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THE p-PERIOD OF AN INFINITE GROUP

Abstract

YINING XA

For ' a group of finite virtual cohomological dimension and a
primic p, the p-period of I' is defined to be the least positive integer
d such that Farrell cohomology groups H4{T; M) and fFr+4(I M)
have naturally isomorphic p-primary components for all integers §
and Z-modules Af.

We generalize a result of Swan on the p-period of a finite
p-periodic group to a pperiodie infinite group, ie, we prove
that the p-pericd of a p-periodic group T" of finite wved is
2LOM(IN{{z})/C{{x}}]) il the T has a Anite quotient whose a p-
Sylow subgroup is elementary abelian or cyclic, and the kernel is
torsion free, where N{—) and C(—) denote normalizer and central-
izer, (z} ranges over all conjugacy classes of Z/p subgroups. We
apply this result to the computation of the p-period of a p-periodic
mapping class group. Also, we give an example to illustrate this
formula is faise without our assumption.

For T a group of virtual finite cohomological dimension (ved) and a
prime p, the p-period of I' is defined to be the least positive integer d
such that the Farrell cohomology groups H(T; M) and H*+4(I"; M) have
natually isomorphic p-primary components for all ¢ € Z and Zl-modules

M 3],

The following classical result for a finite group G was showed by Swan

in 1960 [9].

Theorem (Swan).

a} If e 2-Sylow subgroup of G is cyclic (# {1}), the 2-period of G is
2. If o 2-Sylow subgroup of G is o {generalized) quaternion group,
the 2-period of G is 4.

b) Suppose p an odd prime and a p-Sylow subgroup of the finite group
G is cyclic (# {1}). Let S, denote the p-Sylow subgroup and A,
the group of automorphisms of S, induced by inner automorphism
of G. Then the p-peried of G is twice the order of A,.
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Remark.

The group A, above is isomorphic to N(S,)/C(5,), where N(—) and
C(—) denote the normalizer and centralizer of 5, in G.

It is very natural to ask a question: If I is a p-periodic group of
finite wed, is a similar result still true? In other words, is it possible to
describe the p-period of a p-periodic group I' of finite ved by an algebraic
non-homological invariant of the group I' itself?

In this paper, we generalize the result of Swan for a finite group to a p-
periodic group I' of finite ved which has a finite quotient whose a p-Sylow
subgroup is elementary abelian or cyclie, and the kernel is torsion-free,
i.e., we prove that the p-period of a p-periodic group I of finite ved is
twice the least common multiple of {|N({z})/C{{x})|} in these two cases,
where (r} ranges over all conjugacy classes of Z/p subgroups of I'. Cn the
other hand, we give a group I of finite ved whose only finite subgroup is
a Z/2, but the 2-period of Ty is greater than 2|N{Z/2)/C{Z/2)|. Finally,
an application will be made for caleulating the p-period of a mapping
class group.

The following four theorems are our main results of this paper.

Theorem 1. Assume that T is p-periodic. If ' has ¢ normal subgroup
of finite cohomological dimension so that the associated. guoticnt is @
finite group whose a p-Sylow subgroup is elementary abelian, then ithe
p-period of T' is twice the least common multiple of {|N({(z))/C{{z}}|},
where {(x) ranges over all congugacy classes of Z/p subgroups of I.

Theorem 2. Let T be o group which has a normal subgroup of finite
cohomological dimension so that the associated quotient is a finite group
whose a p-Sylow subgroup is cyclic, then the p-period of T is twice the
least common muldtiple of {|N{{x})/C({x))|}, where {z) ranges over ail
conjugacy classes of Z/p subgroups of I

Theorem 3. There is a group Ty of finite ved whose only finite sub-
group is a Z/2, bui the 2-period is greater than 2|N(Z/2)/C(Z/2)).

Theorem 4. If the mapping class group T'y is a p-periodic group and
g < p(p— 1)/2, then the p-period of Ty 1s 2LCM {ged{p — 1,b;)}, where
b; € By, (cf. section 3).

The rest of this paper is organized as follows. In section 1, we prove
Theorems 1 and 2. In section 2, we provide an example illustrating
Theorem 3. Finally in section 3, we give a formula for the calculation of
the p-period of a p-periodic mapping class group T,
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1. Proof of Theorems 1 and 2

Lemma 1.1. Let H = {(z,y/zP = 1, yzy~! = z7), where ¢ = 0 or

g # 0 mod(p). If d is the minimal positive integer such that r¢ = 1
modlp), then the p-period of H equals 2d.

Proof: If ¢ # 0, H is a finite group, the proof is immediate by Swan
Theorem. Otherwise, if ¢ = 0, H is infinite and we look at the short
exact sequence 1 — Z/p — H — Z — 1. The spectral sequence of
Farrell cohomology associated to the exact sequence converges in the
following way: Ey’ = HY(Z,H(Z/p; Z)) — H**¥(H; Z) (2]. This spec-
tral sequence collapses since H{(Z; H¥ (Z/p; Z)) = 0 wheni < Qori > 1.
Therefore, 1 — H*~YZ/p: Z); — HNH;Z) — HY(Z/p; Z)? — lis an
exact sequence. By looking at the Z action on the subgroup Z/p,u? €
H?4(Z/p, Z) is an invariant element of the Z action on H?4(Z/p, Z).
Here u is a generator of H2(Z/p,Z). Therefore, there exists an ele-
ment h € H(H; Z) such that Res(h) = u? # 0 on H?(Z/p,Z). By
Brown-Venkov theorem (2] and H¥4(H;2) = Z/p, H*+(H,Z) =
Z/p, H{(H;Z) = 0 for other i's, the p-period of H is 24. W

Lemma 1.2. Let Z/p be a normal subgroup of a group I of finite
ved, and let M be o finite quotient of U with lorsion free kernel. Then
T/Cr(Z/p) = No(Z/p}/Cr{Z/p} = Nu(Z/p)/CulZ/p)=M[Cpn(Z/p).
Here we still use Z/p to stand for the image of Z/p in M.

Proof: Let pr : T' — M be the natural projection map. The map
pr maps Nr(Z/p) onto Ny{Z/p) and Cr{Z/p} to Cu{Z/p), so in-
duced map pr. : Nr{Z/p)/Cr{Z[p} — Nu(Z/p)/Cu(Z/p} is a well-
defined surjective homomorphism. Let () = Z/p, if yzy~! = z7, then
pr{v)zpr(y) 1= z", Le., pr. is an injective. M

Lemma 1.3. Suppose o group M conlains a cyclic subgroup Z/p™ D
Zip and |N{Z/p™)}/C(Z/p™)| is prime to p, then the homomorphism
induced by inclusion i, : N(Z/p"}/C{Z/p"y — N{Z[p)/C(Z/p} 15 injec-
tive, : )

Proof: Notice N{Z/p) D N(Z/p™) and the inclusion ¢ maps C(Z/p™)
to C{Z/p), i1.e., the induced map by inclusion i, . N{(Z/p™}/C{Z/p™) —
N{Z/p)/C(Z/p) 15 a well-defined homomorphism. Now let {z) = Z/p7,
then {a?" Y = Z/p, if y € C(Z/p), yzy~ ' = z*, then ya?" 'y~ =
#"7 = 27" 50 (k= 1)p" ! = 0 mod{p™), i.e., k = 1 mod(p). Let k =
Ap™+1, Aisprimetopand 1 €m < n, k? =1 mod(p™), ddividesp—1
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by assumption. Hence k% = (Ap™ + 1)¢ = B+ Adp™ + 1 = 1 mod(p™),
where p®™ divides B. This implies Ad = 0 mod(p), a contradiction
unless A =0. B

Lemma 1.4 {Swan} [9]). Suppose the p-Sylow subgroup S, of a finite
group M is abelian. Let A, be the group of automorphisms of 5, induced
by inner eutomorphisms of M. Then an element a € HY(S,; Z) is stable
if and only if it is fized under the action of A, on H(S,; Z).

Proof: See [8]. W

Procf of Theorem 1: A theorem of Brown [3, p. 293] states that if T
is p-periodic, then H*(I'; 2)(py = p,es H*(N(P:); Z)(p), where § is the
set of all conjugacy classcs of Z/p of I'. Therefore, the p-period of T is
the least common multiple of the p-periods of Ny (FP;).

1) Lower bound. Let |Np(5)/Cr(P)l = d;, {z} = F;. There exists
y € T, such that yry~! = 2", 7% = 1 mod(p). Let H = {z,y}
be a subgroup of I' generated by elements z and y. Then the
p-period of H is 2d; by Lemma 1.1, i.c., the p-period of Nr(F;) is
a multiple of 2d,.

2) Upper bound. Let pr : I' — M be a projection onto the finite
quotient M whose a p-Sylow subgroup is elementary abelian, and
pr; 1 Ny (P) — M; be the restriction map of pr, where M, is the
irnage of pr;. Then M, = ImNr(B) = Np, {P) normalizes P; (P,
also denotes the image of F;), the group 4, of automorphisms of
S, induced by inner automorphisms of AM; maps P to itself.

Lot uw € H2(Sp;Z) =Hom(P x Zfpx ... ... Z/p, C*} be a cohomol-
ogy element such that u(z) # 1 and u{y) = 1if (o) = B, {y} = Z/p,
where C* is the multiple group of nonzero complex numbers. Then
Res(z) # 0 in H?(PF; Z). Now we claim that u® € H** (5, Z) is a
stable clement for S, in M;. In fact, d; = {Nar, {P:)/Cr, (5)| by Lemma
1.2, and 4, fixes the element u® € H2(8,; Z) since Npg, (P)/Cus (P
fixes the element u. By Lemma 1.4 (9], u® is a stablc clement for
S, in M;, ic., there exists an clement v € H?% (M, Z) such that
Re s¥i(v) = Respi{u) = [Re sf,?(u)]‘i* # 0. If we apply the canonical
homomorphism g* from ordinary cohomology to Farrell cohomology (3,
p. 278] we have Re s¥ (g™ (v)) = Re s?,f(g‘(ud‘)) = Re s}s;f(g* (u))% #0,
ie., there exists an element prig*(v) € H?%(Np(B);Z) such that
Respt Dprigt(v)) # 0 in H*(B; Z), by Brown-Venkov theorem [2)
and the fact that Np(P) has only one order p subgroup, the p-period of
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Np(P) divides 2d;. Sec following diagram.

Res

HY (NP (B): Z) H:(p; Z)

orit | - L

N 2 - N
H (M Z) ——s H¥(S,; Z) H%:(P; 2)

v | Is” ho |

H* (M Z) —— H(8,2) —— H*(P;Z) m

Res Res

Proof of Theorem 2: is basically a similar argument except for the
upper bound part. In fact, if I has a finitc p-periodic quotient A7 with
torsion free kernel, then U is p-periodic and the p-period of I' divides
the p-period of M. This is because the inflation map H*(M) — H*(T)
maps an invertible element of H*(M) to an invertible element of H*(T").
Using Swan Thecrem, we obtain that the p-period of N-(F;) divides the
p-period of M;, which is 2|Ngs (Z2/0™)/Cur, (Z2/p™)|. Also, by Lemma 1.3,
the number 2|Nu (Z/p"}/Cm (Z/p™)| divides 2|Nuy (F)/Cu (F)| =
2|Np(F)/Cr(P)]. &

2. An example

Lemma 1.3, Lemnma 1.1 and Swan Theorem imply that the eguality
|N{S5p)/C{Sp} = |N{Z/p)/C{Z/p}| holds in the case of a finite group G
whose a p-Sylow subgroup is cyclic, here Z/p is the order p subgroup of
Sp. Therefore, Theorems 1 and 2 are generalizations of Swan Theorem.

In the case of a group I' of finite ved, in gencral, [N{S,)/C(S,}| #
|N{Z/p}/C{Z/p)| even if all maximal p-subgroups S, of I are cyclic. For
example, let I = {z,yjz” = 1, yzy~! = 27+!), and d is the minimal
positive integer such that (p+1)¢ = 1 mod(p?). Then |N{({z)}/C{{z})] =
d = p, but |[N{{z"}}/C{{zF}}| = 1. A similar argument to Lemma 1.1
shows the p-period of I'" above equals 2p. This trivial example shows
that the p-period of an infinite group [ can not be only described in the
form 2LCMI{IN{Z/p)/C{Z/p}|} in general.

The example [ above could lead us to think that the p-period of a p-
periodic group T equals 2LCM {|N{C(p))/C{C(p})|}, where C(p) ranges
over all conjugacy classes of maximal p-cyclic subgroups of I'. Recall in
the case of a finite group G, Swan Theorem can be also stated in the
different form: the p-period of G eguals 2|N{C'(p)}/C{C{p))] (including
the case p = 2}, where C(p) is a maximal p-cyclic subgroup of G.
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Unfortunately, the next example shows that this is not true.

Example. Let [, » denote the congruence subgroup of SL{n, Z} of
level m, i.e., the kernel of the surjective homomorphism ry,, : SL{n, Z) —
SL{n, Z/m) induced by the reduction mod{m) (m may not be prime). It
is well-known that the group [, .. is always torsion free when n > 1 and
mm > 3. A result of Charney [4] states that the group I'» , is cohomology
stable with Z/2 coefficient for any odd prime p. Define I'y = lim, Iy p,
then H* ([ Z/2) = HY ([ Z/2) for n > 26+ 5.

Let GL{Z} be the infinite general linear group of £ and w; €
HYGL(ZY; Z/2) the i-th Sticfcl-Whitney class of the inclusion GL{Z) -
GL{R) for i > 1. We still denote by w; the image of w; under the re-
striction H{GL(Z), Z/2) — H(SL{Z); Z/2) — H'(Tm; Z/2).

The calculation in [1] by Arlettaz gives following results: for any odd
prime p

a) wn(T,) =0
b} we(l'p) #0
¢} ws{I'p) = 0 if and only if p = 7 mod(8).

Also, we know from Wu formula for the Steenrod square Sq'(ws) =
wywy + woun = ws in H3(T,; Z/2). Again, denote by w; the image
of w; under the restriction H¥(Ts; Z/2) — H*(I'11,5). Combining both
results of Charney and Arlettas above, we have wy = 0, w2 # 0 and
Sq'(wr) = w3 # 0 in H*(Ti5;Z/2) (in fact, these are all true for
H*(Dnys;Z2/2) as long as n > 11.)

Let T'o denote the group of the extension 1 — Z/2 — [ —
i35 — 1 which corresponds to the non-trivial cohomology element
we € H?(Ti15;2/2). Obviously, the group [y contains only one 2-
subgroup Z/2, and the extension is central. Next, we check that the
group T'p is of finite ved, then show that the 2-period of I is greater
than 2. '

Coensider the following commutative diagram, where all maps Ry, R,
R3 and R4 are restriction maps.

2 i 2
H:Tn4 2/2) ——— H¥T1120,2/2)

a [

H2(SL(11,2); Z2/2) — H* (1155 2/2)

4

In fact, the map Ry =0isa speciaf case of the result by Millson [7, p.
85] which states that for any n > 3 the map r* : H2(SL(n, Z2/4); Z2/2) —
H?%*(SL(n, Z), Z/2) induced by the reduction mod(4} is an isomorphism.
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Thus, we obtain the nontrivial second Stiefel-Whitney class g in
BT, 1,57 Z2/2), but the restriction of wy into the cohomology of the finite
index subgroup H?([' 1,20; Z/2) is 0. This actually proves that the group
Ty is finite ved and the ved(Tp) = ed(T (1 20) = ved{SL{11,Z)) = 55 |3,
p. 229].

In order to find a lower bound on the 2-period of Tg, consider two
spectral sequences as follows:

1. The Lyndon-Hochschild-Serre spectral sequence of the group ex-
tension 1 — Z/2 — Ty — 115 — 1 with Z/2 coefficient. This
takes the form Ey? = HY(Ty15; H(Z/2; Z/2)) = HI(To; Z/2).

2. The Farrell cohomology speetral sequence {2] of the group exten-
sionl— Z/2 - Ty — 115 — 1 with Z/2 cocfficient. This takes
the form Ey? = HY(Dyy 5 Hi(2/2;, 2/2)) = H*9(To; Z/2).

Let v € HYZ/2,Z/2) be the gencrator of the cohomology ring
H*(Z/2;2/2) = Fylu), and dof{u) = wo € H*{I"; Z/2) be the second
Stiefel-Whitney class corresponding to the extension 1 — Z/2 — Ty —
I'i1,5 — 1. Then u is transgressive, da{u) = 7{u) = wy, where 7 is the
transgression. The element 42 = S¢'(u) is also transgressive (8, p. 81,
and dy(u?) = 7(x?) = 7(Sq'(u)) = S¢*(7(u)) = Sg'(wa2) = w3 # 0 in
Ey because H(Th1 5, 2/2) is trivial,

Consider a commutative diagram involving in both spectral sequences
as follows:

0 . fre . s 3 . £50 .
HYTn 5, HA(Z/2, Z/2)) ——— H*(T115; HY(2/2: 2/2))

[e" o

0 Y . 43 3 g0 .
HY(Ts; H(Z/2;Z2/2)) —— H (T, H'(Z2/2:2/2))

The nontriviality of da in the second row implies the nontriviality of
ds in the first row. This shows Res:H%(Ty; Z2/2) — H*(Z/2,Z/2) is
trivial since the map Res factors through E%2 = 0. Thercfore, there
is no invertible clement in H2(To; Z/2). By the fact that the reduced
map E’z(I‘U;Z)(Q) — H*(T; Z/2) is ring homomorphism, therc is no
invertible element in H?2(Ly; Z)(z, 1.¢., the 2-period of [y is greater than
2. We have proved our Theorem 3.

3. The p-period of the mapping class group [,

The p-pericdicity of the mapping class group is studied i a different,
paper of the author [11}. As an application of the theorern 1, we obtain
the p-period of a p-periodic mapping class group I'y when g < p(p—1)/2.
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Recall that the mapping class group [, is defined to be the group of
path components of orientation prescrving diffeomorphisins of the closed
orientable surface S, of genus ¢ > 1. Next, we define a set By, for
surface &, and a prime p.

Definition. For p odd, let2g 2=mp—13,0<et<p-1

Byp={i,i+pi+2p,...... i+ ([2g/(p— 1)) — m)p} ifi # 1.
Byp={1+p1+2p,...... 1+ (2¢/(p—D]~m)p} ifi=1
And for p =2,
Byo=1{0,4,8,...... 2 + 2} if ¢ is odd.
By,g = {2,6, 10,... ... 29+ 2} if g is even.
Remarks.

1. The notation [—] here means the integer part.
In case i £ 1, 2g/(p — 1) < m, define B,, =@
Incasei= 1, 2g/(p—1) <m+ 1, define By, = 0.
2. It is proved in [1 1] that the set By, is exactly the sct of all possible
niimber of fixed points when an order p diffcomorphism acts on
the surface S,

Lemma 3.1. For the mapping class group Iy, there is o formula
LCM{{N({z))/C{{x))} = LCM{ged(p—1,b:)}, where {x) ranges over
all congugaey classes of Z/p in Ty, b; ranges over all b € By ..

Proof: 1) Assume [N({:L))/C((Lm = d. Then there exists an integer
r such that = ~ =7 covmx” (7 means “is (.Dnjug‘ltc to” inT'y)
so that 4 is the minimal positive integer satisfying 7% = 1 mod(p). The
d divides p —1 obviously. Let b be the number of fixed points of the
x action on Sy, a{z} = (B, Ba,... ... Bh) the fixed point datum, where
Bi € Z/p— {0} (cf. [10]).
Let us define a permutation r* on the ordered by-tuple {31, 82, .., B, )-
Set P (01,80, ... Ob) = (B, 0s,. .. . .vB), (P2 = (...
S = (4 Tt ois well-defined since ofx) = J(:crz)
------ = o{z"" ") as an unordered b-tuples (12]. We can decompose
= (ﬁgl,ﬁiz,... '-'ﬁis)(ﬁjnﬁjzs'“ ‘“ﬁjg) ...... (ﬁk“ﬁkz,... .,,,Bku),
a product of cyclic permutations. Notice that permutations r*, (r*)?,. ..
.. (r*¥*7? do not have fixed points. Otherwise, there exists §; such
that ri8; = 8, mod{p), 1 < j < d— 1. This forees rj = 1 mod(p),
a contradiction. But, of course, (r")? = (r®)* = Id. These imply
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5 =t = -0 nn = u = d, Le, the number |N{{z}}/C{{z})| = 4 di-
vides the number b, of fixed points of the = action on the surface 5, We
have showed that LOCM{|N{{z})/C{{z})|} divides LOCM {ged{p—1,4;)},
where {(z} ranges over all conjugacy classes of Z/p in Ty, & ranges over
all b; € Bg,p.

2) Conversely, assume ged(p — 1,5} = d. Then there is a mod{p)
integer r so that d is a minimal positive intcger satisfying r¢ = 1 mod{n).

Case 1. b; # 0. If d # 1, then r # 1. Counsider the unordered b,-tuples
o={Lre .. pdl LT ,ri 1y,
Since (bi/d)(1+r+ri4... ... +4=1} = 0 mod(p). Therc cxists an clement
z €[y, 27 = 1, and the it's representive fixed point datum o(z) iso, 1 ¢,
the unordered bi-tuples & can be realized as a fixed point datum of an
order p element in Iy [8]. Cbviously, ¢{z} = o(z") = o(:r”z} ==
a(z’d_l) orzar e A omz | in I',. This implies that the
number d divides the order |[N{{z})/C({z))]. Ifged(p—1,b) =d =1, for
any order pelement r in [y with the number of fixed points &;, obviously
1 divides |[N{{x}}/C{{z})].

Case 2. 5 = . On thc one hand, we have ged{p — 1) = p— 1.
On the other hand, the z acts on §, freely. All order p free actions arc
conjugate by [5], this iraplies |[N{{z}}/C{{z})| =p - 1.

So, LCM {ged(p — 1,5)} divides LOM{|N((x})/C{{x))}. |

Proof of Theorem 4: Let p : Ty — Sp(2¢,Z) be the canonical ho-
mology representation and p: Sp(2g, Z2) — Sp(2¢, F,;) be the reduction
map. Here ¢ can be chosen a primitive root of mod(p) such that ¢ > 3,
and ¢°~! is not congruent to 1 mod(p?) (by the Dirichlet theoremn).

Now Ker{pu} = N is a torsion free, normal, finitc index subgroup of
T, and a p-Sylow subgroup of the finite quotient I'y /N = Sp(2g, F,) is
elernentary abelian if 29 < p(p— 1). Then we can use Theorem 1 and
Lemma 3.1 to finish the proof.

A list of the p-period of a p-periodic mapping class group 'y, can be
also found in the Appendix C of the author’s thesis [12].
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