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A bstract

A problem which is frequently encountered in analysis is the inter-
changing of the summations in an iterated double series .
if aij E IR, i, j E PN is a double sequence, when does the equality

ij hold? For example, if aij > 0 for all i, j, then

this condition holds (where the sums may be infinite), and, in general, if
i=1j=1 j=1i=1
00 00
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We show that an iterated double series condition due to Antosik
implies the uniform convergente of the double series . An applica-
tion of Antosik's condition is given te the derivation of a vector
form of the 1-lellinger-Toeplitz Theorem .

That is,

57 1: l aij 1 < oo, then the equality holds ([4]) . Another condition which
i-1 j-1

guarantees the equality is the existente of the double limit, lim

00 00

along with the convergente of the series Eaij, Eaij ([4]) . The exis-
j=1 i-1

tente of this double limit is often difficlut to verify ; one possible way to
guarantee the existente of the double limit is to show that one of the
iterated series is uniformly convergent, but this is also often difficult to
verify. In this note we would like to point out the existente of a condi-
tion due to P . Antosik which involves only the iterated series and which
guarantees the existente of the double limit and, hence, the equality of
the two iterated series ([1]) . Antosik's condition works equally well for
vector-valued series so we present this version . To illustrate the utility
of Antosik's condition, we establish a Hellinger-Toeplitz type theorem
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concerning the continuity of matrix transformations between sequence
spaces .

Throughout this note G will denote an Abelian topological group . Let

xij E G for i, j EN. We assume that the series >J xij (>J xij) converges

for each i E Nl (j E IN) and seek canditions which guarantee the equality
00 00

	

w 00

(and existente) of the two iterated series > , > , xij, L> , xij .

	

One
j=1

m n
such condition is the existente ofthe double limit lirn ~-mn

u
,

i=1 j=1
xij and called the double series generated by xij) ([4]) . We give

ij
a condition which involves only iterated series and which guarantees the
existente of the double series . Since this condition involves only the
iterated series, it may sometimes be easier to check than the existente
of the double limit . We give an example of such a situation in proving
the Hellinger-Toeplitz result given in Theorem 3 .

Recall that a series

~xnt converges in G for every subsequence {ni} . The principal tool
i=1
used in the proof of our main result on double series is the vector-valued
generalization for subseries convergent of the classical Schur Lemma en
weakly convergent series in 1 1 ([2, 8 .1]) .

xi,, converges for- cae[¿ increasing se-
J=I .

quence of positive integers {mj } .

	

Then the double series

Theorem 1 . Suppose

verges an,d

00

00

difference between the two series

x i in G is subseries convergent if the series

x ij = LLxii .
i=1 j=1

	

j=1 i=1

Proof- Note that the series

	

xij converges for each j (consider the
i=1

ce 00

xi,,, where
i=1 j=1

	

i=1 j=1
nk = k f'or each k and {mk} is the subsequence {1, . . . , j - 1, j + 1. . . . }) .

xin~ an

00 00

j (denoted

con-
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00 00

Thus, if a C IN is finite, the meaning of
i=1 jEo

infinite, arrange the elements of a into a subsequence {ni, n2, . . . } and set
00 00

	

00 0o

	

m

xij = 1: Y: xinj . Set zn,,j = 57 xij . Then for a C N, Y: Zncj =

m

8.1]), the series

jEo i=1

exists and equals

ij converges to
=1 jEo

i=1

	

jEo

as m -> oo . By Schur's Lenlrrla ([2,

;) is subseries convergent and lirnm

00 00

	

00 00

xij is clear, if a C N! is

j=1 i=1

	

i=1 jEo
nr, n

xij uniformly f'or a C IN . Hence, the double lirnit liin > , > , X¡33
m ' r¿

Example 2. The condition in Theorem 1 is sufficient for the existence
of the double; series (and the equality of the 2 iterated series), but ¡t is
not necessary. In the scalar case the hypothesis of Theorerrl 1 iinplies
that the rows of the matrix [x ij ] are absolutely convergent, so the matrix
xij = (-1)j+ l /i2j fa¡ls to satisfy the lypothesis of Tlleorcin 1, but tire;
double series 5-- xij converges .

Z I.7

Theorem 1 was provee for series in a space ; cquippcd with a scqucn-
tial convergence structure satisfying certain convergence properties by
Antosik in [1, 3 .3] . An interesting aspect of the thecrem, even for scala,r-
valued series, is that the condition in the hypothesis of the theorerrl orlly
involves iterated series and, therefore, can sometimes be easily checked .
We give an example of such a condition in the proof of the Hellirlge-;r-
Toeplitz result below .

The classical Hellirlger-Toeplitz Theorerrl asserts tllat ariy matrix
which maps 12 ¡rito 12 is (norm) continuous ([5]) ; wc seek conditions
on sequence spaces which will guarantee that matrix transf'orrmltiorls
between the sequence spaces are continuous . Since Theorem 1 is valid
for vector-valued series, we consider vector-valued sequence spaces . Let
X, Y be Hausdorff topological vector spaces and let L(X; Y) be the space
of all continuous linear operators from X into Y. Let E(F) be a vector
space of X-valued (Y-valued) sequences ; if x E E, we denote; the k ` h
coordinate of x by xk so x = {xk} . The,-dual of E (with respect to Y),
denoted by E", is the space of all sequences {Tk} = T C L(X, Y) such
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that the series
k=1

require that the operators are continuous) ; if Y is tlle scalar field, we
00

write El9y = Ep. If x E E and T E Epy , we write T - x = Tkxk .

k=1
This gives a map x - T - x from E into Y, and we let u(E, EOY) be
the weakest topology on E such that all of theses maps for T E EQY
are continuous ; when X and Y are the scalar field, this is just the weak
topology 0'(E, EA) from the duality between E and its /O-dual, Ep.

Let Aij E L(X, Y) for i, j E fN and let A be the operator-valued matrix
[Aij] . We say that A maps E into F or A E (E, F) if for each x E E, i E

00

Tkxk converges for each .x E E ([9], Maddox does not

IN, the series EAijxj converges and the sequence {E Aijxj } E F, Le.,
j=l

	

j=1

if the formal matrix product Ax = {
j=1

x E E. We are interested in conditions which guarantee that a matrix
A E (E, F) is continuous with respect to appropiate topologies on E and
F. For example, the classical Hellinger-Toeplitz Theorem asserts that
any (scalar) matrix A E (l2,

12) is norm continuous ([5]) . Toeplitz and
Kóthe generalized this result to other sequence spaces ([8], [7, 34.7(7)]) .
We now use Theorem 1 to give a further generalization of the Toeplitz-
Kóthe result to vector-valued sequence spaces .
The pair (X, Y) is said to have the Banach-Steinhaus property if when-

ever Tk E L(X, Y) converges pointwise, lim Tkx = Tx, for x E X, then
the limit operator T is continuous . For example, if X is an F-space or
if X is a barrelled locally convex space and Y is a locally convex space,
(X, Y) has the Banach-Steinhaus property .
The sequence space E is said to be monotone if moE = E, where mo is

the scalar sequence space consisting of all sequences with finite range and
moE is the coordinatewise product of sequences in mo and sequences in
E ([3]). In particular, any normal (scalar) sequence space is monotone
([6, 30.1]) .

Further, coo (X) denotes the space of X-valued sequences which are 0
eventually ; if X is the scalar field we write coo(X) = coo .
We now establish our Hellinger-Toeplitz result, which asserts that a

matrix transformation A E (E,F) is continuous with respect to the
weak topologies o,(E,EAY ), Q(F, FOY ) of E and F under appropriate
conditions on E and F.

Aijxj} belongs to F for each

Theorem 3. Let E he monotone and contain coo(X) and let (X, Y)



have the Banach-Steinhaus Property . If the matriz A = [Aij] maps E
tinto F, then A is u(E, EOY ) - o,(F, FOY ) continuous .

Proof.. Let B = {Bi } E FPY and let Ai be the ieh row of A so B . Ax =
Bi(A' - x) _ BiAijxj for x E E. Note for each j the series

j
BiAij converges in the strong operator topology of L(X, Y) (Fix j

and for x E X let x be the vector in E with x in the jeh coordínate
and 0 elsewhere .

	

Then i: Aikxk = Aijx so {Aijx}i E F and since
k

Aij x converges, Le., E BiAij converges in the strong
i

operator topology to an element of L(X, Y) since (X, Y) has the Banach-
Steinhaus Property) . Since E is monotone, the series ~ J~ BiAj ,~, xn,

j

BEFQY ,
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converges for each x E E and subsequence {nj } .

	

By the Interchange
Theorem 1, if we set Cj = i: BiAi; and C = {Cj }, then C E EQY and

B-Ax=i:
i j

	

j i
E which is a (E, EQY ) convergent to 0, then Axó is u(F, F 13 Y) convergent
to 0 and A is continuous with respect to these topologies .

BiAijxj = EE BiAij xj = C - x so if {x6 } is a net in

The (scalar) space 12 obviously satisfies the hypothesis of Theorem
3 and if A E (12,12), then A is weakly continuous and, hence, norm
continuous ; this is just the classical Hellinger-Toeplitz Theorem . More
generally, if E and F are scalar sequences and E is monotone and con~
tains coo, then any matriz map A : E ---> F is continuous with respect
to the weak topologies o,(E, EQ) and o,(F, Fa) . In particular, if E is
normal (Le ., if x E E and Jyk1 < jxk1 for all k, then y E E), then E is
obviously monotone so the result holds in this case ; this is essentially
the version of the Hellinger-Toeplitz Theorem for sequence spaces due to
KSthe ([7, 34.7.(7)]) . Kothe's result uses a-duals (the o¿-dual of a scalar
sequence space E is the set of all sequences {yj } such that r_ jxjyj 1 < oo
for all x E E; for monotone spaces E° = EA) so is sornewhat weaker
than Theorem 3 since u(F, Fp)'is stronger than u(F, Fa) . In the scalar
case the proof of Theorem 1 above uses only the scalar version of the
Schur Lemma ([2, 8.2]) and the proof of Theorem 3 is then much more
elementary than that given by KSthe which uses results on projective
limit topologies for locally convex spaces . A scalar version of Theorem
3 has been established in [11] .

If Y is the scalar field, the spaces E and EAY = E13 are in duality with
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respect to the bilinear pairing x - y, where x e E and y is an X'-valued
sequence belonging to EQ ([10]) . If E is monotone and X is barrelled,
the hypothesis of Theorem 3 are satisfied so any matrix map A from
E into F is continuous with respect to the weak topologies u(E, EO)
and u(F, FO) . In this case, which includes the case when X is also
the scalar field, the matrix map A frorrr E into F is also continuous with
respect to the Mackey (strong) topologies ofE and F, respectively ([10]) .
Moreover, the cornputation in Theorem 3 shows that the transpose of
the operator A, A' : FQ -> EA, is given by the matrix [Aíi ] . In this case,
the transpose map, A', is continuous with respect to the weak (Mackey,
strong) topologies of FQ and El3 , respectively ([7, 32.2]) .

There are abundant examples of vector sequence spaces satisfying the
hypothesis of Theorem 3 . For example, coo(X) or co(X), the vector space
of all X-valued sequences which converge to 0, or mo(X), the vector
space of a,ll X-valued sequences with finito; range, or l`w(X), the space
of all X'-valued bounded sequences, are all monotone sequence: spaces
containing coo(X) . If X is a normed space arrd 1 < p < oc, the space

monotone and contains coo(X) .
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