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ITERATED SERIES AND THE
HELLINGER-TOEPLITZ THEOREM

CHARLES SWARTZ

Abstract

We show that an iterated double series condilion due te Antosik
implies the uniform convergence of the double series. An applica-
tion of Antesik’s condition is given to the derivation of a vector
form of the Hellinger-Toeplitz Theorem.

A problem which is frequently encountered in analysis is the inter-
changing of the summations in an iterated doublc series. That is,

if a;; € R, 4,7 € N is a double sequence, when does the equality
e ] o0

oD o
ZZ‘QU = ZZ&Q hold? For example, if a;; > 0 for all ¢, 7, then
i=1 j=1 J=1i=1

this condition holds (where the sums may be infinitc}, and, in general, if
] [+ a)

ZZ |ai;] < o0, then the equality holds {[4]}. Ancthor condition which

=1 3=1
moon

guarantees the cquality is the existence of the double limit, lim Z Z aij
mon

1=1 =1

20 o0
along with the convergence of the series Z Gij, Z @i ({4}). The exis-
F=1 i=]
tence of this double limit is often difficlut to verify; one possible way to
guarantee the existence of the double limit is to show that one of the
iterated scrics is uniformly convergent, but this is also often difficult to
verify. In this note we would like to point cut the existence of a condi-
tion due to P. Antosik which involves only the iterated serics and which
guarantees the existence of the double limit and, hence, the eguality of
the two iterated series {{1]}). Antosik’s condition works equally well for
vector-valued series so we present this version. To illustrate the utility
of Antosik’s condition, we establish a Hellinger-Toeplitz type thecorem
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concerning the continuity of matrix transformations between sequence
spaces.

Throughout this note G will denote an Abelian topological group. Let
=} O

z;; € G for i, j € N. We assume that the series Z x"&‘(z Ti;) converges
i=1 i=1
for each 7 € N{§ € N} and scek conditions which guarantee the equality

(= u]

o0 o [=.4]
{(and existence) of the two iterated series ZZQ:@J-, ZZx{j‘ One

i=1 =1 =1 1i=1
e N

such condition is the existence of the double limit lim Z Z z4; (denoted
™ g1
by Z:;:ij and called the double series generated by z,,) ([4]). We give

3,
a conjdition which involves only iterated series and which guarantees the
existence of the deuble series. Since this condition involves only the
iterated series, it may sometimes be easier to check than the existence
of the double limit. We give an example of such a situation in proving
the Hellinger-Toeplitz result given in Theorem 3.

o
Recall that a series E x; in G is subseries convergent if the series

i=1
oo

Zm,,‘. converges in & for every subsequence {n;}. The principal tool
=1

used in the proof of our main result on double serics is the vector-valued
generalization for subseries convergent of the classical Schur Lemrma on
weakly convergent series in 1! {[2, 8.1)).

oo

Theorem 1. Supposc E inmj converges for each incrensing se-
i=1 j=1
guence of positive integers {m;}. Then ihe double series E Ty con-

i,4
[e.4] (w0 (s ] [a 4]
verges end Z Ty = Z Z Iy = Z Z:n.;j.
ij i=1 =1 j=1i=t
o
Proof: Note that the serics Zm"j converges for cach j {consider the
i=1
oo [+ u] O o0
diffcrence between the two series ZZI% and szim:“ where
' i=l j=1 i=1 =1

ni = k for each k and {my} is the subsequence {1,...,§—-1,7+1,...}).
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[w4] o

Thus, if ¢ C N is finite, the meaning of Z E zi; is clear; f ¢ C N is
=1 jEo

infinite, arrange the elements of o into a subsequence {n), ny, ... } and sct

o o o0 [+ %] ™
Z th.j = Z szj' Set 2y = ZIU. Then for ¢ C N, Z Zmg =
i=1

t=1 j€a i=1 j=1 jEa

iy

o
Z;; converges to xi; 85 m — o0, By Schur’s Lemma ([2,
-3 3

i=1 j€o i=1 j€o

=8 o0 oo
8.1]}, the series Z(Z z;,) is subseries convergent and ll’l‘n Z Z Ty =

j=1 i=1 i=1 j€a
Oy e 7L
E E z;; umiformly for ¢ C N. Hence, the double limit lim E E Ty
TEL,T -
jEg i=1 " "&=i =1
0 [ oo oo
exists and cquals E 2:3:,-J = E E z;, B
i=1 j=1 7=1i=1

Example 2. The condition in Theorem 1 is sufficient, for the existence
of the double series (and the cquality of the 2 iterated scries), but it is
not necessary. In the scalar case the hypothesis of Theorem 1 implics
that the rows of the matrix 2] are absolutely convergent, so the matrix
zy; = (— 1)1 /3?5 fails to satisfy the hypothesis of Theorem 1, but the
double series Z %45 CONVETEES.

.3

Theorem 1 was proven for series in a space equipped with a sequen-
tial convergence structure satisfying certain convergence propertics by
Antosik in (1, 3.3]. An intercsting aspect of the theorem, even for sealar-
valued series, is that the condition in the hypothesis of the theorem only
involves iterated scrics and, therefore, can sometimes be casily checkad.
We give an example of such a condition in the proof of the Hellinger-
Toeplitz result below,

The classical Hellinger-Toeplitzs Theorem assorts that any matrix
which maps 12 into {2 is (norm) continuous ([5]); we seck conditions
on sequernce spaces which will goarantee that matrix transformations
between the sequence spaces are continuous. Since Theorem 1 is valid
for vector-valued series, we consider vector-valued sequence spaces. Let
X, Y be Hausdorff topological vector spaces and let L(X, Y) be the space
of all continuous lincar operators from X into Y. Let E(F) be a vector
space of X-valued (Y-valued) sequences; if z € E, wc denote the k™
coordinate of x by 7g 50 z = {i£¢}. The F-dual of E {with respect to V),
denoted by E#Y is the space of all sequences {T} = T ¢ L(X,Y) such
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that the series Z Tz, converges for each z € F ([9), Maddox does not
k=1
require that the operators are continuous); if ¥ is the scalar ficld, we
o

write B#Y = Ef. lfz € Eand T € B, wewrite Tz = ) _ Tz
: k=1

This gives a map £ — T -z from E into Y, and we let o(&, E?Y) be

the weakest topology on E such that all of theses maps for T € EfY

are continuous; when X and Y are the scalar field, this is just the weak

topology o{E, Ef) from the duality between E and its §-dual, E7.

Let A;; € L{X,Y) for i, j € N and let A be the operator-valued matrix
[A:;]. We say thd.t Amaps Finto For A€ (E,F) if for cachzx e E, 1 €

N, the series Z Ai;x; converges and the sequence E Azt e Fie,
1=) F=1

if the formal matrix product Az = {Z A,;z;} belongs to F for cach
i=1

z € E. Wc are interested in conditioris which guarantee that a matrix
A € {E, F) is continuous with respect to appropiate topologies on F and
F. For example, the classical Hellinger-Toeplitz Theorem asserts that
any (scalar) matrix A € {{%,1?) is norm continuous {[5]). Toeplitz and
K&the generalized this result te other sequence spaces ([8], |7, 34.7{7)]).
We now use Theorem 1 to give a further generalization of the Tocplitz-
Kathe result to vector-valued sequence spaces.

The pair {X,Y) is said to have the Banach-Sieinhaus property if when-
ever Tk € L{X,Y) converges pointwise, imTyz = Tz, for £ € X, then
the limit operator T is continuous. For example, if X is an F-space or
if X is a barrelled locally convex space and Y is a locally convex space,
{X,Y) has the Banach-Steinhaus property.

The sequence space E is said to be monotone i mgE = E, where my is
the scalar sequence space consisting of all sequences with finitc range and
moF is the coordinatewise product of sequences in mp and sequences in
E ({3]). In particular, any normal {scalar) sequence space is monotone
(6, 30.1)).

Further, cop{X) denotes the space of X -valued sequences which are 0
eventually; if X is the scalar field we write cgo{X) = cgo.

We now establish cur Hellinger-Toeplitz result, which asserts that a
matrix {ransformation 4 € (E, F) is continuous with respect to the
weak topologies o(E, EBY), o{F, F#Y) of E and F under appropriate
conditions on F and F.

Theorem 3. Let E be monotone and contain cop(X) end let (X,Y)
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have the Banach-Stcinhaus Property. If the matriv A = [A;;] maps E
into F, then A is o(E,E®Y) — o(F, FPY) continuous.

Proof: Let B = {B;} € FFY and let A* be the it* row of Aso B Az =

ZB (AP z) = ZZB Ayz; for z € E. Note for each j the series
i

Z B;A;; converges in the strong operator topology of L{X,Y) (Fix j

and for z € X let T be the vector in F with z in the j** coordinate

and 0 elsewhere. Then ZAikik = Ayz so {A;zr}; € F and since
- .

B e F%Y, ZBiAt-J-x converges, i.e., ZBEAU converges in the strong

T 1
operator tapology to an element of L{X,Y) since (X, Y') has the Banach-
Steinhaus Property). Since E' is monotone, the series Z ZB,-Amj In,
T
converges for each x € E and subsequence {n;}. By the Interchange
Theorem 1, if we set C; = ZB'A:';' and C = {C;}, then C € EPY and

B AI—ZZBAUJ:J ZZBAU:I:J—C x soif {2°} is a net in

E which is O'(E EBY) convergent to 0, then Az® is o{F, F#Y) convergent
to 0 and A is continuous with respect to these topologies.

The (scalar) space {2 obviously satisfies the hypothesis of Theorem
3 and if A € ({2,1?), then A is weakly continuous and, hence, norm
continuous; this is just the classical Hellinger-Toeplitz Theorem. More
generally, if F and F are scalar sequences and E is monotone and con-
tains ¢gg, then any matrix map 4 : £ — F is continuous with respect
to the weak topologies o(E, E?) and o(F, F?). In particular, if E is
normal {ie., if x € F and |yx| < |ze] for all k, then y € F), then E is
obviously monctone so the result holds in this case; this is essentially
the version of the Hellinger-Toeplitz Theorem for sequence spaces due to
Kathe ([7, 34.7.(7)]). Kéthe's result uses a-duals {the a-dual of a scalar
sequence space E is the set of all sequences {y;} such that 3 |z;%;| < oo
for all z € E; for monotone spaces E* = E®)} so is somewhat weaker
than Theorem 3 since o(F, F?)'is stronger than ¢o(F, F*). In the scalar
case the proof of Theorem 1 above uses only the scalar version of the
Schur Lemma (2, 8.2]) and the proof of Thecrem 3 is then much more
elementary than that given by K&the which uses results on projective
limit topologies for locally convex spaces. A scalar version of Theorem
3 has been established in [11].

If Y is the scalar field, the spaces E and E?Y = E? are in duality with
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respect to the bilinear pairing x - y, where z € F and y is an X/'-valued
sequence belonging to B ([10]). If E is monotone and X is barrelled,
the hypothesis of Theorem 3 are satisficd so any matrix map A from
E into F is continuous with respect to the weak topologies o{E, E?)
and o(F, F®). In this casc, which includes the case when X is also
the scalar ficld, the matrix map A from E into F is also continuous with
respect to the Mackey (strong) topologies of E and F, respectively ([10]}).
Moreover, the computation in Theorem 3 shows that the transpose of
the operator A, A': F® — EP | is given by the matrix [A},]. In this case,
the transpose map, A’, is continuous with respect to the weak (Mackey,
strong) topologies of F¥ and E®, respectively (|7, 32.2]).

There are abundant examples of vector sequence spaces satisfying the
hypothesis of Theorem 3. For example, ego( X) or £9{ X ), the vector space
of all X-valued sequences which converge to 0, or mp{X), the vector
space of all X-valued sequences with finite range, or I%°(X}, the space
of all X-valued bounded sequences, are all monotone sequence spaces
containing cop{X). I X is a normed space and 1 € p < oo, the space

1”(X) consisting of all X-valued sequences such that z lze|© < o0 is
k=1
monotone and contains ego{ X).
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