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WEIGHTED NORM INEQUALITIES
FOR MAXIMAL FUNCTIONS
FROM THE MUCKENHOUPT CONDITIONS

Y. RAKOTONDRATSIMBA

Abstract

For some pairs of weight functions u, v, which satisfy the well-
known Muckenhoupt conditions, we derive the boundedness of the
maximal fractional operator M (0 < s < n) from L? to L2 with
g<p

0. Introduction

Let u, v weight functions on R™, n > 1 (i.e. nonnegative locally inte-
grable functions). The fractional maximal operator M, (0 < s < n) is
given by

(M. f)(z) = sup{|c2|%-1 fQ . Q& cube with @ 3 x}

Throughout this paper @ will denote a cube with sides parallel to the
co-ordinate planes.

Let 1 < p, ¢ < 00, with % — % < 2. It is fundamental in analysis to
give a characterization of the pairs of weights (u,v) which satisfy

(0) IMsfllLe < C|Iflize for all functions f, C = C(s,n,p,q,u,v) > 0.

Here ||g||z; denotes ([z. [g|"w dx)%, with dz the Lebesgue measure on
R™.

In the case of 1 < p < g < cc Sawyer [Sa2] showed that the inequality
(0) holds if and only if (u,v) € S(s,n,p,q) i.e

R -1
(M~ 7T Ig)Igll g < Cllv™ 7 IgllLs = Tgllr |, <00

v P—1
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for all cubes @, here S = S(s,n,p,q,u,v) > 0. A known necessary but
not sufficient condition for (0) [Mu] is (u,v) € A(s,n,p,q) i.e

sy 1 (1 (1 f _1 -5
ﬂ+q P | — U —_ P_‘I) <Af01' 1l ¢ beS N
19l (IQI/Q ) (@i e < A for all cubes @

with A = A(s,n,p,q,u,v) > 0.
As we will recall in Section 2, this condition is verified more easily than
the first one. Pérez [Pe] (see also [Sal]) proved that (u,v) € A(s,n,p,q)

implies the inequality (0) whenever do = v 71 dz € Ao ie. for some
§5>0: '

ENG
:g:o < (’@l') for all cubes @ and for all measurable sets E C Q
here |E|, denotes fQ o. In fact the equivalence between (0) and (u,v) €

A(s,n,p,q) is also valid with a weaker condition on do, for instance in
[Ra3] it was proved that it is sufficient do € Bs i.e.

@l _ (1Q1)°
]Q|: < (@) for all cubes @, Q' with Q' C Q
with [1 — £] < 6. As we will see in Section 2, measures dy can be found
such as dy € Bs but du ¢ As. The condition 7 — & < 2 can be derived
from the inequality (0) by the Lebesgue differentiation theorem. Hence
for s = 0 (M is the Hardy-Littlewood maximal operator), the inequality
(0) must only considered for ¢ < p. The case p = ¢ was studied by
Muckenhoupt [Mu] for « = v and by Sawyer [Sa2| for general weights
u,v. For ¢ < p, a characterization of the pairwise of weights (u,v)
satisfying the inequality (0) was given by the author [Ral]; but the
condition used is difficult to check.

Therefore 1 < ¢ < p < oo a natural question is: “does (u,v) €
A(s,n,p, q) imply (0) whenever do € A,,. In this paper we give a positive
answer with the additional assumptions udz € B, v T dz € B, with
0<v,pand [1- %] <p(1—%)+u§.

We state our main result in Section 1. In Section 2 we give some useful
remarks and observations about the weight condition B,. The proof of
our main result is in Section 3. A paper of Verbitsky [Ve| concerning the
characterization of the problem (0) with ¢ < p and for general weights
u, v appeared when this manuscript was written.

Acknowledgement. The author would like to thank the referee for
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1. The main result

To include many classical maximal functions, we deal with the operator
(Mo1)(@) =sup {2(@IQI™ [ 1fli @ cube with @3}
Q

where @ is a map defined on the set of cubes, taking its value in |0, 00|
and satisfying the following growth conditions:

H; there is C' > 0 such as

B(Q1) < CB(Qs) for all cubes @1, @ with Q1 € Qa;
Hz there are C1, C2 > 0, A, n = 0 such as
C1t™®(Q) < B(tQ) < Cat™®(Q) for all cubes @ and all ¢ > 1.

When ®(Q) = 1 the Hardy-Littlewood maximal operator is obtained.
The fractional maximal operator M; (0 < s < n) is given by ®(Q) =
|Q|». Maximal operators connected to the Bessel potential operator

1
[Ke-Sa] are defined by ®(Q) = folan @(s) ds; and generally Mg arises
in studies of other potential operators [Ch-St-Wh)].
Let 1 < p, ¢ < co. We say that the inequality P(Ms,p,q,u,v) holds
for a constant C > 0 when
IMafllzs < C|fllz2 for all functions f

and we write (u,v) € A(®,p, q) if for some constant A > 0

1-1

1_1 1 i 1 1 ?
EE — R A for all cub .
(Q)lQ| (|Q|./Qu) (|Q|./Qv ) <Afo cubes @

In this paper we always adopt the convention 0.co = 0. By
P(Mg,p,q,u,v) and the Lebesgue theorem, we see that if u # 0 it is
necessary to suppose

lim (® Ch :

(Hs) Jm (2@]QI4 %) < oo

For instance Hj is satisfied if % - % < A. For ®(Q) = 1, the hypothesis
‘H3 implies g < p, and for (Q) = |Q|* it means % - % <4

Let ¢ > 0 and w be a weight function. As in Section 0, we write
wdz € B, if there is C > 0 such as

|Igi|:j < ('gﬂ ) * for all cubes Q, Q' with Q' € Q.

Now our main result can be stated:
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Theorem.
Let 1 <p, g < oo and ® be a function which satisfies Hy, Ha, Hz.

A) If the inequality P(Mg,p,q,u,v) holds for a constant C > 0 then
(u,v) € A(®,p,q) with the constant A = C.

B) Let1<g<p<ooanddo = v dy € Aco- Moreover assume
udz € B,,v 7 idz € B, with0 < v, pand (1-X) < ¢ (1 - 1%)+

v (l) If (u,v) € A(®,p,q) then the inequality P(Ms,p,q,u,v)

P
holds for a constant Ac, ¢ = ¢(®,n,p,q,u,v) > 0. The part B) is
also valid when do € B, with 1 — X < o.

Actually the constant ¢ depends on the fact that uwdz € B,,

1
v~ 7-1 dz € B, but not directly on u and v. The result stated in the intro-
duction is now easily derived from the theorem by taking ®(Q) = |Q|=.

Let 0 < s < n and I the fractional integral operator defined by

L= [ sl iy

In the case of 1 < p < ¢ < oo it is known [Pe] that the inequality
P(Is,p,q,u,v), Le.

[Isfllzs < C|fllze for all nonnegative functions f

holds if and only if (u,v) € A(s,n,p,q) whenever udz, VT dg € A
By the results in [Ra2] and [Ra3] this equivalence also holds if udz €

B, N Dy, U_ﬁdeBg with 1 -2 <vand 1- 2 < p (see also [Pe]
for such a result). The condition wdz € D, means:
12Q|. < C|Q)+ for all cubes Q.

2Q) is the cube with the same center as Q but the edge lenght expanded
twice. As a consequence of our theorem, for 1 < ¢ < p we have

Corollary.

Let 1l < g < p < 00,0 < s < n and udzr, v dy € As.
1
Moreover assume uwdr € B,, v 7 1dx € B, with 0 < v, p and

(1-2) < g(l - %) + u(%). Then the inequality P(I,n,p,q,u,v)
holds if and only if (u,v) € A(s,n,p,q). This equivalence also holds

when udz € B, N Doo, v 71 € B, with1— £ <v and1— £ < p.

For seeing this, it is sufficient to remind that the Muckenhoupt-
Wheeden inequality [Mu-Wh)]

s flicz < ClIMsfllLs



WEIGHTED INEQUALITIES FOR MAXIMAL FUNCTIONS 29

holds whenever udx € A,,. This is also the case when udz € B, N D,
with 1 — 2 < v (see [Pe] or [Ra2]).

2. On A(®,p,q) and B, conditions

Now we also assume the functions ® defined on the set of balls by
®(B) = &(Q) whenever @ is the smallest cube which contains the ball
B. A weight function w satisfies the condition C when there are constants
¢, C > 0 so that

C
sup  w(z) < - / w(y) dy.
1R<|z|<4R R™ Jiy<cr

Many of usual weight functions w satisfy this growth condition, since
nonincreasing and nondecreasing radial functions are included. Condi-
tion (u,v) € A(®,p,q) for u and v satisfying C can be easily realized,
mainly for radial weights. Indeed we have

Proposition 2.1.
1_1

Let1 <p, g < o0 and 2" q < A. Assume u, v satisfying the growth

condition C. Then (u,v) € A(®,p,q) for a constant A > 0 if and only if

(u,v) € Ao(®,p,q); i-e
&(B(0, R))R"(: % 1 1 -4 <A
(B, R) (anwu) (RR/M(RU ) < 4o

for all R > 0, where Ag = A x ¢(®,n,p,q,u,v).

o=

-2 < -n < a<nlp-1),

|z|8, v(z) = |z|* then

As an example for 0 < s < n, % é
ps—n <a B =2(n+a)-gs—n, u)
(u,v) € A(s,n,p,q).

Now let us discuss how we can verify in practise, for usual weights
the condition wdx € B,, ¢ > 0. To do this, we first recall some known

classes of weights.

E
nt

The Muckenhoup class A,.

Let us recall that wdz € A, (1 < p < oo) if and only if (w,w) €
A(0,n,p,p). It is known [Ga-Rb]| that Ao, = U,>14,.
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The reverse Holder class RH,.
We write wdz € RH, (1 <7 < 00) if and only if

(ﬁqur): SR(ﬁwi) for all cubes @ C = C(w) >0

The classes RH, and A, are related; for instance wdz € RH, if and
only if w™'dr € Ar_. If wdz € A, then it is known [Ga-Rb] that
wdx € RHy4, for some p > 0; the converse is also true.

The reverse doubling class RD,.
We write wdx € D, (¢ > 0) if and only if

Ct"|Q|y < |tQ|w for all cubes Q and allt > 1, C=C(w) >0

_r by the Holder inequality, wdx € RD.. Suppose
wdx € Dy, with the doubling constant D, i.e

12Q|w < D|Q|y for all cubes @ D = D(w) > 1,

then [St. To] wd:c € RD, for some g > 0. Precisely [Ra3] we can take
0= mow 2,, In 57— Dc ; Where c =4+ ; ]“ 3 But the reverse doubling condition
RD, is weaker than the doubling condmon D, (take for instance w(z) =
Izl
ey,
Thus it is clear that wdz € A implies wdz € B, for some p. On the
otherhand we can state

Proposition 2.2.

If wdzx € B, for some ¢ > 0 then wdz € RD,. Conversely if wdz €
RD,N Dy, then wdz € B,.

So in practice to obtain wdr € B, it is sufficient to get wdz €
RD, N Dy, By the above condition wdz € RD, (0 < p < 1, with the
precise value of g) can be realized from wdz € RH or wdz € Dy
Consequently, it is interesting to know when we have 'wdx € Dy. It is
well known [Ga-Rb] that wdz € Do, when wdz € Ay. But we can find
wdzr € Dy, with wdz ¢ Ay, [Wi]. As a tool for wdz € Do, Stromberg

and Wheeden [St-Wh] proved that |z|*u(z), (IJ-;H?I) u(z) € Doo when

udr € RDy N Dy and a > —np. By adapting an argument in [St-
Wh], this result can be extended for weights w(z) = 6(|z|)u(z) where
udr € RD, N Dy (o > 0), and @ essentially constant on annuli and
satisfying a condition like: Y, 2 *"2f(27%L) < 4(L) for all L > 0.
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3. Proofs of results

Our main theorem is a direct consequence of the inequalities (3.1),
(3.2), (3.3) in the following propositions.

Proposition 3.1.

Let1 < g < p < oo. Assuume ® be a function which satisfies hypothe-
ses Hi, Ha, Hs. Let define

O(z) = sup{®(Q)|QI QL *|QIZ; @ a cube with Q 3 z},

do = v~ 771 dz and i(z) = ©~P(z)u(z). Then @ € L. (R™,dz) and

loc

(31)  IMofllzg < Mo flliz]©]z; for all functions f,

= 4P
where r = pt
Proposition 3.2.
Let 1 < p < oo and 4 defined as above. Assume do € A ordo € B,
with 1 — XA < o () is the exponent in the hypothesis Hz). Then there is
¢ =¢(®,n,p,q,u,v) >0 such that

(3.2) |Ms fliz2 < cllfllzz for all functions f

Proposition 3.3.
Let1 < g < p < oo. Assume
i) ® be a function which satisfies H1, Ha, Ha;
il) udx € B,, v ridr € B, with0 < v, p and (1-2) < ¢ (1 - 1)+

»
1).
'y
iii) (u,v) € A(®,p,q) for a constant A > 0. Then there is
C(®,n,p,q,u,v) > 0 so that

v

(33) |0l <CA r=-T_

p—q

Proof of Proposition 3.1:
Let us first observe the locally integrability of the function . Indeed

for each cube Q with (@(Q)|Q|“1|Q|;_;|Q|E) > 0 and for each z € Q:

1 1 -1
0-'(z) < (@(Q)|Q|—1|Q|i‘5|cz|£) >0
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and so
-p

(34)  |Qla= fQ O P(z)uds < (@(QMQMQI?%E) < oo

Note that for |Q|, = 0, by the convention 0.co = 0, we immediatly have
|Qlz = 0. .

Inequality (3.1) comes from the Holder inequality, indeed for 1 < ¢ <
p(ooandr=59_%weget

q
IMeflty = [ [(Mapyabout—3]" de <
Rﬂ
< (Mo f)az ||, [|Qus 7|2, =

= [MeflZz 1Ol =

Proof of Proposition 3.2:
First let us note that by (3.4), (%,v) € A(®,p,p) i.e.

(@(Q)|Q|-1|Q|i‘%|c;|§ ) > 0 for all cubes Q.

For do € A, an easy modification of the proof in [Pe] yields to the
conclusion (3.2). For do € B, with 1 — A < p, we get (&,v) € S(®,p,p)
[Ra3] and then by a similar argument as in [Sa2] the inequality (3.2)
holds for a constant ¢ = ¢(®,n,p, %) >0. B

Proof of Proposition 3.3:
For each R > 0, let us define

- -1 % . 1
Or(z) = sup{®(Q)IQI"|Qls "|QI&; Q a cube with @ 3 z, [Q|™ < R}.
The conclusion appears once we obtain

(3.3") HeRHL; <cA c=¢(P,n,p,qu,0)>0 1= £

p—q
Then in order to prove (3.3’), we take a cube Qg with |Qg|* = R. Then
IOlz; = 61,7+ O2r

where ©; g = fQo ORudz, Oy g = fR"\Qo Qrudz. W
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Estimate of ©; r.

Let z € @, @ acube with @ > z and |Q|'r1? < R. Note that @ C (3Qo).
Now using i), ii), iii) we get

AQ) = 2(Q)QI QL ?1QIE <

Q| (A=1+e(1-3)+vi]
< ¢(®,n,0,u) (|Qu!) A(3Qo) <

< ¢(®,n,0,u)A(3Qq).

Thus Or(z) < ¢(®,n,0,u)A(3Q0), and consequently

O1r < ¢(®,n,0,u) (A(sQo)szu;é‘) _

(3:5) — ¢(@yn,0,0) (@(3Qo)|3czo|—1|3czo|i‘%|3Qo|§ ) <

< d(®,n,0,u)A".

Estimate of ©; r.
First we can write

GQR—Z/ Rud:r.

k>0 (2F41Q0)\(25Q0)

Let k € N, z € (25¥1Q0)\(2*Qo) and Q > = with |Q|= < R. Then
Q C (32%+t1Qg) = (6Qq). As the above computation we have

A(Q) < ¢(®,n,0,u)27 (=515 (625Qp).

Next, since 1 — A < p (1 - —) +.v- then
(3-6) o
Os,p < ¢(®,n,0,u) Y 27K 0= (A(625Q0)| (62" Qu)lE ) <
k>0
< c’(@,n, o, ‘H.)Ar Zz—knb\+g(l—%)+v%] <
k>0
< (®,n,0,u)A".

Inequalities (3.5) and (3.6) yield (3.3’), and consequently by a limiting
argument we get (3.3).
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Proof of Proposition 2.1:

Let us assume the condition (u,v) € A(®,p,q) holds for a constant
A > 0. It is also equivalent to ask

(*) 1 1
@(B)IBIL"*( ! / )q( ! / _;)1_;<A’f 1l balls B
T P —_ u — v p-1 = or a. s 3
|B| /B |Bl /B

here A’ = Ae(®,n,p,q).
If |zo| < 2R then B C B(0,3R) and hence the first member of (x) is
majorized by

c(®,n,p,q)x

SCEO] (S S Y (N0 W Y
x®(B(0,3R))(3R) ((3R)n /1y;<3R ) ((3R)“ ./|y]<3R )

If 2R < |zo| then 27R < |zo| < 227R for some j € N* and hence for
each y € B : 127R < |z| < 427R. Using the growth condition C for u

and v~ 77 it is found ¢ = c(u,v) > 0, C = C(u,v) > 0 such as

(1) < (e [y ™
— [ v T —— VR
|B| /B = \(2R)™ Jiyi<(c2iR)
1 1
— <C|—r .
(|B| /B"') - ({cm)n /|y1<(m> ”)

Note that ¢, C depend on the constants on the growth condition C for u

and v~ 7T but not directly on these weights. Consequently in the case
2R < |zg|, the first number of (*) is now majorized by

and

C(®,n,p,q,¢,C)2~ I+ =318(B(0, 2’ R)) x

1 1-1
. 1 1 1 ¢ ]_ 1 ’
x(c27 Ry"(a~3) ——f ) [ ——— s
(CQJR)n lyl<(c2? R) (CQJR)R |lyl<(c27 R)

Since ; — 2 < A, we can see that inequality (x) is satisfied once (u,v) €

AD(@: P, Q) ie.

1 1-41
1 1 N 1 1 F
&(B(0, R))R"(:3) (—;/ u) (—nf u—m) < Ao
R* Jiyi<r R" Jiy<r



‘WEIGHTED INEQUALITIES FOR MAXIMAL FUNCTIONS 35

for all R > 0, here Ay = Ac'(®,n,p,q,u,v). B

Proof of Proposition 2.2:
Let wdz € B, for some g > 0 i.e.

|Q1|w |Q1| ¢ :
—— < B|—=— for all cubes Qq, @1 with @, C Q.
|Q0|w |QD|
Let @ be a cube and ¢ > 1. Taking @; = @ and @y = tQ we obtain
t"|Qlw < R|Qlw

with R = B, hence wdz € RD,,.
Conversely let wdz € RD, for a constant R > 0. Also if wdz € Dy
then for @1 C Qg and for all cubes @» having the same center as @; and

with |Q2| = |Qo|

Q1w < R (%) Q2w <

@)9
<R (|Q0| 13Qolw <

< RD|Qo|w-

Here D depends on the constant which is in the doubling condition for
wdz. Consequently wdx € B, with the constant B=RD. ®
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