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Abstract

A longstanding open problem in the theory of von Neumann reg-
ular rings is the guestion of whether cvery directly finite simple
regular ring must be unit-regular. Recent work on this problem
has been done by P. Menal, K.C. O'Meara, and the authors. To
clarify some aspects of these new developments, we introduce and
study the notion of almost isomorphism between finitely generated
projective modules over a simple regular ring.

0. Introduction.

In the few past years, there have becn some advances in the under-
standing of directly finite simple regular rings. In 1988, Menal and the
second author [GM, Theorem 5.2] showed that if R is a directly finite
regular algebra over an uncountable field, and if K contains no uncount-
able dircct sums of nonzero right ideals, then it is unit-regular. As a
consequence of this, any stably finite simple regular algebra R over an
uncountable field is unit-regular [GM, Corollary 5.4]. More recently,
(O'Meara proved that a directly finite simple regular ring satisfying weak
comparability is unit-rcgular [O, Theorem 1]. An alternative proof of
O'"Meara’s Theorem was developed by the second author in privately
circulated notes [GB]. We take the opportunity to present this proof
here. '

Our standard reference for the theory of regular rings is [G1], and for
the theory of partially ordered abelian groups is [G4]. The reader can
refer to these books for any undefined terms.

The research of the first author was partially supported by DGICY'T grant P83-3295,
and that of the second author by an NSF grant
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Let R be an associative ring with 1. Denote by P (resp. Pg) the
class of finitely generated projective right R-modules {resp. the class of
nonzere finitely generated projective right R-modules). If R is a regular
ring then L{Rg) will denote the lattice of principal right ideals of B. For
A, B € P, we will write 4 £ B (resp. A < B) il A is isomorphic to a
submodule (resp. proper submodule) of B. For a positive integer k and
module A, we let kA denote the direct sum of & copics of A.

A ring R is said to be directly finite if zy = 1 implies yz = 1, for
z,y € R. We say that R is stably finite if M,(R) is directly finite for all
n 2 1. Il is not known whether directly finite regular rings arc stably
finite [G1, Open Problem 1]. The question is open even in the case of
simple regular rings.

A ring R is seid to be unit-regulor if for any = € R there exists a unit
# € R such that ¥ = zuz. Every unit-regular ring is stably finite, but
there exist stably finite regular rings which are not unit-regular [G1,
Proposition 3.2 and Example 5.10]. However, there are some interesting
classes of regular rings for which it is known that direct finiteness implies
unit-regutarity. For example, this holds for regular rings satisfying gen-
eral comparability [G1, Theorem 8.12], for right Rg-continuous regular
rings [G2, Theorem 1.4], and for Ry-complete regular rings [Bu, Corol-
lary 1.6]. An outstanding question in the theory is whether a dircctly
finite simple regular ring is unit-regular [G1, Open Problem 3.

We say that a class of modules C satisfies the cancellation property
(with respect to the isomorphism relation) if A& C = B @ € implies
A= Bfor A,B,C e C. A regular ring R is unit-regular if and only if
P satisfies the canccliation property, see [G1, Theorem 4.5). The main
result of Section 1 states that a direcily finite simple regnlar ring is unit-
regular if and only if P satisfes the cancellation property with respect to
the almost isomorphism relation (defined in Section 1).

We say that R is strictly unperforated whenever nd < nB implics
A=< Bfor A, BecPandn > 1. Ris unperforated if nA < nB implies
A=BforABePandn>1.

Assume that R is a directly finile simple regular ring. It is an open
question whether R is (strictly) unperforated. Strictly unperforated di-
rectly finite simple regular rings have a number of interesting properties.
In particular they are unit-regular and, in the non-artinian case, they
are close to being rings of matrices of any size (see Section 2). Some
technical resulis needed to obtain the latter statement are included in
an Appendix.

Let R be a stably finite simaple regular ring. Then (Ko(R),[R]) is a
partially ordered abelian group with order-unit, see [G1, Proposition
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15.3]. Let & : K¢(R) — Afi{S{Ky(R),[R])) be the natural map, see
(G4, Chapter 7]. For any compact convex set S, denote the strict or-
dering on Aff(S) by «, that is, f « g if and only if f(x) < ¢g{z) for all
z € §. By [B3, Theorem 3.1.4] and (G4, Theorem 4.12], R is strictly
unperforated if and only if ®([4]) < ¢([D]) implies A < D for A, D € P.
We can consider the following weaker condition:

For any D € L(RR)}, there exists K > 1 such that, for A € L{Rg), if
K®([A]) < ®([D]) then A < D.

We will see in Section 3 that R satisfics this condition if and only if R
satisfies the following property:

The doubling condition (DD): For any I € L{Rg), there exists K > 1
such that, for 4 € L{Rg), if 4 < D and K®{[4]) « ®{|D]) then
2A < D.

Sinilarly, the following two conditions are equivalent for a directly
finite simple regular ring 13

Weak comparability (O’ Meara): For any D € L(Rg) there existsn > 1
such that, for 4 € L(Rp), if nA < Rthen A £ D.

(dd}): For any 12 € L{Rz) there exists n > 1 such that, for A € L(Rg),
f A< Dandnd < Rthen 24 = D,

Ohbserve, in particular, that the doubling condition implies weak com-
parability in any stably finite simnple regular ring.

We close the paper by studying the effect of imposing comparability
with respect to the (approximately) almost isomorphism relation on a
stably finite simple regular ring.

1. Stable range of simple regular rings.

In this Section we study the stable range of simple regular rings, ob-
taining a restriction on the behaviour of the stable range on the family
of finitely generated projective modules. It is easy to show by using our
results thay if there exists a simple regular ring of stable range 2, then
there are corner rings of R with arbitrary finite stable range n > 1. So,
the situation for simple regular rings differs very much from the situation
for arbitrary regular riugs, see [MM; GMM)].

We will apply the results on stable range to give the new proof of
O'Meara’s Theorem [O, Theorem 1J.

Recall that a ring R satisfies the n-stable range condition {for a given
positive integer n) if whenever aq,...,an41 € Rwithay) R+ - ‘au R =
R, there exist elements b1, ...,b, € R such that

((11 “+ aﬂ_._lbl)R + -+ (an + Gpprbn ) K=K,
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If n is the least positive integer such that R satisfies the n-stable range
condition, then R is said to have stable range ni, and we write sr(R) = n.
It is well-known that a regular ring has stable range one if and only if
it is unit-regular [G1, Proposition 4.12]. The reader is referred to [V]
for the basic properties of the stable range and to [Wi;MM;M]| for the
connections between cancellation properties of modules and the stable
range of their endomorphism rings.

Lemma 1.1. Let R be a non-artinian simple regular ring. Then for
each P € Py and for all k > 1, there exists @ € Py such that kQ < P.

Proof: Clearly we can assume that P = eR for some nonzero idempo-
tent e € R. Since R is not artinian, ¢eR = e, R @ eo R for some nonzero
idempotents e;,e;. Since R is simple, e9 R < n(exR) for some n and
so erR = A, & - @ A, with 4; £ e;R by [G1, Corollary 2.9]. Then
eR=4,6(4:0 - B4, ®e R} and clearly 24, < eR. Now, the result
follows by induction. B

The following result is patterned after an argument of Rieffel [R].

Theorem 1.2. Let B be a simple regular ring such that sr{eRe) < k
for some k > 1 end all idempoients e € B. Then R is unit-regular.

Proof: If R is artinian, the result is well-known. So we can restrict
ourselves to the non-artinian case. Assume that P, @&nR = P, ®nR for
some finitely generated projective modules A and Ps. If P = P, = {, we
are done, so we can assume that ) # . By Lemma 1.1, Py 2 kQ & I/
for some @ € Py, and clearly we can assume that £ = ¢R for some
idempotent e € K. Now, we have

kQoUdnR= B onrR.

Since R is simple we have Ro V =2 50 for some s > 1 and since kG &
UonRonV 2P onRdnV we have RQ U & ns@Q =2 P, @ ns@. By
[W, Theorem 1.2], k Q@ U = P, and so P @ 1. By |[G1, Theorem 4.5],
it follows that R is unit-regular. W

We need the essentially-known fact that the finiteness of the stable
range is Morita-invariant. We include 2 proof of this result, which is a
straightforward application of the techniques in [W].

Lemma 1.3. Let P and Q be finitely generated projective modules
over o ving K. Assume that there exists k > 1 such thal G U = kP
and there exists i 2 1 such thot PO T = iQ), that is, P and @ generate
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the same categories of modules. Then sr{Endg(P}) < oo if and only if
sr{Endgr(@Q)) < 0.

Proof: We will follow the proof in [W, Theorem 1.11]. Assume that
sr{Endp(Q)) =r < oo. Set m = (r+7— 1)k Let

N=P@pK=Pd - ®F, &L

where P = PJ’ = P for all j. Adding T to this relation we obtain

M=NaéT=Q16¢ 0QOK=Q0 - 8Q,, . ®VEL

where Q, = Q, = @ for all p,q. Applying (W, Theorem 1.11], we get a
submodule B of M such that

M=BepK=BalCalL
where CC Q1 & - S Q,,_, V. Now we have

N=(BNN)gK=[(BaC)nN)@L

and also (B&CINN = (BNN)e[(B&C)INK]. Let m be the projection
of N onto P{ @ ---® F,, along L. Then

HBaeCinK|leL=n({(BaC)NK)& L

It follows that N = (BNN)@a{{B® )N K} ¢ L. By [W, Theorem
1.6], sr(Endp(F)) <m <oco. B

Remark 1.4. If sr{Endg{Q)) = r then by the above proof we obtain
the following bound: sr(Endp{f)) < (r + ¢ — 1)k. In particular, if e is
an idempotent of R and B < n(eR) then sr(R) < sr{eRe) +n— 1. This
is exactly the same bound obtained by Blackadar for C'*-algcebras, see
[B1, Lemma Af], [B2, p.33].

Qur following result is an immediate consequence of Theorem 1.2 and
Lemma 1.3.

Theorem 1.5. Lei R be a simple regular ring. Then one aof the fol-
lowing possibilities occurs:
(1) R is unit-regular.
(2) sr(Endp{P)) = co for every P € Pp.
(3) sr{Endg{P))} is finite for every P € P and the setf {sr(Endgr(P)) |
P e P} is not bounded.
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Remark 1.8. Let R be any simple ring which is not stably finite.
By simplicity, we then have 2nR < nR for some n > 1. By [W,
Theorem 1.2}, sr{Endg{nR)} = co. By Lemma 1.3, this implies that
st{Endg(P)) = oo for every nonzero finitely generated projective R-
module.

Theorem 1.7. Let B be a simple regular ring. Assume thot whenever
B, 0, Co e L{(RR) with R&B S R®C; fori=1,2, then B Ci & Cy.
Then R is unit-regular.

Proof: Since it is casily seen that the hypothesis is inherited by the
corner rings of R, it suffices by Thecrem 1.2 to show that sr{R} < 2. Let
a,b,c € R such that aR + bR 4+ c¢R = K. There is an idempotent e € R
such that ¢R = eR@® jcRN {aR + bR)]. Note that e = ct for some t € R,
and R = (aR+bR)® eR.

Now Rg = C1 ® Dy = Co ® Dy where C) = r.anng{ae} and C; =
r.anng(b). We observe that left multiplication by a induces an isomor-
phism of Dy onte aR, and similarly I0; = bR. By using this we see
that R eR £ R C; for i = 1,2. By our hypothesis, we deduce that
eR = Cy®Cq, 80 eR = E, @ B3 with each E; = C;.

Define £ € R such that o[y = 0 and 2R = 2C, = E;; note that
z = ex. Since aCy = 0 and aD), = aR, we get {a + 2)R = aR + E).
Likewise, there exists y € eR such that (b+ y}R = bR + E;. Then we
have (a+ctz)R+ (b+cty)R = {(a+ 23R+ (b+y)R=aR+ bR+ Ei + By =
aR + bR + eR = R. This shows that sr{R) < 2. &

We now introduce a key concept for this paper, namely the almost
isomorphism relation. '

Definitions. Let B be a regular ring and let A, B € P.

We say that A is almost subisomorphic to B, written 4 <, B, if for
all nonzero C' € L{Rg) we have A < B @ C. We say that 4 is almost
isomorphic to B, written 4 2, B,if A =, Band B =, A.

We say that A is aepprozimately almost subisomorphic to B, written
A =44 B, if for all nonzero C € L{Rg) there exists n > 1 such that
nA < n(B @ C). We say that A is approzimately almost isomorphic to
B, written A 2y, B, if A $40 B and B 5,4, 4.

The above notions are specially useful when R is a simple regular ring
which is not artintan. Since artinian simple regular rings are trivial for
our theory, we will frequently assume that our simple regular rings are
not artinian. :

Lemma 1.B. Let B be a non-artinian simple regular ring and lei
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A, B € P. Then:
(a) A S, B (resp. A Sea B) if and only if A £, B® C (resp.
A .0 B@® C) for all nonzere C' € L{Rpg).
(b) The relation =, (resp. Z,q) is transitive.

Proof: {a} Assume that A <, B @® C for all nonzero C € L{Rpr). Fix
a nonzero D) € L{Rg). Then since R is not artinian D = Dy & D for
nonzero 17,0, € L(Rg). So A= (Be D)@ D, = B3 D. Thus
A =, B. The other implication is trivial. The proof for the relation =,
is analogous. {b) is proved in & similar way. B

Theorem 1.9. Let R be a directly finite simple regular ring. Then
the following conditions are equivalent:

{a) For all A,B,C P, ADB =, A®C implies BX, C.
(b} For all B,C € L(RR), R®& B < R C wmplies B 5, C.
{¢) R is unit-regular.

Proof: (8) = (b): This is clear.

{b) = (c): Apply Theorem 1.7.

{c) = (a): This is immediate from the cancellation property of unit-
regular rings.

Lemma 1.10. Let A, B,C be finitely generated projective right mod-
ules over a regular ring, such that ADC =2 BOC. Letn € N. Then there
exist decompositions A = A S A" and B=B @B and C =C' "
such that A’ = B’ and A" ® C" = B" ® C", and also n(A" ® B") = C'.

Proof: By [G3, Lemma 2.2}, there are decompositions A = A1 ® Az
and B = By, @ By and C = Cy; @ Cy2 such that 4y = By and
Ay ® Ciz = Bis @ Cyp, while also Ay = O, Applying this lemma
repeatedly, we obtain decompositions 4;_12 = A;; @ A and By ;9 =
Bil & Biz and C'_l‘g = Cﬂ & C@z, fori= 2, 3,. . such that A.gl o Bﬂ
and A;p @ Ciz = Bin @ Oz, while also A, = Cjy.

Nowset Ay = 41, D A1 @---® A,y and Ay = A,g, and define B, Bs,
¢y, Cy similarly. Then A = A;®Azand B=5B,@®B; and C = C1 9 s,
with A, = B, and Ay P Cr = By @y, Since Ax = A,5 < Aﬂ_l,g <=
Ayg, wealsohave ndy £ App®@Ap® - A 2Bl d® GCh =
1.

Finally, we apply the above procedure to the isomorphism By & Cy
Az & Cy. We obtain decompositions By = B; & By and Ay = A3 @ Ay
and Co = Cy @ €4 such that By = Az and By & Cy &2 As ® Cy, while
nBy < Cy Set A’ = A, ® Az and A" = A4, and define B', B", ¢/, C”

s
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similarly. Then A=A'"® A" and B =B ® B” and C' = €' & C”, with
A2 B and A" C" 2 B"aC”, while also n{A" @& B") 2 nA;@nBy =
Cl ®C3 = C"‘ || ’

Now we can give a different proof of [, Theorem 1}.

Theorem 1.1%. {O’Meara) Let B be a directly finiie simple regulor
ring satisfying weak comparability. Then R is unit-regular.

Proof: We show that R satisfies condition (b) in Theorem 1.9. Let
B,C € L{Rg) with R®B = R®C. Given 0 # D € L(Rp) thore exists,
by weak comparability, a positive integer n such that nT < R implies
T =D forany T € L(Rg). _

By Lemma 1.10 there exists a decomposition B = B’ @ B" such that
B 2 (Cand nB”" £ R. Consequently BY £ Dand B = CgD. 1t follows
that B =, C and thus R is unit-regular by Theorem 1.9. B

2. The almost isomorphism relation.

Let R be a non-artinian stably finite simple regular ring. By [B3,
Theorem 3.1.4], the relation £,, is cancellative, ie. A8 B 5,, A®C
implies B S,, C. So the approximately almost isomorphism classes of
finitely generated projective modules form a cancellative abelian seini-
group S (since it is easy to show that direct sum gives a well-defined
operation). Denote by [A], the class of A in S. We define a partial order
on S by [A], < [Ble if and only i A £,, B. It is easy to show that this
relation is well-defined and translation-invariant, so that S becomes a
partially ordered abelian semigroup. Also, the relation < is cancellative,
ie z+y<z+yimplies z <z for z,y,z € 5, again by [B3, Theorem
3.1.4). Let KZ(R)} be the abelian group obtained by adjoining inverses
formally to §. Because of the cancellation property of <, the relation
t—y<z—tifz+t<z+4ylorzy zt €S becomes a partial order in
K§(R). 1t is easy to show that this partial order is translation-invariant
and so K§(R} becomes a partially ordered abelian group, in which we
fix the order-unit [K),.

Proposition 2.1. Let R be @ non-artinien stably finite simple regular
ring. Let @ : Kp(RR) — AfI(S(Ko(R),[R])) be the natural map. Assume
that @(Ko(R)) is endowed with the partial order f < g iff f(2) < g(2)
for all x € S(Ko(R),|R]). Then ®(Ko(R)) = K§(R) as partially ordered
abelian groups with order-unit.

Proof: We have a surjective positive homomorphism o : Ko(R) —
KG(R) given by a[A] — [B]) = [A]e — [Ble. We will show that Ker{a) =
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Ker(®). It is clear that ®([A] — [B]|) = 0 whenever 4 2, B, but this
happens exactly when [4], = [B],. Conversely assume that ®([4] -~
[B]}) = 0. Let 0 # C € L{Rg}. Then &{{A @ C] — |B]) » 0 and so, by
[G4, Theorem 4.12] there exists m > 1 such that m({[4A® C] - [B]} > 0.
By using [B3, Theorem 3.1.4} we have that there exists n > 1 such that
nmB £ nm{A® C). Consequently B <,, A. Analogously A =,, B and
50 [Ale — [Ble =0

It follows that we have & group isomorphism v : K¢{R) — ®(Ha(R))
given by v{[4], — [Bla)} = ®([A] — [B}). Since R is not artinian v is
positive. Conversely, if ®([4] ~ [B]} > 0 then by the same argument as
before we obtain that B <., A and consequently [A], — [Blo > 0. ®

Henceforth, we will identify KZ{R} with ®{Ko{R)). The proof of the
following lemma is straightforward.

Lemma 2.2. Let R be a stably finite stmple regular ring.

(a) Let § =lim M,(R). Then Ko(S) = Ko(R) @ Q.

(b) Let Sp = lim Mpe(R), for @ fived m > 1. Then KofSm) =
Ko(R) ® Dy, where Dy, = {a/m* |a € Z,k > 1}.

By [B3, Theorem 3.1.4], the rings § = lim M,(R) and ali S, =
li_)mMm:;(R) are unperforated unit-regular simple rings provided R is
a stably finite simple regular ring. It follows that K(S) and all Ky(S5,,)
are simple dimension groups. Therefore we can use [G4, Theorem 14.14]
and Lemma 2.2 to study the guestion of when ®(K(R)1) is dense in
AfF(S(Ko(R), [R]) ™, leading to the following lemma.

Recall that for any partially ordered abelian group G and any subgroup
H of Q, the tensor product G & H is a partially ordered abelian group
with positive cone (GQ H}t ={z®y |z e GT,yc Ht}.

Lemma 2.3. Let H = Q {resp. H = Dy}, endowed with the usual
order. Let (G, u) be a partially ordered simple abelian group with order-
unit, and assume that G @ H is o simple dimension group. Let @ :
G — AR{S(G.u)) be the natural map. Then the following properties
-are equivalent:

(2) ®(G™) is dense in AR(S(G,u))".

(b} For each 0 # = € G, for eachm > 1 (resp. for each n = m*,

with k > 8}, and for each € > O there exist Yy, y2 € G' such that

n®(y2} € &(z) < n®(1)

n®(y) — P(z) < ¢
&(z) — ndb{ye) < ¢
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(c) For each 0 # x € G¥, for each n > 1 (resp. for each n = mF,
with k > 0), and for each € > O there exists yn € GV such that
&(z) <« n®(y1) end n®{y) — B{z) « €.

Proof:

(a) = (b}

Assume that ®{GT1) is dense in AR{S(G,u))". Now fix 0 £ z ¢
GT,n>1and ¢ > 0. Since G is simple, ®(z) > 0.

Hence, after possibly replacing ¢ by a smaller positive real number, we
may assume that ®(z) >» £. Thus the functions f; = 1®(z) + £ and
fo = %‘I)(:c) — 5 are positive. Since ${G7) is dense in AR(S(G,u))*,
there exist 1, yo € G such that 1@(y) — fill < < for i =1,2. Then

Sz} =nfi — % € n®(yp) € nfi + % =d{z) +e¢

@(Z:) —e=nfy— % & n®iy) € nfy + -;— = CI)(:,C)

S0, y1, y2 € G satisfy the required conditions.
Obviously, (b) = (¢).

(c) = (a):

Let 7: G — G ® H be the map given by 7(2) = 2 ® 1. 7 induces
T S(G@H,u®1l) — S(G,u). is=7(s) withs' € S(GQ H,u21)
then #'(z ® 1/n) = %s(a,) for 1 ¢ H. This implics that 7, is injective.
On the other hand, if s € $(G,u) then the expression §'(z® 1) = Ls(x)
defines ¢’ € S{G ® H,u ® 1) such that 7,(s) = s. It follows that 7.
is an afline homeomorphism. Now we have the following commutative
diagram:

Aff(T,)
A(S(C 1) — L AR(S(C® H,ug 1))

[e [o

G — CoH
and Aff(r,} is an 1somorphism of partially ordered abelian groups with
order-unit. Since G & H is a simple dimension group, ®{(G ® H)T) is
dense in AR(S(G & H,u&1))” by (G4, Theorem 14.14] . So ®(G*) is
dense in AF(S{G,uw)}t if and only if AB(7.}{(O(G7)) is dense in D'((G &
HYyH).

Let 0 £ &'(2®1/n) and ¢ > 0, with z € Gt and 1/n € H. Then

there exists y; € G with ®(2) € n®(y) end nd(y) —S(x) € e It
follows that

I Af(7) (@) — Pz ® %)II < i <e
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and consequently ®(G1) is dense in AF(S(G,u})*. B

For a stably finite simple regular ring R, the condition ®{[4]) <«
$(|B]) is equivalent to tA < #B for some t > 1, by [G4, Theorem
4.12] and B3, Theorem 3.1.4]. By using this and Lemma 2.3, we obtain
the following Proposition.

Proposition 2.4. Let R be a stably finite simnple regulor ring. Then

the following condilions are equivalent:

(1) ®(Ko(R}") is dense in AF(S(Ko(R),(R]))T.

(2) Forany A€ Py, n>1 and ¢ > 0 there exist B,C € P such that
tA < ntB for somet 2 1 while n[B, — [Ale € ¢; and nrC < 14
for some v > 1 while [4], — n|C], € €.

(3) There exzists m > 2 such thot for all A€ P, k> 1 and ¢ > 0,
there exists B € P such that tA < m*tB for some t > 1 while
m*(B|, — [A]. € €.

We will call condition (1) in the above Proposilion condition (1J).

Corollary 2.5. If R is a stably finite simple regular rving and there
exists m > 2 such that eRe is an m x m matriz ring for each tdempotent
e € R, then R salisfies condition (D).

Corollary 2.6. Let R be g stably finite simple regular ring satisfying
condition (D). Then (K§(R), <) is o simple dimension group.

Proof: We observe that ®(Ko(R)1) € K§(R)*t. Since R satisfies (D),
K§(R)T is dense in AH(S(Ko(R), [R]))*t. Consequently K§(R) is dense
in AR(S(Ko(E),[R])) and thus by G4, Prop. 14.15] (K§(R), <) is a
simple dimension group. W

The following corollary is a consequence of the fact that (KE(R), <)
is an interpolation group whenever R satisfies condition (D).

Corollary 2.7. Let R be a stably finite simple reqular ring satisfying
condition (D). If nA <n{B® C) for A, B, C € Py, then for each e >0
there exists A1, Ag, A}, A, € P and m > 1 such thet m(A] € A}) <
mA < m(4d; & A2), and mA| < mA; < mB and mA, < mAy < mC,
while also [A1]e + [42]a — [Ale € € and (4], — [Al]la — [45]e € <.

Proof: If nA < n{B ® C), then we have [A], <« [B], + [Cl.. Since
(K§(R), <) is an interpolation group by Corollary 2.6, there exist X,
X} € Kg(R)*" such that [4], = X|+ X} while X{«[B], and X3<[C],.
Clearly, one of the incqualities must be strict, so assume that X| < [£],.
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If also X} < [Cla, put X1 = X}, Xo = Xj. If X} = |C], then write
X1 = [Z1)a ~ [Z2]a for some Z,, Zy € P, and observe that there exists
k > 1 such that kZ2 < kZ, and kZ, < k(B @& Z»). Choose Z € P, such
that Z < Cand k{(Z1 ® Z) < k(B © Z3). Set X1 = X{ + (2], and Xy =
X} — 2], and observe that X;, X, € KG{R)*T satisfy [A]. = X + Xo,
and X) <« [Bl; and Xo € [Cl..

Now write X; = [Th]o — [T2). for some Ty, Ty € P. Then we have
ETy < KTy for some k& > 1 and so we can write kT, &2 kT @ S for
some § € Py. Observe that X; = 1[S],. Choose €; > 0 such that
€, € [B], — X, and &1 < ¢/2. By Proposition 2.4 there exist A}, A, € P
such that ktA] < t5 < ktA; for some £ > 1 while also &[A1], — [5]. <€ &
and [S], - k[A]]. € €.

We have [Al], € X1 € [A1)e and also [A1]e — X1 € e1/k < eg < e/2
and Xy — [A}]e € e1/k < €1 € ¢/2. 1t follows that [B], > X; + ¢ >
[A1]a- Similarly there exist As, A, € P such that [A3], € Xp < [A2]a
with [Ag]a — Xo & 6/2 and Xo — [A;QIG. <& 6/2, while alse [C]a =2 [Ag]a.
Consequently [A] ® Ab], € X + X» = (4], € [A: ® A2, and also
(Al — [A7)a — [A5]e € € and [A1]e + [A2]s — [A)e € €, as required. R

We say that R is sirictly m-unperforated if mA < mB implies A <
B for sl A,B € P. Sc, R is strictly unperforated if it is strictly m-
unperforated for all m > 1.

Corollary 2.8. Let R be a non-artinian directly finite simple regular
ring which is strictly m-unperforated for some m > 2. Then R is unit-
reqular, strictly unperforated, satisfies properiy (D) and, moreover, for
any A € Py, n> 1 and € > U, the following conditions hold:

(a) If B € P and B < A, then there exists T € P such that B <

nT < A and [A]g — n[T]. € c.

(b) If D € P and A < D, then there exists V € P such thet A <

nV < D and n|V], — [4]s € €.

Proof: R is unit-regular by [O, Theorem 1].

R is strictly unperforated by [B3, Theorem 2.1.11]. By Proposition
Al, R satisfies property (D).

Since R is strictly unperforated, {a} and (b} follows from Proposition
2.4 by using the same arguments as in Corollary 2.7. &

The following observation is a consequence of Corollary 2.8.

Remark 2.9. Let R be a directly finite simple regular ring which is
strictly m-unperforated for some m > 2. Then A Z,, B if and only if
A=, B for A, BeP.
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3. The doubling condition.

We will say that a stably finite regular ring R satisfies the doubling
condition (DD) if for every nonzero D € L{Rg) there exisis K > 1 such
that, for A € L{Rg}, if A < D and K|A], <« |D], then 24 < I,

Lemma 3.1. Let R be a stebly finile simple regular ring. Then R
satisfies (DD} if and only if for every IJ € P there exisis K > | such
that, for A€ P, if A< D and K[A], € (D], then 2A 5 D.

Proof: Assume that R satisfies (DD). Write D = D1 &~ -5 D), where
0£D;, = R Fori=1,... ,r, there exist K, > 1 such that, for 4; €
L(RR), if Ai ,'s D'j_ a.nd K‘i [Ai]o, <& [D‘i]a t,hcn 2/1; = Dz Take

Kz max{K,[D]/[ Dl |i=1,...,r}. B

Lemma 3.2. Let R be a directly finite simple reqular ring such thal
n(zR) < n{yR) imphies tR < yR for ell z.y € R. Then R satisfies the
doubling condition with K = 2.

Proof: It follows from [O, Theorem 1] that R is unil-regular. Put
D =yR and A = 2R, and assume that 4 < 3. Write D = A Q7.
Assume that 2[4], < {D],. Then 2nA < nD = nAdnT for somen > 1.
Since R is unit-regular nA < nT. By hypothesis A < T. So we obtain
property (DD) with K = 2. B

Lemma 3.3. Let B be a regular ring and B, D € P with B < v for
some v > 1. Then there exists a decomposition B = By (I --- & B, such
that By = B, = =B, = D.

Proof: In case v = 1, there is nothing to prove. Now assume that
r > 1, and choose a decomposition B = B} & --- & B, such that B{ £ D
for all . Choose D) < D suchthat B 2 D, andset D' = D{ +-- +D; <
D. Then there exists an epimorphism ¢ : 8 — I induced by the
isomorphismns from B3] onto D], Since BL N Ker{¢} = (3, we must have
B = BLOKer(¢)}OT for same T. Note that B, := B/ 6T is isomorphic to
D', Also, T' := Ker(¢)0T satisfies T'GB. = B = (B{&-- - &DBL_| )8 B,
andso "= By @B, _1. NowKer(¢) <1 £ {r —1)D' = (r-1)B,.
By induction, there exists a decomposition Ker{¢) = By O - @ B3,
suchthat By < B, = - -<B,_1<B,. Thws B=B&- - ®dB,_.08,
and the result follows. W

We thank E. Pardo for a simplification of the original version of the
following proposition. :
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Proposition 3.4. Let B be o stably finite simple regular ring. Then
the following condifions are equivalent:

{a) R satisfies (DD).

(b} For any D € L{Rg) there exists K > 1 such that, for A € L(Rg),
if K[A]a € [D]o then A < D.

(¢) For any D € P there exists K > 1 such that, for A € P, if
K[A], « [D], then A < D.

Proof: Obviously {¢) = (b).

{b) = (&) Clearly, we can suppose that R is not artinian. Let D €
L{RR) and write D = E, & Eq & F3, where £; # 0 and E; = E.
There exists K’ > 1 such that, for B € L{Rg), if K'[B]. « [E1]. then
B < E). Choose a constant K > K'[D],/|F1la. Then it is clear that,
for A€ L(Rg), if K[A]l € [D]a then 24 < Ey @ E, < D,

(2) = {c): We may suppose that D # 0. Choose a nonzero E € L{(Rg)}
such that E < D. By simplicity, D £ mFE for some m > 1. By (DD},
there exists K’ > 1 such that for A € L(Rg), if A < F and K'{4], <
[E], then 2A S E.

Set K = K'm, and consider A € P such that K[4], « [Dl],; then
K'[Al. <« [E],. By simplicity, A £ rE for some r > 1. Hence, by
Lemma 3.3 there exists a decompositicn 4 = A; & -+ & A, such that
AT A2 S A, S E. Since A, £ F and K'[A], € K'[A]a € [Fle,
we obtain 24, S F. Now A,1 @ A, 2 2A, = Fand K'|[4.1 B A]n €
K'[A], « [E]q, whence 2(A, 1 & A,) £ E. Continving by induction, we
find that 24 = F, and therefore A < D. K

Let R be a directly finite simple regular ring. We say that R satisfies
{dd) if for any DD € L{Rpg) there exists n > 1 such that, for A € L{Rg), if
A < Dand nA £ Rthen 24 = R. The proof of the following propesition
is analogous to that of Proposition 3.4, so that we will omit it.

Proposition 3.5. Let R be a directly finite simple reqular ring. Then
R sotisfies weak comparability if and only if R salisfies {dd).

Corollary 3.6. Let R be a stably finite simple regular ring satisfy-
ing {DD). Then M,(R) salisfies weak comparability for allm > 1. In
particular, R is unit-regular.

Proof: By Lemma 3.1, M, (R) satisfy (DD) for all n > 1. Since prop-
erty {DD) obvicusly implies property (dd), the result follows from Propo-
sition 3.5 and Theorem 1.11. W
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4. Simple regular rings with a unique rank function.

Let R be a regular ring and let s,t be positive integers. Consider the
following comparability conditions:

aa-comparability: For z,y € R, either 2R <., yR or yR S40 xR,

a-comparability. For z,y € R, either xR S, yR or yR =, zR.

(s:t)-comparability {(G1, p. 275]): For any z,y € R, cither t(zR) =
s(yR) or t{yR} 5 s{zR).

approximate (s:t}-comparability ((G1, p. 275]}: For any z,y € R, there
exists a positive integer n such that cither nt{zR) < ns{yR) or nt{yR} =
ns(zR).

In case ¢ = 1 we abbreviate the two latter terms to “s-comparability”
and “approximate s-comparability” respectively.

Proposition 4.1. {c¢f. {G1, Theorem 18.17]) Let R be a stably finite
simple reqular ring. Then the following conditions are equivalent:

(a) R has a unique rank function.

(b} R satisfies the aa-comporability condition.

(¢) R satisfies approzimate (s:1}-comparability for oll integers 0 < t <
s.

{d) R satisfies approzimate (s:t})-comparability for some integers s >
t >

Proof: We can assume that R is not artinian.

By [(G1, Theorem 18.3], R has a rank function NV,

{a) = (b): Assume that N is the unique rank function on R. Then,
given z,y € R either [xR], — [yR]e > 0, [yR]o — [zR]a > 0 or [zR], =
[yR).. This corresponds to n{yR) < n(zR) some n, m{zR) < m{yR)
some m, or TR =, yR, respectively. Thus, in any case, either 2R <qq
yRor yR S, zK.

{b) = {c): Let s and t be integers such that 0 < t < 5 and let
0 # z,¥ € R. Assume that 2R S, yR. Choose 0 # z € R such that
t(zR) < yR. There exists n > 1 such that n(zR} < n{yR ® zR) and so

nt{zR) = nt(yR) ® nt{zR) < ns(yR).

Consequently, R satisfies approximate (s:t}-comparability.
(¢} = (d): Obvious
{(d} = {a): The same proof as in [G1, Theorem 18.17] applies. B

Corollary 4.2. Let R be ¢ stably finite simple regular ring. If R
satisfies the aa-comparability condition then so does Mp{R) for alln >
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1. Moreover, given finitely generated projective modules 4, B, either
nA < nB for somen > 1, mB <mA, forsomem =1, or A, B

Proof: Since M,{R) has a unique rank function the above proof applics
to finitely generated projective modules. B

Proposition 4.3. Let R be a directly finite simple regular ring satis-
fying o-comparability. Then R is unit-regular.

Proof: Tt is clear that R satisfics 2-comparability. By [OQ, Corollary
2], R is unit-regular. W

By a slight modification of the proof in [G1, Proposition 8.2], we
obtain the following result.

Proposition 4.4. Let R be e directly finite simple regular ring. If R
satisfies the a-comparability condition, then so does M, (R) for alln > 1.

Proof: We can assume that R is not artinian.

We will prove that for finitely gencrated projective modules A, B, «i-
ther A =, Bor B £, A. By induction, assume the resuli is true for
proper submodules of (n — 1}R, and let A, B with 4, B < nR.

Write 4 = A'ICBAQ, B = By B> with AI,AQ, By, By < (?’l‘—‘ 1}3 Now
either A4; =, By or By £, A, and either Ay <, By or By <, A3 We
need only consider the case where Ay S, By and By S, A2, Let0£C ¢
I{Rp) be such that B1 @ C <{n—1)Rand A & C < (n — 1)R. Then
A 2BieCand By £ Ao C 50 B, 8C =B{GB], 4,60 = AL & A)
with B] = A and A, = By. So either BY =, AY or A <, BY. Assumec
that By S, AS. Then Bi9 B, G C X B OB/ QA . B @ A @ AL =
Ay B Ao C, and so B) @ By £, A @ Ay, since R is unit-regular by
Proposition 4.3. &

Proposition 4.5. Let R be o simple regular ring with a unigue rank
function N. Then the following are equivalent:

{a) R satisfies the a-comparability exiom.
{b) R is strictly unperforaled.
{¢) Forz.y € R, n(zR) < n{yR) implies 2R < yR

Proof: We can assume thalt R is not artinian.

(a) = (b): Assumc that nd < nB3. If B <, A then write nB = 30T,
with 7} = nA and Ty # 0. Choose § £ T withnT < 1%, Then B = AT
so nB S ndonT <T1 &T; =nB, contradiction. So 4 <, B. Applying



SIMPLE REGULAR RINGS 385

the same argument to A @ T, we sec that A@ T =, B. Consequently,
ADT < BT and so, A < B because R is unit-regular.

{b) = {c): Obvious.

{c) = {a}: Since R has a unique rank function, we sec from Proposition
4.1 that either 2R Sqq yR Or YR =4 zR. If xR <., yR, then for
0 # C € L{Rgr) we have n{zR} < n{yR® C), and s0 zR < yR& C
provided that yR @ C < R. We can always assume this except in the
case where yR = R. But if yR = R ther xR <, R = yR obviously.
Consequently, R satisfies a-comparability. &

Appendix.
We prove the following result:

Proposition Al. Let B be a strictly unperforated non-artinian sim-
ple unit-reqular ring. Let ® : Ko(R) — AF(S{Ko(R),[R])) be the nat-
ural map. Then ®(K{R)T) is dense in AR(S(Ks(R),[RB]))T.

To prove Proposition Al, it clearly suffices to prove a corresponding
result for partially ordered abelian groups {(Theorem A3}.

Note that if G is a partially ordered abelian group then its torsion
subgroup T is a convex subgroup, and so G/T is a partially ordered
abelian group with respect to the induced ordering. A special case of 2
result of Elliott [E, Theorem 4.5] says that if G is a strictly unperforated
interpolation group, then /T is an unperforated interpolation group.
Since the proof of this case is much easier than the proof of [E, Theorem
4.5], we give the details.

Proposition A2. (Elliott) Let G be o directed strictly unperforated
interpolation group, and let T be its torsion subgroup. Then G/T is a
dirnension group.

Proof: Tt is clear that since & is directed, so is G/7.

First consider z € G and n € N such that n{z +T) > 0. If z € T,
then z+ T = 0, and so we may assume that 2 ¢ T. Now ne+T = y+T
for some y € G*, and y > 0 because z ¢ T. Then k{nz —y) = 0 for
some k € N, whenee knx = ky > 0. Since G is strictly unperforated,
z > 0, and hence £ + 7 > 0. Thus G/T is unperforated.

Now consider ;,29,%1,%2 € G such that 2z, +T < y; + T for all ¢, 7. If
2, +T =y, + T forsomer,s, thenx; + T <z, + T < y; + T for alt 4, J.
Hence, we may assume that 2; + T < y; + T for all 4, 7. Consequently,
there are nonzero elements w;; € Gt such that z; +wy; + T =y + T
There is some k € N such that k{z; + w;; — y;) = 0 for ali 4,7, whence
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kx; < ky; and so z; < y; for all {, j, by strict unperforation. Thus there
exists z € ( such that x; < z < y; forall 4, J, and hence 2;+7 < z+7 <
y, + T for all ¢, 7. Therefore G/T is an interpolation group. B

Theorem A3. Let (G,u) be a strictly unperforated simple interpo-
lation group with order-unif, such thai Gt contains no atoms. Let
© : G — AfI(S} be the natural map, where § = S(G,u). Then ®(G™T)
is dense in Aff(S)T.

Proof: Let T be the torsion subgroup of G, and note that G/T is
simple and that the element «' := u + T is an order-unit in G/T. By
Proposition A2, G/T is a dimension gronp.

Suppose that (G/T)™ contains an atom, say x+7 where x € G+, Since
z cannot be an alom in G, there exists ¥y € G such that 0 < y < z.
But then 0+ T <y + T < .+ T (because TNGT = {0}), contradicting
our assumption about ¥ + T. Therefore (G/T)F contains no atoms.

Let w : G — G/T be the quotient map, and set §' = S(G/T,u').
The induced map 7* : 8’ — 5 is an afline homeomorphism, and hence
the induced map «** : Aff(8) — Aff(S") is an isomorphism of ordered
Banach spaces. There is a commutative diagram as foliows, where @' is
the natural map.

G/T -1\ AR(S)

Since (G/T}t = w(GT), it suffices to prove that ' ((G/T)T) is dense
in Aff(&)*. Thus there is no loss of gencrality in assuming that G is a
simple dimension group, with no atoms in G,

Sinc_e G has no atoms, G is not cyclic. Thercfore, by [G4, Theorem
14.14], ®(G*) is dense in AF(S)*. W
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Note added in proof. E. Pardo has proved that any non-artinian
stably finite simple regular ring satisfies condition (D).



SIMPLE REGULAR RINGS 387

References

[Bl] B. BLACKADAR, A stable cancellation theorem for simple
(*-algebras, Proc. London Math. Soc. 47 (1983}, 303-305.

B2| B. BLACKADAR, Comparison theory for simple C*-algebras, in
¥ &
“Operator Algebras and Application”, D.E. Evans and M. Takesaki
(eds.), LMS Lecture Notes Series 135, Cambridge Univ. Press, 1988,
pp. 21-54.

[B3] B. BLaCcKkADAR, Rational C*-algebras and nonstable K-theory,
Rocky Mountain J. Math. 20 (1990), 285-316.

[By] C. BusqQug, Directly finite aleph-nought-complete regular rings
are unit-regular, in Proceedings of the First International Meeting
on Ring Theory, Granada, Spain 1886, J.L. Bueso, P. Jara and B.
Torrecillas {eds.), Lecture Notes in Math. 1328, Springer-Verlag,
Berlin-New York, 1988, pp. 38-49.

[E] G. A. BLLIOTT, Dimension groups with torsion, faternat. J. Muath.
1 (1990}, 381-380.

[G1} K. R. GOODEARL, “Von Neumann reguler rings,” Pitman, Lon-
don, 1979

(G2} K. R. GoonrARL, Directly finite aleph-nought-continuous regu-
lar rings, Pacific J. Math. 100 (1982}, 105-122.

[G3] K. R. GOODEARL, Metrically complete regular rings, Trans.
Amer. Math. Soc. 272 (1982), 275-316.

[G4) K. R. GOODEARL, “Partielly ordered abelian groups with inier-
polation,” Math. Surveys and Monographs 20, Amer. Math. Soc.,
Providence, 1986.

[G5] K. R. GooDEARL, Unpublished notes on simple regular rings,
1590,

[GM] K. R. GooDEARL AND P. MENAL, Stable range onc for rings
with many units, J. Pure Applied Algebra 54 (1988), 261-287.

[GMM]| K. R. GoobEARL, . MENAL AND J. MONCASI, Frec and
residually artinian regular rings, J. Algebra (io appear).

[M] J. Mo~cast, Rang estable en anells regulars, Ph.1). Thesis, Uni-
versitat Autdnoma de Barcelona, 1984,

[MM] P. MENAL AND J. Mowcasi, Ou regular rings with stable range
2, J. Pure Applied Algebra 24 (1982}, 25 40.

[O] K. C. O’MEana, Simple regular rings satisfying weak compara-
bility, J. Algebra 141 (1831), 162 186.



388 P. ARA, K. R. GOODEARL

[R] M. RIEFFEL, The canccllation Theorem for projective modules
over irrational rotation C*-algebras, Proc. London Math. Soc. 47
(1983}, 285-302.

{V] L. N. VASERSTEIN, Stable rank of rings and dimensionality of
topological spaces, Func. Anal. Applic. 5 (1971), 102-110.

[W] R. B. WaRFIELD, JR., Cancellation of modules and groups and
stable range of endomorphism rings, Pacific J. Math. 91 (1980},
457-485,

Pere Ara: K.R. Goodearl:
Departament de Matematiques Department of Mathematics
Universitat Autdnoma de Bareelona University of Utah
08193 Bellaterra {Barcelona) Salt Lake City
SPAIN Utah 84112

U.B.A.

Rebut 2l 28 de Gener de 1992





