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WEIGHTED NORM INEQUALITIE S
FOR MAXIMAL FUNCTION S

FROM THE MUCKENHOUPT CONDITIONS

Y . RAKOTONDRATSIMBA

Abstract
For some pairs of weight functions u, v, which satisfy the well-
known Muckenhoupt conditions, we derive the boundedness of the
maximal fractional operator MS (O < s C n) from L~ to Lú with
q C p •

O. Introduction

Let u, v weight functions on Rn , n ~ 1 (i .e . nonnegative locally inte-
grable functions) . The fractional maximal operator MS (O Ç s < n) is
given by

(MSf)(x) = sup {

	

IQ ~ f 1 ; Q a cube with Q x }

Throughout this paper Q will denote a cube with sides parallel to the
co-ordinate planes .

Let 1 C p, q < oa, with lp — 4 Ç ñ . It is fundamental in analysis to

give a characterization of the pairs of weights (u, v) which satisfy

(o) IIMsfIILú ç C I I f I I Ly for all functions f, C = C( s, n, p, q, u, v) ~ O .

Here II g II L1., denotes (flan 11Tw dx) , with dx the Lebesgue measure on

Rn .

In the case of 1 C p Ç q < oo Sawyer [Sa2] showed that the inequality

(0) holds if and only if (u, v) E S(s, n, p, q) i . e

II~M~v ~11~~~~~IIL~ ç CIIv p11~QIILv = II I[QIILP 1 Coo
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for all cubes Q, here S = S ( s, n, p, q, u, v) > O. A known necessary but
nat sufficient condition for (0) [Mu] is (u, v) E A(s, n, p, q) i . e

- 1
s

'

	

1

	

1

	

1
Q + -t,

	

(J v ) P- ~ - ~

1

	

ç A for all cubes Q,
IQI Q

	

IQI Q

with A = A(s, n, p, q, u, v) > O .

As we will recali in Section 2, this condition is verified more easily than
the first one . Pérez [Pe] (see also [Sal]) proved that (u, v) E A(s, n, p, q )

implies the inequality (0) whenever da = v- 7±1 dx E A, i .e . far some
6 > 0 :

El, <
I-E-J- for all cubes Q and for all measurable sets E C Q

(21,

	

1Q I

here I denotes fQ u. In fact the equivalence between (0) and (u, v) E

A(s, n, p, q) is also valid with a weaker condition on da, far instance in
[Ra3] it was proved that it is sufficient da E Bs i .e .

b
~< (lQ'l1 for all cubes Q, Q ' with Q ' C Q

with [1 -- Ç S . As we will see in Section 2, measures dp, can be found

such as dp, E B6 but dp « A00 . The condition p - < 1 can be derived

from the inequality (0) by the Lebesgue differentiation theorem . Hence

for s = 0 (Mo is the Hardy-Littlewood maximal operator), the inequality

(0) must only considered for q Ç p . The case p -- q was studied by

Muckenhoupt [Mu] for u = v and by Sawyer [Sa2] for general weight s

u, v . Far q < p, a characterization of the pairwise of weights (u, v )

satisfying the inequality (0) was given by the author [Rai] ; but the

condition used is difficult to check .

Therefore 1 < q < p < oo a natural question is : "does (u, v) E

A(s , n, p, q) imply (0) whenever do- E A,, . In this paper we give a positive

answer with the additional assumptions u dx E Bv , v- P 1 1 dx E B P with

0C v,p and [1---

	

Cp 1-p +v- .

We state our main result in Section 1 . In Section 2 we give some useful

remarks and observations about the weight condition B . The proof o f

our main result is in Section 3 . A paper of Verbitsky [Ve] concerning the

characterization of the problem (0) with q C p and for general weights

u, v appeared when this manuscript was written .

Acknowledgement. The author wauld like to thank the referee for
his helpful comments and suggestions .
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1. The main result

To include many classical maximal functions, we deal with the operato r

(Mf)(x) = sup {QQ1—1

	

If 1 ; Q a cube with Q ~ x

where ~ is a map defined on the set of cubes, taking its value in JO, oo [
and satisfying the following growth conditions :

7-t1 there is C ~ o such as

.P(Q 1) C ■D(Q 2 ) for all cubes Q 1 , Q 2 with Q 1 C Q 2 ;

?-t 2 there are C1 , C2 > 0, a, 77 � 0 such as

C1t"1. (Q) Ç .1)(tQ) Ç C2tn%D(Q) for all cubes Q and all t > 1 .

When (19(Q) = 1 the Hardy-Littlewood maximal operator is obtained .
The fractional maximal operator M s (O < s < n) is given by .¿(Q) =
IQ 1n

s
. Maximal operators connected to the Bessel potential operato r

[Ke-Sal are defined by (Q) =

	

ço(s) ds ; and generally M~ arises
in studies of other potential operators [Ch—St—Wh] .

Let 1 C p, q < oo. We say that the inequality B(M,D , p, q, u, v) holds
for a constant C > o when

f H L?, ç C 11 f 11 141 for all functions f

and we write (u, v) E A((I), p, q) if for some constant A > o

x4

	

) 1—

*(Q)lQI -1—11-,

	

1 Ju)
(fv )T r,= 1

	

<A for all cubes Q .
IQ1 Q

	

1~1 Q

In this paper we always adopt the convention 0 .00 = O.

	

By
B(M I., p, q, u, v) and the Lebesgue theorem, we see that if u

	

o it i s
necessary to suppose

('H3 )

	

lim (ii*) C oo .
IQH q

For instance x3 is satisfied if p —
Ç

A . For ~ (Q) = 1, the hypothesi s

?-( 3 implies q Ç p, and for •EQ) = lQi ñ it means - -- Ç
p 4

	

ñ .

Let > o and w be a weight function . As in Section o, we write
w dx E Be if there is C~ osuchas

1Q'Iw < fQ'I ~ for all cubes Q, Q' with Q' C Q .
lQlw

	

IQ I

Now our main result can be stated :
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Theorem .
Let 1 C p, q < oc and (1) be a function which satisfies

	

7-t2 , 7-~C 3 .

A) If the inequality P(Mcp ,p, q, u, v) holds for a constant C > o then
(u, v) E A( .P, p, q) with the constant A = C .

~
B) Let 1 C q C p < oc and da = v -P—1 dx E A . Moreover assume

u dx E B u , v- p x 1 dx E B e with D < v, o and (1-a) <p( 1 - +

v (1) . If (u,v) E p, q} then the inequality P(M~, p, q, u, v )

holds for a constant Ac, c = c((T. , n, p, q, u, v) > O . The part B) i s
also valid when do- E Bo with 1-A < o .

Actually the constant c depends on the fact that u dx E Bu ,
vT P-1 dx E Be but not directly on u and v . The result stated in the intro-
duction is now easily derived from the theorem by taking 1. (Q) = IQ* .

Let o < s < n and Is the fractional integral operator defined by

Is =

	

1x - yI s-n f(y ) dy .
fn

In the case of 1 < p

	

q < oo it is known [Pe] that the inequality
P(Is , p, q, u, v), i .e .

11 Is f II Lz ç C~ f 11 1,1 for all nonnegative functions f

holds if and only if (u, v) E A(s, n, p, q ) whenever u dx, v- p 12x dx E A .
By the results in [Ra2] and [Ra3] this equivalence also holds if u dx E
B, n dx E Be with 1 - C v and 1- < (see also [Pe]
far such a result) . The condition w dx E Do() means :

I2QIw Ç C IQiw for all cubes Q .

2Q is the cube with the same center as Q but the edge lenght expande d
twice . As a consequence of our theorem, for 1 C g C p we have

Corollary.

Let 1 < q < p < oc, o < s < n and udx, v- P 1 1 dx E A~ .
Moreover assume u dx E Bu , v- P~ 1 dx E Be with o < v, o and
(i-) < a 1 - p + v (1 ) . Then the inequality P (Is , n,p, q, u, v )
holds if and only if (u,v) E A(s, n, p, q) . This equivalence also holds

1
when u dx E B, n D~, v- P-1 E Be with 1 -- < v and 1- Ç O .

For seeing this, it is sufficient to remind that the Muckenhoupt-
Wheeden inequality [Mu-Wh]

11 15f ~~L~ Ç cilmsf IILI
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holds whenever u dx E A~. This is also the case when u dx E B u n D~
with 1 — ñ C v (see [Pe] or [Ra2J) .

2 . On A((I), p, q) and Be conditions

Now we also assume the functions (I) defined on the set of balls by
(B) — (Q) whenever Q is the smallest cube which contains the bal l

B. A weight function w satisfies the condition C when there are constants
c, C > osothat

C

	

sup w(x) Ç
n

	

w(y) dy .
IRC IxIÇ4R

	

R

	

~y~ Çc R

Many of usual weight functions w satisfy this growth condition, since
nonincreasing and nondecreasing radial functions are included. Condi-
tion (u, v) E A((P, p, q) for u and v satisfying C can be easily realized ,
mainly for radial weights. Indeed we have

Proposition 2.1 .

Let 1 C p, q C oo and — Ç A . Assume u, v satisfying the growt h

condition C . Then (u, v) E A(1>, p, q) for a constant A > o if and only if
(u, v) E Ao ( .P , p, g) ; i . e

c1)(B(O,R))RnPj -1 ) Rn

1_1
1

	

p~
v- ~- 1

	

Ao
Rn fiy iC R

u)

for ah R> o, whereAo--A xn, p, q, u,v} .

As an example for o Ç s C n, p Ç —n C a < n(p -- 1) ,

ps — n < a, [3 = 1(n + a) — qs — n, u(x) = Ixi0 , v(x) = lxr then

(u, v) E A(s, n,p, g) .

Now let us discuss how we can verify in practise, for usual weights
the condition w dx E Be , g > O . To do this, we first recall sorne known
classes of weights .

The Muckenhoup class Ap .

Let us recall that w dx E Ap (1 < p < oo) if and only if (w, w) E
A ( o, n, p, p) . It is known [Ga-Rb] that Acc, = Ur> 1 Ar .
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The reverse Holder class RHr .

We write w dx E RHr (1 < r < oo) if and only i f

(I `~~ fQw r) R (-1

	

w) for all cubes Q C = C(w) > O .
IQI

f
The classes Rllr and Ap are related ; for instance w dx E Rllr if and
only if w-1 dx E A rrA . If w dx E Ap then it is known [Ga-Rb] that
w dx E RHI+p for some p ~ 0 ; the converse is also true .

The reverse doubling class RDe .
We write w dx E D e (0> 0) if and only i f

Ct"1Q l ,,, < ItQi w for all cubes Q and all t > 1, C = C(w) > 0 .

If w dx E RH- r then, by the Holder inequality, w dx E RD I . Supposer-1

	

r
w dx E D~ with the doubling constant D, i . e

1 2QL ~ DInw w for all cubes Q D = D(w) > 1 ,

then [St-To] w dx E RDp for some > 0 . Precisely [Ra3] we can take

= ln2 n, In DD1 1 where c = 4 + i r-A- . But the reverse doubling condition
RD,, is weaker than the doubling condition Doo (take for instance w(x) -=
e !xI )

Thus it is clear that w dx E A~ implies w dx E Be for some O . On the
otherhand we can state

Proposition 2.2 .
lf w dx E Be far some o > 0 then w dx E RDe . Conversely if w dx E

RD, n D~ then w dx E Be .

So in practice to obtain w dx E Be it is sufficient to get w dx E
RDe n Do. . By the above condition w dx E RDe (0 < ç 1, with the
precise value of o) can be realized from w dx E RH1 1 or w dx E Doc .e
Consequently, it is interesting to know when we have w dx E D,, . It is
well known [Ga-Rb] that w dx E D~ when w dx E Aoo. But we can find
w dx E Doo with wdx [Wi] . As a tool for w dx E D,,,,, Stromberg

and Wheeden [St-Wh] proved that lxl `~u(x) , (4) c' u(x) E D~ when
u dx E RDe n D,,, and a > -np. By adapting an argument in [St-
Wh], this result can be extended for weights w(x) == O( I x Du(x) where
u dx E RDe n Do0 ~ o > 0), and B essentially constant on annuli and
satisfying a condition like: Ek>0 2-1nQ0(2-kL) Ç O(L) far all L ~ 0 .
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3 . Proofs of results

Our main theorem is a direct consequence of the inequalities (3 .1) ,
(3 .2), (3 .3) in the following propositions .

Proposition 3.1 .

Let 1 C q C p < flo . Assuume 1. be a function which satisfies hypothe-

ses H 1 , n 2 , n 3 . Let defin e

O(x) = sup{1. (Q)IQ1 -1IQ a cube with Q ~ x} ,

da» = v— P11 dx and ú(x) = O—P(x)u(x) . Then ú E LL(l[8n , dx) and

(3 .1)

	

II M fIILú

	

11MfIILIeIILú for all functions f,

where r = pPQ .

Proposition 3.2 .

Let 1 C p < oa and ú defined as above . Assume da- E A~ or do- E Be

with 1 — a Ç o (a is the exponent in the hypothesis n2) . Then there is

c = c(T, , n, p, q, u, v) > 0 such tha t

(3 .2)

	

IIMfI1Lú < c~~ f IILv for all functions f.

Proposition 3.3 .

Let 1 C q C p C oo. Assum e

i) n:I) be a function which satisfies 7-t 1 , 7-í 2 , 7--L3 ;

ii} Z.LdxEBy,dxEB 2 with 0 C v, oand (1—a) C o 1—~ +

v (l) ;P
iii) (u, v) E A ( ■:D , p, q) for a constant A ~ 0 .

	

Then there is
C( .:I:■ ,nap, q, u, v) > Q so that

1 O IILú < CA r =

Proof of Propos1tion 3 .1 :

Let us first observe the locally integrability of the function ú . Indeed

for each cube with i
1 — 1 1

~~~

	

> 0 and for each x E Q :

o—1 (x) 5 (Q)IQ1Q iIa PIQIú)

	

> O

qp

p—q
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and so

(3.4)

	

IQk = fox)1d[lx < (oQ)Q1-'IQI~w)< 00 .

Note that for I Q I ~ = O, by the convention O.00 = 0, we immediatly have
IQIÜ =D.

Inequality (3.1) comes from the Holder inequality, indeed for 1 C q <
p < oa and r= P-q we get

IIM~hfllj

	

fR n -

	

{(Mf)eu]d
x

	

~

	

I

	

9 PIILT =

IIM~fIILúII o IILú . ■

Proof of Proposition 3 .2:

First let us note that by (3 .4), (ii,v) E A( <D, p, p) i .e .

(Q)IQI1IQ 1 QI) > 0 for all tubes Q .

For da- E

	

an easy modification of the proof in [Pe] yields to the
conclusion (3 .2) . For do- E Be with 1 - - a Ç o, we get

	

v} E S(1. , p, p)
[Ra3] and then by a similar argument as in [Sa2] the inequality (3 .2 )
holds for a constant c =

	

n, p, ic} > Q . n

Proof of Proposition 3.3 :

For each R ~ O, let us define

OR (x) = sup{1.(Q)IQ1 -1P IQIú ; Q a cube with Q ~ x, IQI ñ R} .

The conclusion appears once we obtain

(3 .3')

	

~~ ~R II ~ú Ç cA c -= c(1. , n, p, q, u, a) > O, r _ .	 qp
p -

Then in order to prove (3 .3' ), we take a cube Qo with 1 Q0 1* = R . Then

Il~ll~t =81,R + e2,R

where el , R = fQo %U dx, e2,R = fan\Q. TRu dx. n
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Estimate of el , R.

Let x E Q0, Q a cube with Q ~ x and IQI* Ç R. Note that Q C (3Qo) .
Now using i), ii}, iii) we get

A (Q) =

	

P IQIZ

<
c(~n,

cr,
u) \ IQ()I ~ /

	

n(3Qo) ~

< c(4), n, ~ u) n(3Qo) •

Thus OR(x) c(~, n, Q, u)A(3Q0 ), and consequentl y

e l,R ç c ' (1. , n, u, u) (A(3Qo)I3QoI) Tú =

(3.5)

	

1_?

	

1 r
=

	

a, u} ( 3QOI3Qo '3QOII 3 Qo1,1

Ç c' ez1) ,n, o-,u}A r .

Estimate of e2,R .

First we can write

e2 , R = E

	

eRUdx .
k >o L 1 Q O )\(2k Q O )

Let k E N, x E (2k+1 Qo)\(2 k Qo) and Q ~ x with lQI-1 < R . Then
Q C (32k+1Qo) _ (6Qo) . As the aboye computation we hav e

Ç c 'N>

®

A(Q)

	

c' el>, n, u, u)2-kn EA+e( 1 -1)+vIi,lA(62kQ0 ) .

Next, since 1 - a C

	

1-

	

+ v , then

(3 .6 )

e2,R c
/(,p, n, cr, u

) E 2-

	

~

	

~
kn[a+e (1-- 1 }+U1] (A(62kQo) (6kQ0)

	

r
ç

		

lu

	

~
k �o

na d, u}AT E 2—n[a+e(1-- p )+ v p l <
k �o

Ç

	

n, o-,u}AT .

Inequalities (3 .5) and (3.6) yield (3.3'), and consequently by a limiting
argument we get (3 .3) .

<
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Let us assume the condition (u, v) E AeP, p, q} holds for a constant

A > O . It is also equivalent to ask
(*)

1

	

1_ 1

B

	

q~
1~()1B1-u q

	

1

	

v-~11

	

~ C
A ' for all balls B ,

IB1 IB

	

B

x4)(B(0,3R))(3R)n(- 12;~	 1	 	 u 9 	 1	
~ (3R)n~yi<3R

	

(
3R)n

Proof of Propositlon 2.1 :

here A' = Aceb, n, p, q) .

If Ixol < 2R then B c B (o, 3R) and hence the first member of (*) i s
majorized by

c(cl:, , n, p, q) x

If 2R < Ixol then 23 R < iXo I Ç 22 3R for some j EN* and hence for
each y E B : 12 3R < ixi Ç 423 R . Using the growth condition C for u

and vT p x~ it is found c= c(u,v) > 0, C = C(u,v) > o such as

	

1

	

v- P11 < C 	 1	 ~

	

LB c )

C 1B1 Lu) < C ((c2iR) n ¡y I<( c23 R )

and

u

Note that c, C depend on the constants on the growth condition C for u
and v - 171 1 but not directly on these weights. Consequently in the case
2R < Ixol, the first number of (*) is now majorized by

C(1. , n, p, q, c, C ) 2-jnP'+ g- t4(B(o, c2 jR)} x

	

1

	

1_ ip
.Í

	

r~ (-- ~ )

	

1

	

q

	

1

	

1 1} ~ ~x~c2 R

	

(c2iR)

	

j

	

C23 R1 nfy~C~c2 R)

	

} ~y~C~c2 R
)v- P-

Since — p Ç a, we can see that inequality (*) is satisfied once (u, v ) E
Ao eD , p a g} i .e .

	

1

	

1— 1

	

4

	

1

	

~
cAo

	

rJ u)

	

~
yI<B

	

Rn I
(1)(B(0,R))RnG" - D
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for all R > 0, here Ao = Ac ' el), n, p, q, u, v) . ■

Proof of Proposition 2.2:

Let w dx E Be for some o> 0 i .e .

mi - Ç B 1¡~

	

for all cubes Qo , Q 1 with Q1 C Qo.IQolIQo l
Let Q be a cube and t ~ 1 . Taking Q 1 = Q and Qo = tQ we obtain

tne lnw l w <Rlnw l w

with R = B, hence wdx E RD, .
Conversely let w dx E RD2 for a constant R> 0. Also if w dx E Do.

then for Q 1 C Qo and for all cubes Q 2 having the same center as Q 1 and
with 1Q21 = IQol

IQlIw < R ( 1'9 '
I 1'2 2"

IQIl y< R ( 1 3QOl w~Qo

I<RDIQoi w •

Here D depends on the constant which is in the doubling condition fo r
w dx . Consequently w dx E B 0 with the constant B = RD. ■

References

[Ch-St-Wh] S . CHANILLO, J. O. STROMBERG AND R. L . WHEEDEN,
Norm inequalities for potential type operators, Rev. Mat. Iberoamer-
icana 3(4) (1987), 311-335 .

[Ga-Rb] J . GARCÍA-CUERVA AND J. L. RUBIO DE FRANCIA ,
"Weighted norm inequalities and related topic," North Holland
Math. Studies 116, 1985 .

[Ke-Sa] R . KERMAN AND E. SAWYER, Weighted norm inequalities fo r
potentials with applications to Scrodinger operators, Fourier trans-
forms and Carleson measure, Ann. Inst . Fourier 36 (1986), 207-228 .

[Mu] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy
maximal function, Trans . Amer . Math . Soc . 165 (1972), 207-227 .

[Mu-WhI B . MUCKENHOUPT AND R. L . WHEEDEN, Weighted norm
inequalities for fractional integrals, Trans . Amer . Math . Soc . 19 1
(1974), 261-274 .



36

	

Y . RAKOTONDRATSIMBA

[Pe] C . PÉREZ, Two weighted norm inequalities for Riesz potential
and uniform LP weighted Sobolev inequalities, Indiana Univ . Math.
J. 39(1) (1990), 31-44.

[Rai] Y. RAKOTONDRATSIMBA, Inégalités à poids pour des opérateurs
maximaux et des opérateurs de type potentiel, Thése de Doctorat ,
1991 .

[Ra2] Y. RAKOTONDRATSIMBA, on Muckenhoupt and Sawyer con-
ditions for maximal operators, Publicacions MatemQtiques 37(1 )
(1993), 57-73 .

[Sal] E . SAWYER, Weighted norm inequalities for fractional maximal
operators, Proc. CMS 1 (1981), 283-309 .

[Sa2] E. SAWYER, A characterization of a two weight norm inequality
for maximal operators, Studia Math . 75 (1982), 1-11 .

[St-Wh] J . C. STROMBERG AND R. L . WHEEDEN, Fractional integrals
on weighted HP and L p spaces, Trans . Amer . Math . Soc . 287 (1985) ,
293-321 .

[St-To] J. O . STROMBERG AND A . TORCHINSKY, "Weighted Hard y
spaces, " Lecture Notes in Math . 1385, 1989 .

[Ve] I . E . VERBITSKY, Weighted norm inequalities for the maximal
operators and Pisier's theorem on factorization through Lp°°, Integr .
Equat. Oper. 7'h . 15 (1992), 124-153 .

Vi] 1 . WIK, On Muckenhoupt's classes of weight functions, Studi.a -
IVlath . 54 (1989), 245-255 .

Université d'Orléans-Département de Mathématiques
U .F .R . Faculté des Science s
B .P. 6759
45067 Orléans Cedex 2
FRANCE

Primera versió rebuda el 16 de Març de 1993 ,
darrera versid rebuda el 3 de Febrer de 1994


