y|
$$

for all $R > 0$ *, where* $A_0 = A \times c(\Phi, n, p, q, u, v)$ *.*

As an example for $0 \le s < n$, $\frac{1}{p} - \frac{1}{q} \le \frac{s}{n}$, $-n < \alpha < n(p-1)$, $ps - n < \alpha, \ \beta = \frac{q}{n}(n + \alpha) - qs - n, \ \dot{u}(x) = |x|^{\beta}, \ \dot{v}(x) = |x|^{\alpha} \ \text{then}$ $(u, v) \in A(s, n, p, q)$.

Now let us discuss how we can verify in practise, for usual weights the condition $w dx \in B_{\rho}, \rho > 0$. To do this, we first recall some known *classes of weights.*

The Muckenhoup class Ap .

Let us recall that $w dx \in A_p$ $(1 \lt p \lt \infty)$ if and only if $(w, w) \in$ *A*(0, *n*, *p*, *p*). It is known **[Ga-Rb]** that $A_{\infty} = \bigcup_{r>1} A_r$.

The reverse Holder class *RHr .*

We write $w dx \in RH_r$ $(1 < r < \infty)$ if and only if

$$
\left(\frac{1}{|Q|}\int_Q w^r\right)^{\frac{1}{r}}\leq R\left(\frac{1}{|Q|}\int_Q w\right)\text{ for all cubes }Q\quad C=C(w)>0.
$$

The classes RH_r and A_p are related; for instance $w dx \in RH_r$ if and only if $w^{-1} dx \in A_{\frac{r}{r-1}}$. If $w dx \in A_p$ then it is known [Ga-Rb] that $w dx \in RH_{1+\rho}$ for some $\rho > 0$; the converse is also true.

The reverse doubling class RD_o . We write $w dx \in D_{\rho}$ ($\rho > 0$) if and only if

$$
Ct^{n\varrho} |Q|_w \leq |tQ|_w
$$
 for all cubes Q and all $t \geq 1$, $C = C(w) > 0$.

If $w dx \in RH_{\frac{r}{r-1}}$ then, by the Holder inequality, $w dx \in RD_{\frac{1}{r}}$. Suppose $w dx \in D_{\infty}$ with the doubling constant *D*, i.e

$$
|2Q|_w \le D|Q|_w
$$
 for all cubes Q $D = D(w) > 1$,

then $[\text{St-To}]$ $w dx \in RD_{\rho}$ for some $\rho > 0$. Precisely $[\text{Ra}3]$ we can take $=\frac{1}{\ln 2^n} \ln \frac{D^c}{D^c-1}$ where $c=4+\frac{\ln 3}{\ln 2}$. But the reverse doubling condition RD_r is weaker than the doubling condition D_{∞} (take for instance $w(x) =$ $e^{|x|}$).

Thus it is clear that $w dx \in A_{\infty}$ implies $w dx \in B_{\rho}$ for some ρ . On the otherhand we can state

Proposition 2.2.

If $w dx \in B_\rho$ for some $\rho > 0$ then $w dx \in RD_\rho$. Conversely if $w dx \in$ $RD_o \cap D_{\infty}$ then $w dx \in B_o$.

So in practice to obtain $w dx \in B_{\varrho}$ it is sufficient to get $w dx \in$ $RD_{\varrho} \cap D_{\infty}$. By the above condition $w dx \in RD_{\varrho}$ $(0 < \varrho \leq 1$, with the precise value of ρ) can be realized from $w dx \in RH_{\frac{1}{1-\alpha}}$ or $w dx \in D_{\infty}$. Consequently, it is interesting to know when we have $w dx \in D_{\infty}$. It is well known [Ga-Rb] that $w dx \in D_{\infty}$ when $w dx \in A_{\infty}$. But we can find $w dx \in D_{\infty}$ with $w dx \notin A_{\infty}$ [Wi]. As a tool for $w dx \in D_{\infty}$ Stromberg and Wheeden [St-Wh] proved that $|x|^{\alpha}u(x)$, $\left(\frac{|x|}{1+|x|}\right)^{\alpha}u(x) \in D_{\infty}$ when $u dx \in RD_{\rho} \cap D_{\infty}$ and $\alpha > -np$. By adapting an argument in [St-**Wh**, this result can be extended for weights $w(x) = \theta(|x|)u(x)$ where $u dx \in RD_{\rho} \cap D_{\infty}$ $(\rho > 0)$, and θ essentially constant on annuli and satisfying a condition like: $\sum_{k\geq 0} 2^{-kn_{\varrho}} \theta(2^{-k}L) \leq \theta(L)$ for all $L > 0$.

3. Proofs of results

Our main theorem is a direct consequence of the inequalities (3.1) , (3.2) , (3.3) in the following propositions.

Proposition 3.1.

Let $1 < q < p < \infty$. Assuume Φ be a function which satisfies hypotheses \mathcal{H}_1 , \mathcal{H}_2 , \mathcal{H}_3 . Let define

$$
\Theta(x) = \sup \{ \Phi(Q) |Q|^{-1} |Q|_{\sigma}^{1-\frac{1}{p}} |Q|_{u}^{\frac{1}{p}}; \quad Q \text{ a cube with } Q \ni x \},
$$

 $d\sigma = v^{-\frac{1}{p-1}} dx$ and $\tilde{u}(x) = \Theta^{-p}(x)u(x)$. Then $\tilde{u} \in L^1_{loc}(\mathbb{R}^n, dx)$ and

where $r = \frac{qp}{p-q}$.

Proposition 3.2.

Let $1 < p < \infty$ and \tilde{u} defined as above. Assume $d\sigma \in A_{\infty}$ or $d\sigma \in B_{\varrho}$ with $1 - \lambda \leq \rho$ (λ is the exponent in the hypothesis \mathcal{H}_2). Then there is $c = c(\Phi, n, p, q, u, v) > 0$ such that

Proposition 3.3.

Let $1 < q < p < \infty$. Assume

- i) Φ be a function which satisfies \mathcal{H}_1 , \mathcal{H}_2 , \mathcal{H}_3 ;
- ii) $u dx \in B_{\nu}$, $v^{-\frac{1}{p-1}} dx \in B_{\varrho}$ with $0 < \nu$, ϱ and $(1-\lambda) < \varrho \left(1 \frac{1}{p}\right) +$ $\nu\left(\frac{1}{p}\right)$;
- iii) $(u, v) \in A(\Phi, p, q)$ for a constant $A > 0$. Then there is $C(\Phi, n, p, q, u, v) > 0$ so that

(3.3)
$$
\|\Theta\|_{L^r_u} \leq CA \quad r = \frac{qp}{p-q}.
$$

Proof of Proposition 3.1:

Let us first observe the locally integrability of the function $\tilde{u}.$ Indeed for each cube Q with $\left(\Phi(Q)|Q|^{-1}|Q|_{\sigma}^{1-\frac{1}{p}}|Q|_{u}^{\frac{1}{p}}\right) > 0$ and for each $x \in Q$:

$$
\Theta^{-1}(x) \le \left(\Phi(Q)|Q|^{-1}|Q|_\sigma^{1-\frac{1}{p}}|Q|_u^{\frac{1}{p}} \right)^{-1} > 0
$$

and so

$$
(3.4) \qquad |Q|_{\tilde{u}} = \int_{Q} \Theta^{-p}(x)u \, dx \le \left(\Phi(Q)|Q|^{-1}|Q|_{\sigma}^{1-\frac{1}{p}}|Q|_{u}^{\frac{1}{p}} \right)^{-p} < \infty.
$$

Note that for $|Q|_u = 0$, by the convention $0.\infty = 0$, we immediatly have $|Q|_{\tilde{u}}=0.$

Inequality (3.1) comes from the Holder inequality, indeed for $1 < q <$ $p < \infty$ and $r = \frac{qp}{p-q}$ we get

$$
||M_{\Phi}f||_{L_{u}^{q}}^{q} = \int_{\mathbb{R}^{n}} \left[(M_{\Phi}f)\tilde{u}^{\frac{1}{p}} \Theta u^{\frac{1}{q} - \frac{1}{p}} \right]^{q} dx \leq
$$

\n
$$
\leq ||(M_{\Phi}f)\tilde{u}^{\frac{1}{p}}||_{L^{p}}^{q} ||\Theta u^{\frac{1}{q} - \frac{1}{p}}||_{L^{r}}^{q} =
$$

\n
$$
= ||M_{\Phi}f||_{L_{u}^{p}}^{q} ||\Theta||_{L_{u}^{r}}^{q} \cdot \blacksquare
$$

Proof of Proposition 3.2:

First let us note that by (3.4), $(\tilde{u}, v) \in A(\Phi, p, p)$ i.e.

$$
\left(\Phi(Q)|Q|^{-1}|Q|_\sigma^{1-\frac{1}{p}}|Q|_{\tilde{u}}^{\frac{1}{p}}\right)>0 \text{ for all cubes }Q.
$$

For $d\sigma \in A_{\infty}$, an easy modification of the proof in [Pe] yields to the conclusion (3.2). For $d\sigma \in B_\rho$ with $1 - \lambda \leq \varrho$, we get $(\tilde{u}, v) \in S(\Phi, p, p)$ [Ra3] and then by a similar argument as in [Sa2] the inequality (3.2) holds for a constant $c = c(\Phi, n, p, \tilde{u}) > 0$.

Proof of Proposition 3.3:

For each $R > 0$, let us define

$$
\Theta_R(x)=\sup{\{\Phi(Q)|Q|^{-1}|Q|_\sigma^{1-\frac{1}{p}}|Q|_u^{\frac{1}{p}}; Q \text{ a cube with } Q\ni x, |Q|^{\frac{1}{n}}\leq R\}}.
$$

The conclusion appears once we obtain

(3.3')
$$
\|\Theta_R\|_{L^r_u} \le cA \quad c = c(\Phi, n, p, q, u, \sigma) > 0, \quad r = \frac{qp}{p-q}.
$$

Then in order to prove (3.3'), we take a cube Q_0 with $|Q_0|^{\frac{1}{n}} = R$. Then

$$
\|\Theta\|_{L^r_\omega}^r = \theta_{1,R} + \Theta_{2,R}
$$

where $\Theta_{1,R} = \int_{Q_0} \Theta_R^r u \, dx$, $\Theta_{2,R} = \int_{\mathbb{R}^n \setminus Q_0} Q_R^r u \, dx$.

Estimate of $\Theta_{1,R}$.

Let $x \in Q_0$, Q a cube with $Q \ni x$ and $|Q|^{\frac{1}{n}} \leq R$. Note that $Q \subset (3Q_0)$. Now using i), ii), iii) we get

$$
\Lambda(Q) = \Phi(Q)|Q|^{-1}|Q|_{\sigma}^{1-\frac{1}{p}}|Q|_{u}^{\frac{1}{p}} \le
$$

\n
$$
\leq c(\Phi, n, \sigma, u) \left(\frac{|Q|}{|Q_0|}\right)^{\left[\lambda - 1 + \varrho(1 - \frac{1}{p}) + \nu \frac{1}{p}\right]} \Lambda(3Q_0) \le
$$

\n
$$
\leq c(\Phi, n, \sigma, u) \Lambda(3Q_0).
$$

Thus $\Theta_R(x) \leq c(\Phi, n, \sigma, u) \Lambda(3Q_0)$, and consequently

$$
\Theta_{1,R} \le c'(\Phi, n, \sigma, u) \left(\Lambda(3Q_0)|3Q_0|_u^{\frac{1}{q}}\right)^r =
$$
\n
$$
= c'(\Phi, n, \sigma, u) \left(\Phi(3Q_0)|3Q_0|^{-1}|3Q_0|_a^{1-\frac{1}{p}}|3Q_0|_u^{\frac{1}{q}}\right)^r \le c'(\Phi, n, \sigma, u)A^r.
$$

Estimate of $\Theta_{2,R}$.

First we can write

$$
\Theta_{2,R} = \sum_{k \geq 0} \int_{(2^{k+1}Q_0) \setminus (2^kQ_0)} \Theta_R^r u \, dx.
$$

Let $k \in \mathbb{N}$, $x \in (2^{k+1}Q_0)\backslash (2^kQ_0)$ and $Q \ni x$ with $|Q|^{\frac{1}{n}} \leq R$. Then $Q \subset (32^{k+1}Q_0) = (6Q_0)$. As the above computation we have

$$
\Lambda(Q) \le c'(\Phi, n, \sigma, u) 2^{-kn[\lambda+\varrho(1-\frac{1}{p})+\nu\frac{1}{p}]} \Lambda(62^kQ_0).
$$

Next, since $1 - \lambda < \varrho \left(1 - \frac{1}{p}\right) + \nu \frac{1}{p}$, then (3.6)

$$
\Theta_{2,R} \le c'(\Phi, n, \sigma, u) \sum_{k \ge 0} 2^{-kn[\lambda + \varrho(1 - \frac{1}{p}) + \nu \frac{1}{p}]} \left(\Lambda (62^k Q_0) | (62^k Q_0)|^{\frac{1}{n}} \right)^r \le
$$

$$
\le c'(\Phi, n, \sigma, u) A^r \sum_{k \ge 0} 2^{-kn[\lambda + \varrho(1 - \frac{1}{p}) + \nu \frac{1}{p}]} \le
$$

$$
\le c'(\Phi, n, \sigma, u) A^r.
$$

Inequalities (3.5) and (3.6) yield $(3.3')$, and consequently by a limiting argument we get (3.3) .

Proof of Propositlon 2.1 :

Let us assume the condition $(u, v) \in A(\Phi, p, q)$ holds for a constant $A > 0$. It is also equivalent to ask *(*)*

$$
\Phi(B)|B|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{1}{|B|}\int_{B}u\right)^{\frac{1}{q}}\left(\frac{1}{|B|}\int_{B}v^{-\frac{1}{p-1}}\right)^{1-\frac{1}{p}}\leq A' \text{ for all balls } B,
$$

here $A' = Ac(\Phi, n, p, q)$.

If $|x_0| \leq 2R$ then $B \subset B(0, 3R)$ and hence the first member of (*) is majorized by

$$
c(\Phi,n,p,q)\times
$$

$$
c(\Phi, n, p, q) \times
$$

\n
$$
\times \Phi(B(0,3R))(3R)^{n(\frac{1}{q}-\frac{1}{p})} \left(\frac{1}{(3R)^n} \int_{|y|<3R} u \right)^{\frac{1}{q}} \left(\frac{1}{(3R)^n} \int_{|y|<3R} v^{1-\frac{1}{p}} \right).
$$

\nIf $2R < |x_0|$ then $2^j R < |x_0| \le 22^j R$ for some $j \in N^*$ and hence for each $y \in B : \frac{1}{4}2^j R < |x| \le 42^j R$. Using the growth condition C for and $v^{-\frac{1}{p-1}}$ it is found $c = c(u, v) > 0$, $C = C(u, v) > 0$ such as
\n
$$
\left(\frac{1}{|B|} \int_B v^{-\frac{1}{p-1}} \right) \le C \left(\frac{1}{(c2^j R)^n} \int_{|y| < (c2^j R)} v^{-\frac{1}{p-1}} \right)
$$

If $2R < |x_0|$ then $2^j R < |x_0| \le 22^j R$ for some $j \in N^*$ and hence for each $y \in B : \frac{1}{4} 2^{j} R < |x| \leq 42^{j} R$. Using the growth condition C for u and $v^{-\frac{1}{p-1}}$ it is found $c = c(u,v) > 0$, $C = C(u,v) > 0$ such as

$$
\left(\frac{1}{|B|} \int_B v^{-\frac{1}{p-1}} \right) \le C \left(\frac{1}{(c2^j R)^n} \int_{|y| < (c2^j R)} v^{-\frac{1}{p-1}} \right)
$$

and

$$
\left(\frac{1}{|B|}\int_B u\right)\leq C\left(\frac{1}{(c2^jR)^n}\int_{|y|< (c2^jR)} u\right).
$$

Note that c, C depend on the constants on the growth condition C for u and $v^{-\frac{1}{p-1}}$ but not directly on these weights. Consequently in the case $2R < |x_0|$, the first number of (*) is now majorized by

$$
C(\Phi, n, p, q, c, C) 2^{-jn[\lambda + \frac{1}{q} - \frac{1}{p}]} \Phi(B(0, c2^{j}R)) \times
$$

$$
\times (c2^{j}R)^{n(\frac{1}{q} - \frac{1}{p})} \left(\frac{1}{(c2^{j}R)^{n}} \int_{|y| < (c2^{j}R)} u \right)^{\frac{1}{q}} \left(\frac{1}{(c2^{j}R)^{n}} \int_{|y| < (c2^{j}R)} v^{-\frac{1}{p-1}} \right)^{1-\frac{1}{p}}
$$

Since $\frac{1}{q} - \frac{1}{p} \leq \lambda$, we can see that inequality (*) is satisfied once $(u, v) \in$ $A_0(\Phi, p, q)$ i.e.

$$
\Phi(B(0,R))R^{n(\frac{1}{q}-\frac{1}{p})}\left(\frac{1}{R^n}\int_{|y|
$$

for all $R > 0$, here $A_0 = Ac'(\Phi, n, p, q, u, v)$.

Proof of Proposition 2.2:

Let $w dx \in B_\rho$ for some $\rho > 0$ i.e.

$$
\frac{|Q_1|_w}{|Q_0|_w} \le B\left(\frac{|Q_1|}{|Q_0|}\right)^e
$$
 for all cubes Q_0 , Q_1 with $Q_1 \subset Q_0$.

Let Q be a cube and $t \geq 1$. Taking $Q_1 = Q$ and $Q_0 = tQ$ we obtain

$$
t^{n\varrho}|Q|_w \le R|Q|_w
$$

with $R = B$, hence $w dx \in RD_{\nu}$.

Conversely let $w dx \in RD_{\rho}$ for a constant $R > 0$. Also if $w dx \in D_{\infty}$ then for $Q_1 \subset Q_0$ and for all cubes Q_2 having the same center as Q_1 and with $|Q_2| = |Q_0|$

$$
|Q_1|_w \le R \left(\frac{|Q_1|}{|Q_0|}\right)^{\varrho} |Q_2|_w \le
$$

$$
\le R \left(\frac{|Q_1|}{|Q_0|}\right)^{\varrho} |3Q_0|_w \le
$$

$$
\le R D |Q_0|_w.
$$

Here D depends on the constant which is in the doubling condition for *w dx.* Consequently $w dx \in B_0$ with the constant $B = RD$.

References

- [Ch-St-Wh] S. CHANILLO, J. O. STROMBERG AND R. L. WHEEDEN, Norm inequalities for potential type operators, *Rev. Mat. Iberoamericana 3(4) (1987), 311-335.*
- [Ga-Rb] J. GARCÍA-CUERVA AND J. L. RUBIO DE FRANCIA, *"Weighted norm inequalities and related topic,"* North Holland Math. Studies 116, 1985.
- [Ke-Sa] R. KERMAN AND E. SAWYER, Weighted norm inequalities for potentials with applications to Scrodinger operators, Fourier transforms and Carleson measure, Ann. Inst. Fourier 36 (1986), 207-228.
- [Mu] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, *Trans. Amer. Math. Soc.* 165 (1972), $207-227$.
- [Mu-Wh] B. MUCKENHOUPT AND R. L. WHEEDEN, Weighted norm inequalities for fractional integrals, *Trans. Amer. Math. Soc.* 191 $(1974), 261 - 274.$
- [Pe] C. PÉREZ, Two weighted norm inequalities for Riesz potential and uniform *L*^P weighted Sobolev inequalities, *Indiana Univ. Math.* $J.$ 39(1) (1990), 31–44.
- [Ra1] Y. RAKOTONDRATSIMBA, Inégalités à poids pour des opérateurs maximaux et des opérateurs de type potentiel, Thése de Doctorat, 1991.
- [Ra2] Y. RAKOTONDRATSIMBA, On Muckenhoupt and Sawyer conditions for maximal operators, *Publicacions Matemàtiques* **37(1)** $(1993), 57-73.$
- [Sa1] E. SAWYER, Weighted norm inequalities for fractional maximal operators, *Proc. CMS 1* (1981), *283-309.*
- [Sa2] E. SAWYER, A characterization of a two weight norm inequality for maximal operators, *Studia Math.* 75 (1982), 1-11.
- [St-Wh] J. O. STROMBERG AND R. L. WHEEDEN, Fractional integrals on weighted *HP* and *L^p* spaces, *T*rans . *Amer. Math. Soc. 287 (1985) ,* 293-321 .
- [St-To] J. O. STROMBERG AND A. TORCHINSKY, "Weighted Hardy ^s*p*aces," Lecture Notes in Math. 1385, 1989.
- [Ve] I. E. VERBITSKY, Weighted norm inequalities for the maximal operators and Pisier's theorem on factorization through $L^{p\infty}$, *Integr. Equat. Oper. 7'h. 15 (1992), 124-153 .*
- [Wi] I. WIK, On Muckenhoupt's classes of weight functions, *Studia* ^I*Vlath .* 54 (1989), *245-255 .*

Université d'Orléans-Département de Mathématiques U.F.R. Faculté des Sciences B.P. 6759 45067 Orléans Cedex ² FRANCE

Primera versió rebuda el 16 de Març de 1993 , darrera versid rebuda el 3 de Febrer de 1994