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Abstract

This paper contains the algebraic analeg for idempotent matrices
of Lthe Chern-Weil theory of characteristic classes. This is used to
show, algebraically, that the canconical line bundle on the complex
projective space is not stably trivial. Also a theorem is proved say-
ing that for any smooth manifold there is a canonical epimorphism
from the even dimensional algebraic de Rham cohomology of its
algebra of smooth functions onto the standard even dimeusional
de Rham cohomology of the manifold.

1. Introduction

In this paper I comment about algebraic characteristic classes and
some related problems.

The idea for defining characteristic classes for finitely generated pro-
jective modules comes from the equivalence between vector bundles and
finitely generated projective modules given by the cross section fune-
tor, see Swan [12]. These classes were defined by Ozeki, (9], by imita-
ting the Chern Weil construction via principal connections, The classes
introduced by Ozeki belonged to a cohomology of the ring based on
the derivations of such a ring. Later Kong, [7], defined the Fuler class
for inner product projective modules by using linear connections on the
module and the algebraic de Rham cohomology of the ring, i.c. the
cohomology of the exterior algebra of the Kdhler differentials with the
canonical extension of the universal derivative. See also Karoubi, [6], for
a generalization to the noncommutatlive case and. its relation with the
corresponding theory using cyclie homology, see Connes, [2].

The functors A — Pa, A — I4 are naturally equivalent, where
A — P, associates 1o each commutative ring with unit, A, the isomor-
phism class of finitely generatéd projective modules over A, and A — f4
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associates to such a ring 4 the equivalence class of idempotent matrices
with entries in A, where an idempotent matrix ¢ is equivalent to an idem-
potent matrix ¢’ if and only if there exist matrices M and N such that
MN =, NM = ¢'. This equivalence is obtained by sending the class
of p in I4 to the class of the image of v in Ps. The above equivalence
induces one between the abelian group Kg{A) of stably isomorphism
classes of finitely gencrated projective modules and the corresponding
abelian group obtained from the idempotent matrices. The opposite
of the class represented by an idempotent matrix  is clearly the class
represented by I, — ¢, where I, is the n x n identity matrix.
2, Examples.

a) Consider the idempotent matrix

1-X2 -XY -XZ
p=| -XY 1-Y?2 -YZ
-XZ -YZ 1-2°%

with entries in A = R[X,Y, Z)/(X? + Y2 + 22 — 1), where R is any
commutative ring with unit.

The class p in f(g(A) is zero. In fact the opposite class is represented
by the idempotent matrix

X* Xy Xz
XY Y?! YZ|=MN
XZ vz 2z?
X
withM=1[1Y |, N=(XY Z) and we have NM = (1},
z

If A is the ring of €™ functions on the 2-sphere 52, the above matrix
@ represents the tangent bundle of §2 and this example is the algebraic
version of the well kowr fact that the tangent bundle of the 2-sphere is
stably trivial.

b} If R = R(real numbers) or R = C (complex numbers), the Grass-
mannian of r-planes in R"®, G,(R"), is diffeomorphic te the manifold
whose points are the n x n idempotent matrices ¢ = () such that
@ = " and having rank r { ¢ denotes conjugate and @ transpose). The
canonical r-plane bundle v is then represented by the n X n idempotent
matrix y = (1) where 7} : G.(R") — R is given by v/{) = ¢}. There-
fore if R = R{resp.R = C) the idempotent matrix v makes sense in the
quotient of the polynomial ring R[X}); ;1. .{resp. R[{] X7 Y¥{); G=1,..m)
by the ideal genecrated by the polinomial identities for the coudltlons
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~% = ~, % = 4 and rankvy = r. This allows us to define what a

canonical r-plane bundle shouid be in general for any commutative ring
with unit R { resp. Rli] with %= ~1).

For instance if r= 1,7 = 2 the ring is the quotient of R[|[X?, Y7}, ;=12
by the ideal generated by Y}!, YZ#, X7 - X3, Y2+ Y}, X} + X§ -1,
XH1— X1 — (X372 + (Y2)?); which is isomorphic to

REIXL, XT, YP) /(X1 (1 - X)) = (XD)" + (V7))

and the algebraic version of the canonical complex linc bundle should be
the idempotent matrix

B X} XE+iY?
TEAXx2_gy? 1- X!

If 1 € Rwecan write X =2X{,Y =2Y? Z =2X; — 1 and the ring
above is isomorphic to A = R[i|[X,Y, Z)/(X? + Y2+ Z2 — 1), where R
is any integral domain containing 3.

Choose now any commutative differential graded algebra (£2,d) with
% = A. For instance the algcbraic de Rham complex, i.e. Q0 = A4, (!
are the Kdhler differentials with the universal derivative d : Q% — Q1,
1P is the p-th exterior power of ! and d: Q7 — QP! is the canonical
extension of d: 4 — 0! In our case is clear that ¥ = { for p > 3 and
02 = Aw is a free module of rank one, where w = XdYdZ + YdZdX +
ZdXdY.

It makes sensc now to consider the matrix y{dv)? with cntries in 22

and a straightforward computation yields trace(v(dy)?) = —tw.
Observe that for o matrix o with entries in K[i] one has da = 0 and
for a matrix ¢ = g IO where I, is the m x m identity matrix,
e

one has traceyp(di)? = trace(v(dy)?). These two observations and the
following lemma tell us that to prove that v does not represent the zero
class in Ko{ A) we must show that trace(-y(dy)?) is not of the form do
for some o € 2. In our case we must show that w ¢ Im{d).

Lemma. Ify and ' are idempoteni matrices with MN =, NM
@' for some matrices M,N; then trace(y {dp')?) — trace(p(dp)?)
ditrace(wMdIN)).

Il

Proof:

trace(yp’ (dp')?) — trace(iw(dp)?®) =
—trace(NM(dN.M + N.dM)? - MN(dM N + M.dN)?) =
=trace(pdMdN — @'dNdM — 2pd M@’ dN).
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The last equality comes from the observation that for «, 8 matrices
with entries in £27, Q9 respectively one has trace{af) = (—1)Ptrace(fBa).
In particular irace(a?) = 0 for p odd.

On the other hand

d{trace{pMdN)} = trace(d{ MNMdIN)) =
=trace(dM.NMdN + MdN.MdJN + MNdIM.AN) =
=tracepdMdN — tracep'dNdM.

Therefore to conclude the proof of the lemma one must show that
trace(pdM'dN = (.
But we have
trace(pdMp'dN) = trace(p?dMp'dN) =
=trace(M¢' NdMp'dN) = trace(p NdMp'dN.M) =
=trace(yp NdMy'de') — trace{p' NdMp' NdM) =
=trace(o' NdM'de'} = trace( NdMp'dp’ o'} = 0,
because w'dp’ . = 0.
In fact, d¢' = d(¢')? = dy'.¢' + @'dy’ implies dp'.¢' = dy'. ' +
‘pfd(pf.(pf
Hence p'd¢’ ¢ = 0. ®
If we assume that R contains the rational numbers, then we may show
that w ¢ Im{d} by considering the R[{]—linear map given by Kong, cf.
page 297 of (7], p: 92 — R[i] given by p(w) = 1, p(X°YP.w) = Oifaor 3
mI{2n) {m4nl
are odd, p(X°YPZw) = 0,p(X>nY > w) = gL @miGn)! (min)
and check that p vanishes on the image of d.

Actually it is not difficult to give a direct proof showing that w is not
in the image of d for any ring R[i] as we have considered, i.e. an integral
domain containing 1.

3. Characteristic classes for idempotent matrices

The examples above suggest how to define characteristic classes for
idempotent matrices ¢ having entrics in an R-algebra A where both R
and A are commutative rings with the same unit clement. One simply
chooses a commutative graded differential algebra (€2, d) with Q° = A.
Yor instance take ({},d) as the algebraic de Rham complex of A. Then
det(p(de)® + 1) = 1+ c1(p) + -+ + e (), where I, is the identity n x n
matrix and ¢,(ip) € 2% is the p-th characteristic coefficient of .

Define also Try(p) = trace(p(dp)}?)? € Q% for p > 1 { the trace
coefficient of ). They are related by Tr, = Q,(Cy,...,Cp), PIC, =
Bp(Try,...,Try) for polynomisls P;, Q; in Z[X,,...,X;].
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Lemma. dTr,(w) = 0. Thus if R conlains the rationals one has
deg(ip) = 0.

Proof: We have already seen that wdp.p = 0 and @{dp)? = (dp)?p.
Observe that we have trace(w{dp)??*!) = 0.
In fact,

@ldp)?P+ = P (dp)?PH

Thus

trace(ip(dp)?P*!) = trace{p(dp) P+ p) = trace(pdp.p.(dp)*?) = 0.

But

(d)?*! = dpp.(dp)? + p(dp)*P*.

Therefore

trace{dp)?? ¥t = trace(dp.p.(dp)?) = trace(p(de)?®™)=0. &

As a consequence of this lemma ¢,(i) represents a cchomology class
in H?P(£2,d) called the pth-Chern class of . In the example above we
have computed the first Chern class of .

If R=R, A=C>(X) and y is the idempotent matrix corresponding
to a vector bundle £ over the €™ manifold X, one has that the coho-
mology class represented by ¢,{¢) is zero for p odd and the cohomology
class represented by cg,{p) equals (27)2%.p,(£), where p,{£) is the ¢-th
Pontrjagin class of £. If R = C, A = C*{X;C) and ¢ corresponds to
a complex vector bundle £, the cohomology class represented by cp{)
equals {—2mi}Pc,(€), where c,(£) is the p-th Chern class of £.

The next proposition shows that actually the p-th Chern class is de-
fined for elements in Ko(A).

Proposition. If ¢ and ¢’ are equivalent idempotent matrices, then
(10"} — cp{ip) belongs to the image of d.

Proof: Suppose MN = ¢, NM = p'. We proceed as follows. Observe
first that the images of  and ¢’ are finitely generated projective modules
and that N : Im{p) — Im(p’) is an isomorphism with inverse M. Define
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then linear connections V : Im{y) — Im{p) ® Qv Im(y') -
Im(p Y ® QY and V : Imlyp’) — Im{p’) ® Q! as follows:

Vz = Z de; & wle;)

=1

forz =57, z;e; € Im{y) C A", where ey,.. ., e, is the canonical basis
of A™. :

v =Y el @ '(e)
=1

for ' = 30 @l.e) € Im{p) C A™, where €),...,€,, is the canonical
basis of A™.

V such that the following diagram commutes

m(g) —— Im{p) Q!

I
lN lN@id
Imle) —— Im() @ O

Denote by Ry, Ry and Rg the corresponding curvatures for V, V/,
V. m ~ -

Remark. Recall that if V: M — Q' ® M is a lincar connection for
a finitely generated projective A-module M, then V2 : M — ? @ M
is A-linear and so it can be regarded as an element Ry _of_Q2 & Ly
which is called the curvature of V. If V denotes also the induced linear
connection .on L and the corresponding covariant exierior derivative
{just imitating the usual definitions in Differential Geometry) one has
the Bianchi identity VRy = 0.

An easy computation shows that trace(Ryo---0oRy)= tmce(go(dgo)zf’},
trace{Ry: o +- o Ry} = trace(y'{dy’'}?P) and trace(Rv oih0 Rv) =
trace{Rg o---0 Rg).

Therefore to finish the proof we must check that for any two lmear
connections V3, V2 on a finitely generated projective module, we have
that trace(Rg, o--- o Ryg,) — trace{{Ry, o+ ¢ Rg,} belongs to the
image of d. But since Vy — V, € 2! ® Ly, it is enough to do it for Vg =
Vi+a @y with ¢ € Ly, 0 € Q. In this case Ry, = Ry, + V{a ® )
and the proof is an easy comequence of Bianchi adenttty and the relation
Votrace = frace od. . :
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4. Some questions

a) Suppose A' = C®{X}, where X is a C*°—manifold, we have then a
canonical homomorphism Ho(C™ (X)) — Hjp(X) where Hjp(C(X}))
denotes the algebraic de Rham cohomology of C®(X) and H},(X) de-
notes the usual de Rham cohomology of X,

It is well known that the above homomorphism is not, in general,
an isomorphism, see proposition 8, page 143 of [10], but we have the
following theorem

Theorem. The homomorphism Hig(C®(X)) — Hig(X) is an epi-
maorphism in even dimensions.

Proof: Qbserve that if ¢ is a vector bundle over X the algebraic Chern
classes of the corresponding idempotent matrix are mapped canonically
to the correspending characteristic classes of £. Then we use the fact
that any even dimensional de Rham class, with coefficients in Q,R or
C is the characteristic class of some complex vector bundle over X,
This is true because of the iscmorphism given by the Chern character
ch: K(X)®z Q — [],»0 HP(X;Q), see page 119 of [3].

We can pose then the question:what heppens in odd dimensions? B

b} It seems natural to consider for a topological space X the algebraic
de Rham cohomology of its algebra of real or continuous functions. What
can be said of such a cohomology?. Except for H? or trivial cases, see
[4], I do not know anything else. '

¢} It should be interesting to find, for a given space, commutative
differential graded algebra (§2,d) such that ° = 4 is some subalgebra
of functions of X such that we have isomorphisms Hyr(Q,d) = H*(X)
and Ko{A4) = Ko(X). See alsc Carral [1),Lgnsted [8] and Swan [11] for
some other related problems.
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