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HOPFIAN AND CO-HOPFIAN OBJECTS

K. VARADARAJANT

Abstract

The aim of the present paper is to study Hopfian and Co-Hopfian
objects in categories like the category of rings, the module cate-
gories A-mod and mod-A for any ring A. Using Stone's represen-
tation theorern any Boolean ring can be regarded as the ring A of
clopen subzets of a compact Havsdorff totally disconnected space
X. It turns out that the Boolean ring A will be Hopfian (resp.
co-Hopfian} if and only if the space X is co-Hopfian (resp. Hop-
fian} in the category Top. For any compact Hausdorff space X let
Cr{XXresp. Ca{X)) denote the R(resp. C)-algebra of real {resp.
complex) valued continuous functions on X. Using Geifand’s rep-
resentation theorem we will prove that Cn (X ){Cc (X))} is 1lophan
{vespectively co-Hopfian) as an R(C)- algebra if and only if X is
co-Hopfian {respectively Hoplian} as an object of Top. We also
study Hopfian and co-Hopfian compact topological manifolds.

Introduction

The notion of a Hopfian group [4] is by now classical. Throughout
the present paper the rings A we consider are associative rings with an
identity element 14 # 0. Any subring B of A is required to satisfy
the condition that 1g = 14. All the modules considered are unitary
modules. A-mod (resp. mod-A) will denote the caterogy of left {resp.
right) A-modules. In [12) V.A. Hiremath has introduced the concept
of Hopficity for a ring A regarded as a ring and also for any MeA-
mod. We will show in the present paper that A is Hopfian in A-mod
if and only if it is Hopfian in mod-A {Theorem 1.3). When these two
equivalent conditions are satisfied we will simply say that A is Hophan
as a modyle. There are obvicus dual notions of A being co-Hopflan
respectively as a ring, as an object in A-mod and as an object in mod-A.
We obtaln a necessary and sufficient condition for A to be co-Hopfian in
A-mod {Proposition 1.4}. Unlike the Hopfian case, by means of a specific

1Research done while the author was partially supported by NSERC grant A8225.
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example we show that co-Hopficity is not left-right symmetric. Also, we
will give examples to show that A being Hophan (resp. co-Hopfian) as
a ring and A being Hopfian as a module {resp. co-Hopfian in A-mod or
mod-A) are independent of each other. As an immediate consequence of
our necessary and sufficient condition it will follow that a not necessarily
commutative integral domain 4 is co-Hopfian in A-mod as well as mod-A
if and only if A is a skew-field.

It is a well-known result that any noetherian MeA-mod is Hopfian in
A-mod and that any artinian MeA-mod is co-Hopfian {[17, page 42]).
Arguments used in proving this result will show that any ring 4 with
a.c.c. on two sided ideals is Hopfian as a ring and any ring A with d.c.c
on subrings is co-Hopfian as a ring. In particular any left noetherian
(hence any left artinian) ring A is Hopfian as a ring. Easy examples
can be given to show that even fields need not be co-Hopfian as rings.
Similar to the result that any left artinlan ring is left noctherian we have
the result that any ring 4 which is co-Hopfian in A-mod is automatically
Hopfian in A-mod, hence also Hopfian in mod-A4 (Proposition 1.10). Let
7 be any integer > 1. 1t is easy to prove the following implications:

a} M,(A) Hopfian (resp. co-Hopfian) as a ring = A Hopfian {resp.
co-Hopfian) as a ring,

b} M,{A) Hopfian (resp. co-Hopfian) in M_{A)-mod = A Hopfian
(resp. co-Hopfian) in A-med.

The analogue of Hilbert’s basis theorem is valid for Hopficity, namely
MeA-mod is Hophan if and only if M{X] is Hopfian in A[X]-mod, where
X is an indeterminate over A. This and the analogous result for M[[X]]
in A[[X]]-mod are proved in Section 2 of the present paper (Theorem 2.1).
We do not know whether the analogous result is valid for M[X, X "] in
A[X, X~ !J-mod. For any non-zerc MeA-mod, it is easy to see that M[X)
(resp. M[[X]]} is not co-Hopfian in A[X] (resp. A[[X]]}-mod.

In Section 3 we are mainly concerned with the case when A is commn-
tative. For the results stated in the present paragraph it will be assumed
that A is a commutative ring. Then it is well-known [22], [24] that ev-
ery {.g. {abbreviation for finitely generated) A-module is Hopfian. It can
easily be shown that M,{4) is Hopfian in M.(A)-mod or mod-M,{A)
for all integers n > 1. Qur necessary and sufficient condition for A fo
be co-Hopfian in A-mod (Theorem 1.3) implies that A is co-Hopfian in
A-mod < A is its own total quotient ring. In this case we will prove that
Mp{A) is co-Hophan in both M,(A)-mod and mod-M,{A). We will also
prove that A™ is co-Hopfian in A-mod for all n > 1. The proof of this
will depend on an auxiliary result asserting that an A-homomorphism
fi A® — A" is not injective if and only ¥ det f is a zero divisor in A,
whatcver be the commutative ring A {lemma 3.1). It is also well-known
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(2], [25] that every f.g A-module is co-Hopfian if and only if every prime
ideal of A is maximal. We will explicitly construct a commutative ring
A which is its own total quotient ring admitting a prime ideal which is
not maximal. In particular this ring will satisfy the condition that A™ is
co-Hopfian in A-mod for cach integer n > 1 and there arc f.g A-rodulcs
which are not co-Hophian, The ring A that we construct will have the
following additional properties:

¢} A is not noetherian
d} A does not have d.c.c for subrings

In [12] Hiremath shows that if the Boolean ring of clopen subsets of a
compact Hausdorff totally disconnected space X satisfics the condition
that A is Hopfian as a ring then X is co-Hopfian as a topelogical space.
He says he docs not know whether the converse to ihis result is true.
Actually we not only show that the converse is true but we also show
that 4 is co-Hophian as a ring if and only if X is Hopfian as a topological
space. This is carried out in Section 4.

Let X denote a compact Hausdorft space and C(X) denote either
Cr{X) or Ce(X). We regard Cr{X) as an R-algebra and Ce(X) as a
C-algebra and simply write “the algebra C(X)”. Using Gelfand’s rep-
resentation theorem we show that C{X)} as an algebra is Hopfian (resp.
co-Hopfian) if and only if X is co-Hopfian (resp. Hopfian) in the caf-
egory Top of topological spaces. {Theorem 5.3). We do not have any
characterization of compact Hausdorff spaces which are Hopfian (resp.
co-Hopfian). However it is an easy consequence of invariance of domain
that compact topological manifolds without boundary arc co-Hopfian.
Among compact manifolds without boundary it can easily be shown that
finite sets are the only Hopfian objects. Among compact manifolds with
a non-empty boundary there are no Hophan or co-Hopfian objects. If M
is & compact manifold with boundary M then the pair (M, 0M) is a
co-Hopfian object in the category Top? of pairs of topological spaces.

We conclude our introduction by pointing out that Hilton, Roitberg
etc., have studied epimorphisms and monomorphisms in the homotopy
category and were led to investigating Hopfian and co-Hopfian objects in
the homotopy category {10], [18]. Finally we wish to thank the referec
for information on literature. In fact most of the material in Section 7
has been pointed out by the referce.
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was visiting Centre de Recerca Matematica, Bellaterra in Spain. The
author would like to thank Professor Castellet for crcating a very con-
ducive atmosphere for rescarch. Also while carrying out this research
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1. Hopfian and co-Hopfian rings and modules

Throughout we will formulate our results in the category A-mod of left
unital A-modules. There are obvicus analogous results in the category
mod-A of unital right A-modules. We first fix our terminology and no-
tation. For any aeA, £4(a) = {bed | ba = 0} and ra(a) = {beA | ab = 0}.
By a left (resp. right) zero divisor in A we mean an element a # 0 in
A with £4(a) # 0 {resp. t4(a) # 0). An element acA will be called a
left (resp. right} unit if there exists an element ¢eA with ca = 1 (resp.
ac = 1). We call geA left (resp. right) regular if £4{a) = 0 (resp.
rala) = 0). It is trivial to see that any left (resp. right) zero divisor is
never a right (resp. left) unit. Also any left regular element @ which is 2
left unit is automatically a two-sided unit.

Definition 1.1. MeA-mod is said to be Hopfian (resp. co-Hopfian)
if every surjective {resp. injective} homomorphism f: M — M is an
isomorphisrn.

It is well-known that any noetherian (resp. artinian) module is Hopfian
{resp. co-Hopfian) [17, Lemma 4, page 41].

Proposition 1.2. AeA-mod is Hopfon if and only if no left zero di-
visor in A is a left unit in A. This is theoremn ¥ in [12]. Equivalently it
is well-knoun and easy to see that AeA-mod is Hopfian if and only if A
is directly finite (i.e. zy=1=yr=1)[11].

Theorem 1.3. A¢A-mod is Hopfion if and only if Ae mod-A is Hop-
flan.

Proof: Direct finiteness is clearly left right symmetric. W

Proposition 1.4. AecA-mod is co-Hopfian if ond only if eivcry left
regular element aeA 15 a two-sided unit,

Proof: Tmmediate consequence of the fact that injective homomor-
phisms f: A — 4 in A-mod are exactly given by f{A) = Aa with ecd
left regular. W

Examples 1.5. Consider the ring
{3/22 3/23}
A =
0 20
- where Zyy is the 2-localization of Z, namely 25 = {Te@ | n odd }.

The element ) eA is easily checked to be right regular but not

1 1
0 2
invertible in A. Hence A is not co-Hopfian in mod-A.
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The only ring homomorphism of Z (resp. Q) is the identity map.
Henee Z and @ are Hopfian and co-Hopfian as rings. While Z
is Hopfian in Z-mod, it is not co-Hopfian in Z-mod. ©Q is both
Hopfian and co-Hopfian in @-mod {hence also in Z-mod).

For any ring A the unique ring homomorphism ¢ A[X]| — A[X]
carrying X to X? and satisfying ¢ | A = Ida is an injective ring
homomorphism which is ndt surjective. {Here X is an indefermi-
nate over A). Thus A[X] is not co-Hopfian as a ring, whatever be
the ring A. A similar argument shows that A]X, X 1] and A[[X])
are not co-Hopfian as rings.

Let A = K[{(Xa)Ylacs over a commmtative ring K. Then A4 is
a commutative ring hence Hopfian in A-mod. Let ©: J — J
be a surjective map which is not bijective. Singe J is infinite
such a map cxists. The unique ring homomorphism f: 4 — A
satisfying f | K = Idg and f(Xa.) = Xo(a is then a surjective
ring homormorphism which is not an isomorphism. Thus A is not
Hopfian as a ring.

Let K be a field and L = K{{X,)aes) the ficld of rational func-
tions in an infinite number of indeterminates. Any field is Hopfian
as a ring. Thus L is Hopfian as a ring. If ©: J — J is any in-
jective map, there is a unique homomorphism ¢ L — L of fields
satisfying ¢(Xo) = Xoay and @/ K = Idy. If © is not bijective,
then ¢ is an injective ring homomorphism of L in L which is not
surjective. Hence L is not co-Hophian as a ring. Since L if a field
from remarks 1.6{a) and (¢) we scc that L is both co-Hopfian and
Hopfian in L-mod.

For any simple ring A any ring homomorphism f: 4 — B is
automatically injective. Hence every simple ring is Hoplian as a

‘ring. From example {e} above we see that 2 simple ring {even 2
g Y P

field) need not be co-Hopfian as a ring.

Let K be a field and V an infinite dimensional vector space over
K. Let A = EndgV. There exist K-lincar surjections f: V — V
which are not injective. Choose such an f. Since V Lv_o
splits in K-mod, 3 a K-linear map h: V — V with foh = Idy.
This means [ is a right unit in 4. Since ker f # 0 we can choose
agV — V with g # 0 and g(V) C Ker f. Then geA satisfies
Feg=0. Thus { is a right zero divisor in 4 which is not a right
unit in A. From proposition 1.4 we see that A is not Hopfian in
mod-A and hence also not in A-mod from theorem 1.3. In case
V has countable dimension it follows from exercise 14.13, page
164 of [1] that there are only two non-zero ideals in A = Endy V.
Hence A is Hoplian as a ring (see proposition 1.12).
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(h} If A = K[{za)acs] with K any commutative ring and J infinite,
from 1.8(d) we see that A is Hopfian in A-mod, but not Hopfian
as a ring. When K is a field and V a countably infinite dimen-
sional vector space then A = End iV is Hopfian as a ring but not
Hopfian as an A-module. As already seen Z is co-Hopfian as a
ring but not as a £-module. When K is a field, 4 = K{{Xa}aes)
the field of rational functions in an infinite number of indetermi-
nates is an example of a commutative ring which is co-Hopfian as
a module but not co-Hopfian as a ring from 1.8{e).

Proposition 1.9.

(i) If A is a ring satisfying a.c.c for two sided ideals then A is Hopfian
as a ring.

(it} If A is a ring satisfying d.c.c for subrings then A is co-Hapfian
as a ring.

The proof of this propesition is similar to that of lemma 4, page 42 of
[17] and hence omitted.

Proposition 1.10. Let A be a ring with the property that A is co-
Hopfian in A-mod. Then A is automatically Hopfian tn A-mod.

Proof: Let a be a left zero divisor in A. From proposition 1.2 we have
only to show that a is not a left unit in A. On the contrary i a is a left
unit in A, there exists an element ce A with ca = 1. Then clearly ¢ is left
regular. Since A is co-Hopfian in A-mod, from proposition 1.4 we see
that ¢ is a two sided unit in A. Then ¢a = 1 implics that g is the inverse
of ¢ and hence «a is also 2 two sided unit. This contradicts the fact that
@ is a left zero divisor. M

Remarks 1.11. Hiremath [12] has already observed that a direct
summand of any Hopfian module is Hopfian. The same observation is
valid for co-Hophan modules as well. He remarks that he does not know
of any example of 2 Hopfian module with a submodule not Hopfian,
Later in Section 3 we will construct such modules. & is Hopfian and co-
Hopfian in Z-mod, the quotients Z,_ of (} are not Hopflan in Z-mod.
Later results in Section 3 will also show that quotients of co-Hopfian
modules need not be co-Hopfian.

Proposition 1.12. Let A be a ring end n an integer > 1. Then
(1) M.(A) Hopfian (resp. co-Hopfian} as a ring = A Hopfian {resp.
co-Hopfian) as a ring.
(it) M,{A) Hopfian (resp. co-Hopfian} in M, (A)-mod = A Hopfan
(resp. co-Hopfian) in A-mod.
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(iil) M,(A) Hopfien (resp. co-Hopfian) in A-mod = A Hopfian (resp.
co-Hopfian) in A-mod.

Proof:

(i) is an immediate consequence of the observations that if f: A — A
is a ring homomorphism, M, {f): M,(A) — M, (A) defined in the
obvious way is a ring homomorphism and that M., (f) is surjective
(resp. injective) < f is surjective (resp. injective).

(ii} similar to (i} above except for the observation that if f: A — A
is a map in A-mod, then M,(f): M,(A) — M,(A) is a map in
M, (A)-mod. _

(iil) is immediate from the fact that A is a direct summand of M, (A)
in A-mod. B

The converses for (ii}, (iii) arc not true in general. Counter examples
will be given in Section 7. But when A is commutative for (ii), (i1} the
converses are true and they will be proved in Secton 3. We do not know
whether the converse for (i) is true.

Given any non-zero MeA-mod it is known that any infinite direct sum
of copics of M is neither Hopfian nor co-Hopfian in A-mod. Any such
module will admit the module N = ®,.>1 M, as direct summand where
M, = M for cach n > 1. The shift map s, which carries the nth copy
of M to the (n + 1}t copy identically is an injective map which is not
surjective. The shift map s_ which maps the (n + 1)* copy to the n'h
copy identically for n > 1 and which maps the 1% copy of M to zero is
a surjective map which is not injective. This fact will be made use of by
us later in Section 3 for constructing a Hopfian medule admitting a non-
Hopfian submodule. An infinite direct sum of non-zero modules could
very well be simultaneously Hopfian and co-Hopfian. If P denotes the
set of all primes, M = &,.»(Z/pZ) is casily seen to be simultaneously
Hopfian and co-Hopfian in Z-mod,

Proposition 1.13. Let A|G] denate the group ring of ¢ group G over
the ring A. If A[G)] is Hopfian (resp. co-Hopfien)} as o ring then A is
Hopfian (resp. co-Hopfian} es a ring and G is Hopfian (resp. co-Hopfian)
as o group,

Proof: Let f: A — A be a homomorphism of rings and ¢: G — G
a homomorphism of groups. Then the map 5 A[G] — A[G] defined

by 3 (dec agg) = 34 f(ay)plg) is a ring homomorphism. Also it
is easily checked that 8 is surjective (resp. injective} & f and ¢ are

surjective (resp. injective). Proposition 1.13 is an easy consequence of
these facts. B
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Remarks 1.14. I f: 4 - A is a map in A-mod and @G — G is
a group homomorphism it is in general not true that §:A[G] — A[G]

defined 3 (dec a_,;g) = )¢ flaghplg) will be a map in A[G]-mod. In

case ¢ = fdg it is true that # is 2 map in A[G]-mod. The analogue of
1.13 for module categories is not valid. If A is any commutative ring
and G any abelian group, A[G) is Hopfan in A[G]-mod. G need not be
Hopfian. However, the following can be proved.

Proposition 1.15. If A|G] is Hopfian (resp. co-Hopflan) in A|G)-
mod, then A is Hopfian (resp. co-Hopfian) in A-mod.

Proposition 1.16. Let {An}acs be any family of rings ond A =
H,. 1A, their divect product.
(i) A is Hopfian {resp. co-Hopfian} in A-mod & each A, is Hopfian
{resp. co-Hopfian) in A, -mod.
(i) If A is Hopfian (resp. co-Hopfian) as a ring then eoch A, is
Hopfian (resp. co-Hopfian) as a ring.

Proof:

(i) is an immediate consequence of the fact that any map f: A — A
in A-mod is uniquely of the form IIf,: 1A, — IIA4, with f.:
Ay — A, amap in A,-mod and f s surjective (resp. injective)
< cach f, is surjective (resp. injective).

(i) If fo: A. — A, is a ring homomorphism for each aeJ, then
f=0f4 A, — I1A, is a ring homomorphism. Moreover [ is
surjective (resp. injective} if and only if each f,, is surjective {resp.
injective). (ii) is an immediate consequence of these facts. B

Actually proposition 1.16(i) can be improved as follows:

Proposition 1.17. Let {A.}a.cs be any family of rings and A =
Nac1Aa their direct product. Let Mo eA,-mod for cach aed. If M =
Hoes Mo with A-action defined by a.m = {a,mq ) s whenever a={a,)aet
with an € An and m = (Mo)aecs with m, € M., Then M is Hopfian
(resp. co-Hopfian} in A-med if and only if each M, is Hopfian (resp.
co-Hopfian) in A,-med. :

Again this is an tmmnediaie consequence of the fact that any moep f:
M — M in A-mod is uniquely of the form Il f.: HM, — M, with f.:
M, — M, a map in A,-mod.

2. Hopficity of the modules M[X], M[X]/{X™) and M[[X]]

Given any MecA-mod and an indeterminate X over 4 we define
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M[X)eA[X]-mod, M[X])/{X™)eA[X]/(X)-mod and M[[X]]eA[[X]]-mod
as in Section 1 of (23], where A[X] denotes the polynomial ring,
A[X1)/(X™) for any integer n > 1 denotes the truncated polynomial ring
and A[[X]] the formal power series ring. The main result proved in this
section is the following: ‘

Theorem 2.1. Let MecA-mod. Then the folowing are equivalent.
(1) M is Hopfian in A-mod.

{(2) M{X] is Hopfian in A[X]-mod.

(3) M[X]/(X™) is Hopfian in A[X]/(X™)-mod.

{4} M[|X]] s Hopfian in A[[X]]-mod.

Proof: (2) = (1). Let f+ M — M be any surjectivc map in A-
mod. Then f]X]: M[X] — M[X] defined by f[X] (z_‘;zo ajxi) -
E;‘;g f(a;) X7 is a surjective map in A[X}-mod. Since M[X] is Hopfian
in A[X]-mod we sce that f[X] is injective. This immediately yields the
injectivity of f.

The proofs of (3) = (1) and {4) = (1) are sirnilar and omitted.

(1) = (2). Let p: M[X] — M[X] be any surjective A[X]-homorphism.
Let 0 = p|M:M — M[X]. Then 8 is an A-homomorphism: Morcover

k k
(4) o1 e X0 | =" X76(ay).
=0 =0

For any ¢ > 0 let gyt M[X] — M be defined by

k
»i Zanj.

—0

_f e i<k
T lo Hi>k

Then p;: M[X} — M is a map in A-mod for each i > 0. Since ¢ is
surjective, given any ceM there exist an clement Z?:n a; X7 € M(X]

. k :
with (37 _ya; X7} = ¢

Using 4, we sce that the “constant term” of 8{ag) is ¢ or cquivalently
poof{ag) = ¢. This shows that the map pgof: M — M is a surjective map
in A-mod. The Hopflan nature of M in A-mod lmplies that poof:M — M
is an isomorphism, in particular injective.

Qur aim is to show that @:M|[X] — M|X] s injective. Let z:._.ﬁ b; Xie
M|[X] satisfy W(Z?:n b; X?) = 0. Using 4 and observing that 8(b;) =
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3 i»oPi 0 8(b;)X* we see that W(Z?:o b; X7) = Z?:o d; X7+ terms in-
volving higher powers of X where

(5) d; = p; 08(bo} + pj—108(b1) + ... + po o 8(b;)

for 0 < 7 < k. Hence ‘P(Z_!::u b; X?) =0 implics b; = 0 for 0 < § < k.
Writing these out we get the following systemn of cquations:

poo@by) =10
p1 o 8{bg)+p1of{b) =0
(6) p2 0 0(bo)+p1 o 8(b1) + poo b)) =0
proG{ba)+pr_108{bi)+ ... ... +ppoBbg) =0

We know that pgef is injective. Hencc from the first of these equations
we get by = 0. Substituting this in the second equation we get poof{h ) =
9, hence b; = (. Now the third equation will yicld py 0 8{bs) = 0}, hence
by = 0. Proceeding thus we see that g = b = ... = by = 0. Hence @ is
injective.

{1} = (4). The proof is similar to that of (1) = (2). We will only
indicate the changes needed. In the proof replace M[X] by M[[{X])],
E?:o a; X7 by 35005 X7, equation 4 by ¢(3° 15 a5 X7)=2" 59 X76(a;).
The p;’s are defined by pi(3);508;X7) = a; for all i > 0. The calcula-
tion of p(3 506, X7) will now be ©(3-,505; X7} = 3,50 d; X7 whare
dj =p; o 8{bo) + ...+ poo8(h;). Hence p(3_,5,h; X?) = (if and only if
d; = 0 for all 7 > 0. The equation d; = 0 combined with the fact that
po o 8:M — M is injective successively yicld by = 0 for all 37 > (. Hence
e M[[X]] — M[[X]] 1s injective.

(1) = {3). Again the proof is similar to that of (1) = (2) and hence
omitted. B

Remarks 2.2.

{a)} For any 0 # MeA-mod, the modules M(X] in A[X}-mod and
MI|X]] in A[[X]]-mod are never co-Hopfian. In fact the map
“mmultiplication by X" is an injective non-surjective map in both
cases.

{(b) If M¢A-mod is Hopfian we do not. know whether M[X, X ') will
be Hopfian in A[X, X ~!]-mod. However if M[X, X '} is Hopfian
in A[X, X " !)-mod it can be shown that M is Hopfian in A-mod.
The proof is similar to the proof {2) = (1} in Theorem 2.1

3. The Commutative case

Throughout, this section unless otherwise stated A denotes a commu-
tative ring. The following Lemma might be well-known. As we can not
find an explicit. reference we include a proof of it here,
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Lemma 3.1. Let P be an n X n matriz over A. Then there exists a
non-zero column vector ae A™ with Pa = 0 if and only if det P = ether
0 or ¢ zero divisor in A, where 0 denotes the column vector in A™ with
all entries ().

Proof: Let Pa = 0 with a £ 0. Let adj P denotc the adjugate of P.
Then 0 = {adj P)Pa = {dct P)I,a = (det P)a. If g, s a non-zers entry
of a, then (det P)a; = 0 with a; # 0.

Conversely, let P = deA and let there exist an element a #-0 in A
with de = 0. By induction on n we show that 3 an clement ¢ 5 0 in
A" with Pe = 0. Forn=1, we have P = (d) and Pa =0 witha #£ 0
in A. Assume the result valid for square matrices of sive < n — 1. Let
C,; be the 4, § cofactor of P. From Plad] FPla =(det P)a = 0 where a

Chna
is the column vector all of whose entries are a we get P Tl =0
Cina
Clla,
If # 0, there is nothing to prove. Otherwise €2 = 0 and
Cino

Cyy is the determinant of the {(n — 1) x {(n — 1) matrix § got from I by
deleting the first row and first column. By the inductive assumption 3
an element v £ 0in A" with Sv =0in A® ' If¢c = (3) € A™, then
c#0in A™ and Pc= 0 in A™. N

Theorem 3.2. Lei A be e commutative ring with the properly that
A is co-Hopfian as an A-moedule. Then for each integer n = 1, A" is
co-Hopfian as an A-module.

Proof: Let f:A™ — A™ be any injective homomorphisin of A-modules.
Let P denote the matrix of f w.rt. the standard basis of A™. From
lemma 3.1 we see that det P is not a zero-divisor in A. From remark
1.6(b) we see that A is its own total quotient ring. It follows that det P
is a unit in 4, hence P is invertible. This means f is an isomorphism. |

Examples 3.3. Lct B be any abcelian group with the property that
the p-primary torsion ¢,(B) is not zero for every prime p. Let A =
B @ Z as an abelian group and et us define multiplication in A by
(6, m)(¥, m’) = (mb +m'b,mm’). Aisa commutative ring. In fact 4 is
the ring got by adjoining an identity element to B with the so called zerc
ring structure on B. Every element of the form (b, m) withm £ 1 isa
zero-divisor in A, In fact if p is any prime divisor of m, we can choose
an element 0 # ¥ € t,(B) with pb’ = 0. Then (¥,0}(b,m) = (0,0). Also
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from (b, 1){—b, 1} = (3, 1) and (b, ~1){—b, -1} = (8, 1) we sce that all the
non-zero divisors in A are invertible. From remark 1.6(b) and theorem
3.2 we sce that A™ is co-Hopfian in A-mod for every integern 2 1. B
is a two sided ideal in A with A/B ~ Z as a ring. Thus B is a prime
ideal of A. However, B is not maximal, because = {(mZ) D B for any
m # 0 where 4 — A/B is the canonical quotient map. Thus from
remark 1.6(d) we see that there are finitely gencrated A-modules which
arc not co-Hopflan. In fact the eyclic A-module, A/B ~ 2 is itsclf not
co-Hopfian as an A-module. For any m # 0, multiplication by m is an
A-module homomorphism which is injective but not surjective.

In the above example let us choose B as follows. For some prime pg, let
tpo(B) be an infinite direct swin of copies of Z/ppZ and for primes p # po
let t,(B} be any arbitrary p-primary torsion abclian group which is not
zero. Let B = @, pt,(B) where P denotes the set of all primes. Sinee B
is an ideal in A, B is an A-submodule of A. The A-endomorphisis of B
are the samce as the abalian group endomorphisms of B, As an abelian
group, tu.{ B} is neither Hopfian nor co-Hopfian. Sinee £,,(B) is a direct
sumeand of B, we see that B is neither Hopfian nor co-Hophan as an
abclian group and hence as an A-module. For any subgroup H of B,
H© Z is a subring of A. Clearly as an abclian group B does not satisfy
the a.c.c. for subgroups. It follows that as a ring, A docs not satisfy the
a.c.c. for subrings. Since all subgroups of B are ideals in A, it 1s also
clear that A is not noctherian. In this example A is both Hopfian and
co-Hopfian as an A-module but the submodule B of A is neither Hopfian
nor co-Hophan.

Proposition 3.4. For any commuioiive ving A and any integer n 2
1, the ring M, (A} is Hopfien as on M, (A)-module.

Proof: Tt suffices to prove that M, (A) is Hophan in M,,(4)-mod. Let
X denote a left. zero-divisor in M, {4). Wc have to show that X is not
a left unit in A, (A). If possible let Y € M, (A) satisfy Y X = I, Since
A is commutative, it follows that X is invertible in M, (A} and heuce
cannot be a lefi. zero divisor contradicting the original assumption. W

Proposition 3.5. Let 4 be o commutative ving whick is co-Hophon
i A-mod. Then M, (A) is co-Hopfian in both the categories M, (A)-mod
and mod-M, (A}

Proof: Let X € M,{A) be a left non-sero divisor in M, (A4). Then we
¢laim that therc cxists no non-zero row vector 2 = {a@y,... ,a,) in A™
with ¢ X = 0{0 = the zero row vector in A™). Because if there existed
such an g, then the n x 1 matrix ¥ ecach of whose rows is a satisfics
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YX =0and ¥ # 0 € M, {A). From the right analogue of lemma 3.1
we sce that det X is not a zerc divisor in 4. But 4 being co-Hopfian in
A-moed, we see that det X is a unit in 4, hence X is invertible i M, {A).
Hence M, (A) is co-Hopfian in M, (A)-mod.

The proof for the other half of the proposition ig similar, W

Let P be a pritne ideal in A and MeA-mod. Let Mp be the localization
of M regarded as an Ap-module. A natural query is in what way the
Hopfian (resp. co-Hophan) nature of M € A-mod related to the Hophan
(resp. co-Hopfian) nature of Mp € Ap-mod. The following examples
show nothing much can be said.

Examples 3.6.

{a) For any prime p, Z,_ @ Z is neither Hopfian nor co-Hepfian in
Z-mod. It's localization at the prime ideal 0 of Z is @ in Q-mod
and @ is both Hopfian and co-Hopfian in Q-mnod.

(b) For every prime p, let Z(,y = {ZeQl{n,p) = 1}. Since Z(, is
noctherian as a ring, Zy,y is Hophan in Z;,-med, hence Hopfian
in Z-mod. If H = ©p.pZyy,), where P is the sct of all primes, using
the fact that Homz(Z,y, Z(4) = 0 if p and g are distinet primes
we sce that H is Hopflan in Z-mod. Now @ ® H is an infinite
direct sum of copies of @ and hence not Hopfian in @-mod.

4. Hopfian and co-Hopfian Boolean rings

Recall that a ring A4 is said to be Boolean if a? = o for all aed. It
is well known that any Boolean ring 4 is commmutative and that 2e =0
for any o € A. If 4 is 2 Boolean integral domain and a # 0 in A,
then from (¢ — 1) = 0 we see that 2 = 1 and hence 4 =~ Z/2Z. In
particular it follows that any prime ideal in an arbitrary Boolean ring A
is necessarily maximal in A. From 1.6{c) and {d) we see that all finitely
generated modules over A are Hophian and co-Hephian. The object of
the present section is to determine nccessary and sufficient conditions
for A to be Hopfian (resp. co-Hopfian) as a ring using M.H. Stonc’s
representation theorem [20]. -Given any compact totally disconnected
Hausdorft space X let B{X) denote the sct of clopen subsets of X, B(X)
turns out to be a Boolean ring under addition and multiplication defined
by C'+ D = CVD, the symmetric difference of C and D, and C - D =
CnND. Let H denote Z2/22 = {0,1} with the discrete topology. For
any sct S let HS = I, cH, where H, = H for all ¢S, endowed with
the cartesian product topology. Given a Boolean ring 4 let X4 = {f ¢
HAfla +b) = fla)+ f(B), flab) = f(a)f () and f(1) = 1}. Then it
is known that X, is a closed subspace of H#, hence X, is a compact
totally disconnected Hausdorff space. Let T:A — B{X,) denote the
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map Tla) = {f € Xalf(a) = 1}. Ther Stonc’s representation theorem
asserts that TmA — B(X4) is a ring isomorphism. A nice account of
Stone’s representation theoremn is given in appendix three of [20).

Given any continuous map X — Y of compact, Hausdorff totally
disconnected spaces, for each clopen set F of ¥, o~ }(E) is a clopen set
of X; alse B{g): B{Y) — B(X) defined by B{p)}{E) = ¢ ' (F) € B(X)
for each E' € B{Y) is easily seen to be a ring homomorphism.

Conversely, given a homomorphism a: A — B of Boolean rings there is
an associated map X{ah Xz — X 4. For defining this observe that Xp
is nothing but the sct of ring homomorphisms of B into £/2Z, regarded
as & topological subspace of H”. Given any ring homomorphism f:B —
Z/2Z, clearly foaA — Z/2Z is a ring homomorphism. The map
X{a) is given by X{(a){f) = foo. It turns out to be continuous. Let
B{(X{(a)):B{X4) — B(Xp} be the ring homomorphism associated to
X(ex} as deseribed in the carlier paragraph. Then

A - B
| |
B{X(a})

B(X ) B{Xp)

diagram 4.1

is known to be a commutative diagram. Actually, for any a € 4, we have
Toafa) = {f:B — Z/2Z|f a ring homomorphism with f{a{a)) = 1}
and B(X{a))oT(a) = B(X{e)){g: A — Z/2Z|g a ring homomorphism
satisfying g(a) = 1} = X{a)"}{g: A — Z/2Z|g a ring homomorphism
satisfying g{a) = 1} = {f: B — Z/2Z|f a ring homomorphism with
(X{a¥Na) = 1} = {f: B — Z/2Z|f a ring homomorphisin with

flefa)) = 1} = T oa{a). This proves the commutativity of diagram 4.1

Lemma 4.1. Let X be a compact Hausdorff totally disconnecied space
and Y a closed subspace of X. Let F be any clopen subset of Y. Then
there exists a clopen subset C of X with CNY = F.

This is actually lemma { in Hiremaih’s paper [12].

Proposition 4.2. Let a:A — B be a homomorphism of Boolean
rings. Then
(i) o is surjective & X{o):Xp — Xa 15 injective & B(X(a)):
B{X 4} — B{Xpy) is surjective.
(i) a is injechive & X(o): Xg — X4 is surjective & B(X{a)):
B{X 4) — B(Xg) is injective.
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Proof: (1) From the commutativity of diagram 4.1, we sce that a is
surjective < B{X(a)):B(X.4) — B{Xg) is surjective.

Assume a surjective. If possible let X {a) be not injective. Let u # v
be elements in X with X{a)(u) = X(a){v). There exist clopen sets
E.Fin Xp withuw € F,v € Fand ENF = ¢ Since B(X(w)) is
surjective, there exist clopen sets C, D in X 4 satisfying X{(a) " (C) = E
and X{(a)”™Y(D) = F. Fromu € E and v € F we get X(a)(u) €
C, X{a)(v) € D. But we have X(a)(u) = X{a)(v) = ¢ (say). Then
t € CND and hence u and v are in X{(a)"}(CND) = ENF. This
contradicts the fact that E N F = ¢. This proves the implication «
surjective = X () injective. :

Conversely, assume X({a):Xp — X4 injective. 'We will prove that
B{X(x)):B(X ) — B(Xg) is surjective. Since X (a}: X5 — X4 is injec-
tive and the spaces involved are compact Hausdorfl, it. follows that X (a):
Xpg — X({a)}{(Xp) is a homeomorphism when we regard X (a)(Xg) as
a subspace of X 4. Given any clopen subsct F in Xy, from lemma 4.1
we see that there exists a clopen subset C of X4 with CNX(a)(Xp) =
X{a)(F), or equivalently X{o)~1(C) = F. Thus B{X({a)):B(X) —
B(Xp) is surjective, completing the proof of (i).

{ii) Again from the commutativity of diagram 4.1 we sce that o is
injective & B(X (a)): B{X ) — B(Xp) is injective.

Assume ¢ injective. If possible let X(a): Xy — X4 be not surjec-
tive. Then there oxists some z € X with 2z & X4 — X{a}{Xp). Since
Xa—X{(a)(Xp) is an open set in X 4 containing z and sinee clopen neigh-
bourhoods form a fundamental systern of neighbourhoods of any point
in X,, we get aclopen set C'in X, withz € € C X4 — X{a)(Xg). The
sets X, and X4 — C are distinct clopen sets in X 4 with X (@)~ (X ) =
X(a)"1 (X4 ~ C) = Xy showing that B{X(a)) is not injective. This
contradicts the assumption that « is injective.

Conversely, assume that X(a):Xg — X, is surjective. If .5 — T
is any set theoretic surjection and Ty # T» arc distinct subscts of T,
it is clear that ¢~ 1(T) # ¢~ 1{(T). In particular if C, D are distinct
clopen subsets of X4 we see that X(a) 7' (C) # X{a) (D), showing
that B(X(a)):B{X,) - B(Xpg) is injective. This in turn shows that
a:A — B is injective, thus completing the proof of (ii). -

Proposition 4.2 implies the well-known result that the isomorphism
type of the ring A determines the homeomorphism type of the space
Xa. It is well-known [21] that f — Ker f establishes a bijection between
points of X4 and maximal ideals of A. We can transport the topology
of X4 to max Spec A using the above bijection. If we start with a
compact. Hausdorff toially disconnected space X, for cach x € X if we
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set I, = {C € B{X}|x ¢ C} then z — I, is a hoeomorphism of X with
max Spec B(X). N

Definition 4.3. A topological space X is said to be Hopfian (resp.
co-Hopfian} in the category Top if every surjective (resp. injective) con-
tinuous map f: X — X is a homeomorphism.

The main result of this section is the following.

Theorem 4.4. 4 Bonlean ring A is Hopfian (resp. co-Hopfian} as a
ring if and only if X 4 is co-Hopflan (resp. Hopfian) in the category Top.

Proof: Imnmediate consequence of proposition 4.2. A

Remarks 4.5, Let J be any finite set. The product space H where
H = {0,1} is ncither Hopfian nor co-Hopfian. As a set H7 is the sot
of all maps of J into H. For any sct theoretic map #: J — J we have
an induced map f — fo# of H' into H’, which is easily scen to be
continuous. If € is an injective (resp. surjective) map which is not a
bijection, then f — f o @ is a surjective (resp. injective) map which is
not bijective.

Since A = B(H "’} is a commutative ring in which cvery prime ideal is
maximal, all f - gA-moduics arc simultancously Hopfian and co-Hopfian
in the category of A-modules but A is neither Hopfian nor co-Hopfian as
a ring.

It would be nice te characterize completely the Hopflan (resp. co-
Hopfian)} compact Hausdorfl totally disconnected spaccs.

5. Hopfian and co-Hopfian function algebras

Let K be a commutative ring and K-alg denote the category of K-
algebras.

Definition 5.1. A K-algebra A is said to be Hopfian (resp. co-
Hopfian} as a K-algebra if any surjective {resp. injective} K-algebra
homomorphism /1A — A is isomorphism.

Let R {resp. C) denote the field of real (resp. complex) numbers with
the usual topology. For any compact Hausdorff space X let Cr(X) (resp.
Ce{ X)) denote the R (resp. C)-algebra of continuous functions from X
to R (resp. C). Using the Gelfand respresentation theorem we will
determine necessary and sufficient conditions for Cr{X) {resp. Ce{X}))
to be Hopfian or co-Hopfian in the category R-alg (resp. C-alg). We will
mainly concentrate on Cr(X). Similar results are valid for Cg(X).

X denotes 2 compact Hausdorff space and C'{X) denotes the R-algebra
Cr{X). It is well-known that the map z — (f(2))sec(x) Is a topological
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imbedding of X into Il;eo(x)Ry with the cartesian product topology,
wherc Ry = R for each f € C(X). Also x —» m, = {f € C(X)|f(z) =
0} is & bijection from X to the set of maximal deals in the R-algebra
CX). Ut X *. Y is a continuous map of compact Hausdorff spaces,
there is an induced homomorphism p*: C(¥) — C(X)} in R-alg given
by ¢*{g) = gow for every g € C(Y'). Also given any R-algcbra homomor-
phism a: C(Y) — C(X), there is a unique continuous map X - Y
satisfying o = @*. To sce this, for any z € X, o' (m.) is a maximal ideal
of C(Y) and hence a~'{mz) = my(sy for a unique element ¢(z) € Y. If
Ix: X = IecxyRyand jy: Y — [Ig € C{Y}R, denote the imbeddings
ix(z) = (flz))recpx; and Jy (w) = (9(y))sec(y)y Tespectively, then the
set theoretic map ¢: X — Y obtained above satisfies the condition that

X . v

" v

R; —— IR,

I
FEELX) 9EC(Y)

diagram 5.2

is commutative, where o ({rs)recix)) = {Sglpecry) with s, = Ta(g-
Since «* composed with any projection I[TR, — R, is continuous we
see that o* is continuous, hence i is continuous, provided we check the
commutativity of the diagram 5.2. But it is straightforward. Thus the
set of R-algebra homomeorphisms C({Y) — C({X) is the same as the set
{p*:|: X — ¥ continuous }. The results quoted so far are well-known
{[20, pages 327-3304}.

Proposition 5.2. Let ¢:X — Y be a continuous map of compact
Hausdorff spaces. Then

(i) ¢":CY) — C{X}) is injective & ¢: X — Y is surjective.

(i) @*CY) — C(X) is surjective & p: X — Y is injective.

Proof:

(1) Suppose @ X — Y is not surjective. Then @(X) is a proper closed
subsct of ¥. We can pick an element b € Y — (X). Let hip(X) - R
be any continuous function. Then we can get contimuous extensions
q1'Y — R, g2i¥Y — R of h with g1{6) = 0 and g2(b} = 1 (by Tietze
extension theorem). Then g1 # g2 in C(Y) but " (g1} = hop = " (g2}
since g1|p{X) = g2lp{X) = h. Thus  not surjective = ¢* not. injective
or equivalently * injoctive = ¢ surjective.
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If ;. X — Y is surjeetive, then for any two sct theoretic maps 1Y —
R, g2: Y — R, we have the implication giow = guow = g = g.
In particular this implication is true with g), 92 in C(Y). This proves
(i). (i) Suppose ¢ is not injective, say &1 # xp in X satisfy (x|} =
@{re). Any f € C(X) of the form g o ¢ with ¢ € C{Y') has to satisfy
flz1) = flxz). However, we do know that 3f ¢ C(X) with f(z) =0
and flxz) = 1. Thus *:C(Y) — C(X} is not surjective.

Conversely, assume that ¢ is injective. Then X — (X)) is a home-
omorphism and ¢{X) is closed in Y. Given any f € C({X), hip(X}) - R
defined by Ap(r) = f(z) is continuous. By Tictze extonsion theorem,
there cxists g € C{V) with gle(X) = h. Then ¢*(y) = f, showing that
" CY) — C(X) is surjective. W

Theorem 5.3. Let X be o compect Hausdorff spece. Then C(X) is
Hopfian (resp. co-Hopfian) as on R-algebra if and onldy if X is co-Hopfian,
{resp. Hopfian) as a topological space.

Proof: Immediate consequence of proposition 5.2, B

6. Hopfian and co-Hopfian objects in
Top among compact manifolds

For each integer n > 1 let D™ denote an n-disk. We may take D™ =
{x € R || x ||[€ 1} where | z]} denotes the usual norm in R™. By
definition DY consists of a point. For n > 1, the map @ — 2z is a
continuous injection which is not a surjection. The map .07 — D7
given by

27 for ||=||<
f{r) =
for x|z

b = 2| =

I
(R

is a continious surjection which is not injective. Thus D™ is neither
Hopfian nor ¢o-Hopfian for n > 1. Observe that #:.0* — D™ defined
above has the additional property that 8/S™~! = Id . .. Lot M7 be any
compact topolepgical manifold (with or without boundary) of dimension
n > 1. Then imbedding a disk D™ in M™ we can define a continuous
surjection f1]M™ — M™ with f|(M™— IntD™) = Idpn_tpipny and fID™
a continuous surjection of D™ with itself satisfying f1$™~1 = Id,, . and
FI1D™ not injective. It follows that M™ is not Hopfiar. Thus we obtain
the following.
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Proposition 8.1. The only compuct manifolds (with or without)
bounidary which are Hopfian are finite discrete spaces.

As usual for any topological space X we denote the set of arcwise
connected components of X by IIp{X).

Theorem 6.2. Lei M™ and N™ be o compact topological manifolds
of the same dimension n > 1, both of them withou! boundary. Suppose
further |Ho{M™)| = {TI°(N%)|. Then any continuous injection f:M — N
is a homeomorphism.

Proof: Since M™ and N™ arc compact we see that |TIg (M ™) |=|e{N™)|
< oc. Let {M;‘}f;] denote the set of connected components of M™. Each
M?P is a compact connected manifold without boundary, of dimension n.
Hence f{M]) is a compact, connected subset of N™. Since f is injective
we sec that fIM:M! — f{M]) is a homcomorphisim. By invariance of
domain it follows that f{M[) is open in N™. Thus f{M]*) is open and
closed in N™ and also connected. Henee f(M]') is a connected component,
of N™. From the injectivity of f it follows that if i # j, f(M}') and f(M]')
are distinet connected components of N7, Since |[Ho(N™)| = [[Io{M™)| =
k < o0, it follows that { f{M?)}%_, are all the connected components of
N™, henge f:M™ — N™ is into. From the compact Hausdorfl nature of
M and N we see that f1 M™ — N™ is a homcormorphism. B

As an immediate consequence of theorom 6.2 we get

Corollary 8.3. Any compact manifold M™ writhout boundary is co-
Hopfian in Top.

Proposition 6.4. Any compact manifold M™ with « non-empty
boundory 8M is never co-Hopfian in Top.

Proof: By Morton Brown’s collaring thecrem, there exists a homeo-
morphism 8:8M x [(,1] — W where W is a neighbourhood of 8M in
M, satisfying 8{z,0) = z for all z € M. Let f1M — M be defined by
fluy = u for all w € M — 8(8M x [0, 1)}, F(8(x, 1)} = 8(z, 1) for all
z € M and ¢ € {0,1). Then f:M — M is a continuons injection which
is not & surjection. W

Let Top® denote the category of pairs of topological spaces,

Definition 6.5. A pair (X, A) € Top? is called Hopfian (resp. co-
- Hophian) if any surjective (resp. injective) map f:(X, 4) — (X, A) of
pairs is a homeomorphism. :

For any space X lot H;(X) denote the singular homology with integer
coeflicients.
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Theorem 6.6. Let M, N be compact manifolds with bowndory satis-
fying the follownng conditions.

(i) dimM =dim N
{i) rank Hy(OM} = rank Ho(GM), rank Ho(M) = rank Hy(N) and
rank Ho{M,8M) = rank Hy(N,8N).

Then any injective continuous map f{(M,8M) — (N,8N) is o homeo-
morphism.

Proof: Let V denote the double My Ugy M_ of M. Lot v = rank
Ho(M) and s = rank Ho(M,0M). 1f i 8M M denotes the inclusion,

then from the exact sequence Ho(OM) 5 Ho(M)Y — Ho(M, M) — 0
we see that rank Im i, = 7 — 5. From the Mayer-Vietoris sequence

Ho@M) “ 28 Ho(ML) @ Ho(M_) — Ho(V) — 0 where i, :0M —
M, i_:0M — M_ are the respective inclusions, we sce that rank Hp(V)
= 2r— rank of image ({14).,(_}.). However Im((iy).,{(i_).) is the
same as the diagonal subgroup of Im 1.8 Im i., hence has the same
rank as Im i,. Thus rank Hy(V} = 2r — (r — ) = r + 5. Similarly if
W denotes the doulbe Ny Usny N_ we have rank Ho(W) = r + 5. In
particular we get |mo(dM M = rank Ho(GM) = rank Hy{ON)} = |mn(ON)|
and I‘J‘T(}(V}l =7r+5= I?T()(WN.

FloM:8M — 8N is an injective continuons map and {my(dM)| =
|mo{@N}|. Hence theoremn 6.2 implies that f|8A is a homeomorphism.
There is a well-defined continuous map g:V — W satisfying g|M M, —
Ny and g|M_:M_ — N_ are the same as f. Then g is injective and
|mo{ V)| = [mo{W)). From theorem 6.2 again we see that ¢ V —» Wisa
homeomorphism. It follows inmediately that f.{M, M) — (N, 0N) is
a homeomorphisi. W

Corollary 6.7. If M s any compact monfold with boundary OM
then (M, OM) is o co-Hopfion object in Top®.

Proof: Immediate consequence of theorem 6.6. W

Theorem 6.8.

{iy If M is any compact manifold without boundary then C{M) is
Hopfian in R-alg.
(i1} If M is any compact topological manifold with o non-erapty bound-
ary M, then C(M) is neither Hopfian nor co-Hopflan in R-alg.
(iii) If M iy o compact manifold, then C{M) is co-Hapfian in R-aly if
and only if M 15 a finite set.
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Proof: Immmediate consequence of theorem 5.3, corollary 6.3 and propo-
sitions 6.1 and 6.4, &

7. Some related results and counter examples

Recall that a ring A is said to be left {resp. right) w-regular if given
any acA there exists an clement beA and an integer n > 1 satisfying
a® = ba"t! (resp. @™ = g™*1b). F. Dischinger [7),(8] has shown that #-
regularity is left right symmetric, Before Dischinger obtained this result,
G. Aznmaya [3] referred to a ring which is both left and right r-regular
as a strongly w-regular ring. By Dischinger’s result A is left w-regular if
and only if A i right w-regular if and only if A is strongly w-regular. In
[7], [8] Dischinger also obtained the following results:

1. A ring A is strongly m-regular if and only if every cyclic left or
right A-module is co-Hopflan.
2. For a ring A the following conditions are equivalent.
(i) Every finitely gencrated ket A-module is co-Hophan.
(ii) Every finitely generated right A-module is co-Hopfian,
(i) M, (A} is strongly w-regular for all integers n = 1,

In [9] K.R. Goodearl introduced the concept of a left repetitive
ving. A ring A is said to be left repetitive if given any aeA and
any f-gleft ideal I of A, the left ideal 3~ ., 7a™ s f-g. One of
the results proved by Goodear) in 9] is the following:

3. Every f-gMecA-mod is Hopfian if and only if M, {4) is left repet-
itive for all integers n > 1.

A good report on these questions including new proofs and rew results

can be found in [13].

Examples 7.1.

{a) It is clear that MeA-mod Hopfian = End (4M) directly finite.
In (18] J.C. Stepherdson gives examples of directly finite A4 with
M, {A) not dircctly finite for some integer n > 2. For any such
ving A, we have A Hopfian in A-mod. Also M, (A} is not Hopfian
in M, (A)-mod. Since A" is a direct summand of M (4) in A-
mod, whenever k% > n, we also see that Mi{A) is not hopfian in
A-mod whenever &2 > n.

(b} In part C of [5] G.M. Bergman constructs for each integern > 1 a
ring A with the property that all regular clements in A are invert-
ible, but M, (A} is not its own classical ring of quotients. In [13]
P Menal constructs a ring A4 which is its own classical quotient
ring but M,(A) is not Ore, hence M, {4) does not ¢ven have a
classical ring of quotients. A careful inspection shows that in both
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these examples the left regular and the right regular elements of
A coincide. Hence by proposition 1.4 in onr present paper A is co-
Hopfian in both A-mod and mod-A. However, M,,{A) is ncither
co-Hopfian in M, (A)-mod nor co-Hopflan in mod-M, {A).

{¢) In section B of [16] it is rcmarked that W.L. May has a method
of obtaining an infinite abelian Hopfian group & such that the
complex group algebra C{G) is not Hopfian as a C-algebra, hence
not. Hopfian as a ring. In this example € is Hopfian as a ring, G
is Hopfian as a group but C[G] is not Hophan as & ring.

8. Open problems

1. If A is Hopfian as a ring, is A[X] Hopfian as a ring?

2. If A is co-Hopfian as a ring and G a co-Hopfian group is A[G)
co-Hopfian as a ring?

3. If A is Hopfian in A-mod and G a Hopfian group is A{G] Hopfian
in A[G)-moed?

4. If A is co-Hopfian in A-mod and G a co-Hopfian group is A[G]
co-Hopfian in A[G)-mod?

5. If A is Hopfian (resp. co-Hopfian) as a ring is it. true that M, {A)
is Hopfian (resp. co-Hopfian} as a ring?

6. Characterize the Hopfian (resp. co-Hopfian) objects in Top among
compact Hausdorfl totally disconnected spaces.

7. If M € A-mod is Hopfian is M[X, X '] Hopfian in A[X, X ~!]-
mod?
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