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FINSLER METRICS WITH PROPERTIES
OF THE KOBAYASHI METRIC
ON CONVEX DOMAINS

MYUNG-YULL PANG

Abstract

The structure of complex Finsler manifolds is studied when the
Finsler metric has the property of the Kobayashi metric on con-
vex domains: (real} gecdesics locally extend to complex curves
{extremal disks}. It is shown that this property of the Finsler
metric induces a complex foliation of the cotangent space closely
related to geodesics. Each geodesic of the metric is then shown
to have a unique extension to a maximal totally geodesic complex
curve & which has properties of extremal disks. Under the addi-
tional conditions that the metric is complete and the holomorphic
sectional curvature is —4, © coincides with an extremal disk and
a theorem of Faran is recovered: the Finsler metric coincides with
the Kobayashi metric,

1. Introduction

The Riemann mapping theorem says that all simply connected do-
mains in € different from € are biholomorphically equivalent. It is a well
known fact that this theorem does not hold for domains in €™ for n > 1,
and the classification of bounded domains up to biholomorphism has
been an important problem in several complex variables. One approach
to understanding the structure of bounded domains is to study bihole-
morphically invariant metrics such as the Kobayashi or Carathéodory
metrics {K]] (BD] [L3] [Pa). In [L1] and [L2), Lempert showed that
these metrics are extremely well-behaved in the special case when the
domain is strictly linearly convex and has smooth boundary: In this case,
the two metrics coincide, and the infinitesimal form Fi of the Kobayashi
metric falls into a special class of smooth Finsler metrics with constant
holomorphic sectional curvature K = —4. Since the notion of 2 strietly
linearly convex domain is not a biholomorphically invariant concept, it
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is natural to ask how far Lempert’s results can be extended to a more
genera! {biholomorphically invariant) complex manifolds.

One approach to this problem is to study Fx from a more invariant
point of view. The first step is to characterize the properties of an ab-
stract Finsler metric F on an abstract complex manifold M™ which are
necessary for Lempert’s results to hold. A second, and more difficult,
step is to determine when the Kobayashi metric of a bounded domain
in €™ has these properties. In {F), Faran analyzed the local structure
of {complex) Finsler manifolds and obtained a set of local invariants by
applying Cartan’s method of equivalence. He proved that vanishing of
certain local invariants forces F' to coincide with the Kobayashi metric
of the underlying manifold M provided that F' is a complete metric with
K = —4. However, from the complex process of constructing these lo-
cal invariants it is not easy to see how these invariants naturally arise
from the properties of Kobayashi metrics obtained from Lempert’s work.
Thus, ene would like to formulate a somewhat more direct description of
the local structure that is intuitively more appealing. In this paper, we
give such description from the point of view of the calculus of variations
by examining the local properties of the Kobayashi metric on strictly
linearly convex domains, and derive equivalent conditions to the vanish-
ing of the Faran’s invariants from a siinple property of Kobayashi metric
{Property 1.3}.

In order to describe the local structure of the Kobayashi metric, we give
brief review of Lempert's work. We define the infinitesimal Kobayashi
metric Fi on a complex manifold M as follows: For each v € T, M,
x € M, let f be a holomorphic map from the unit disk A C € into M
such that f(0) = z and f’(0) = Ajv for Ay > 0. The magnitude Fi (v}
of v with respect to the infinitesimal Kobayashi metric Ly is defined
te be the infimum of )\%’ where the infimum is taken over all such f.
If f actually attains the infimum (ie. Fg(v) = AL;)’ then f is called
extrernal. It can be casily scen that the metric Fi is invariant under the
action of the group of biholomorphisms of M. Lempert showed that, if
M =D C €" is a bounded strictly linearly convex domain with smooth
boundary, then Fi is a smooth complex Finsler metric [L1], [L2], i.e.
Fy is smooth outside the zero section of TD and satisfies the following
conditions: :

(11) -

Fr(v) >0 for v#0, Fr(z-w) = |z{| Fg(v) for z&€C, and
(1.2)

FK(Ul =+ 1}2) ﬁFK(UI)—i—FK[UQ) forvy,wo e T, ze D,

where equality in (1.2) holds only when v and vo are colinear. Moreover,
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he proved the following theorem:

Theorem {Lempert). Suppose that D is a bounded strictly linearly
convezr domain with smooth boundary.

(1) There is a unique extremal map corresponding to each v € TD,

{(2) All the eztremal maps are proper isometric imbeddings, and can be
smoothly extended to the closed unit disk A.

(3) The eztremal disks f{Q) passing through a point x € D form a
complex foliation of D — {z}.

(4) Eztremal disks are (the only) one-dimensional holomorphic re-
tracts of D.

One of the key ideas in describing the geometry of D is the construction
of the holomorphic retract of D onto the extremal disk f{A). Lempert
proved that the field of holomorphic tangent planes of 80 on f(GA) can
be holomorphically extended to the interior of the disk (A}, and defines
a holomorphic field of complex hyperplanes on f(A) that arc transversal
to f(A). In other words, there is a well defined (n — 1)-dimensional
holomorphic vector bundle p : £ — f({A) over the extremal disk with
fibers defined by the hyperplanes in €. The union of the hyperplanes
contains the domain I, and the holomorphic retract is defined by the
restriction to D of the projection map p.

The existence of such holomorphic retracts has further implications.
For example, it forces every (locally length minimizing, connected) geo-
desic curve of Fi to be contained in an extremal disk. The properties
of the Kobayashi metric that interests us are the following:

Corollary. Let f: A — D be g extremal mep for v e T, D.
(1.3) The extremal disk f(A)} coincides with the union of geodesic cur-
ves through = tangent to o common complex hine in Ty M.
{(1.4) There is a canonical splitting TDysay = T(f(A)) ® E where E is
an {n — 1)-dimensional holomorphic subbundie of the restriction
TDs(ay of the tangent bundle TD to f{A)}.

We wish to generalize the condition (1.3) fo an abstract complex
Finsler metric F defined on an n-dimensional complex manifold M. Let
exp denote the exponential map from a neighborhood of 0 € 7. M into
M defined by the geodesics of F. For each tangent vector v € T M,
the image exp (U,) of a small neighborhood U, of 0 in the complex line
€ v defines a surface in M. A reasonable generalization of the condition
(1.3} is the following:

(1.5) For ail v € TM, the surface exp(U,} is a complex curve (1-
dimensional complex submanifold) in M.
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This condition was first introduced by Royden [R], and it is, in fact,
equivalent to a condition given by Faran [F].

The purpose of this paper is t¢ study the local structure on of Finsler
metrics satisfying condition (1.5}, and further, to show that many prop-
erties of the Kobayashi metric of convex domains extend to this more
general class of complex manifolds. One of cur major results is a con-
struction of a biholomorphically invariant family of complex curves which
enjoys many of the properties of extremal disks in convex domains. To
see how such complex curves are constructed, recall, from the caleulus of
variations, that the metric F uniquely determines a vector field X on the
cotangent space of M, called the geodesic vector field, such that the inte-
gral curves of X are mapped into geodesics of F' by the projection map
m:T*M — M. Let Z be the vector field on Tg M = {v € T* M|v £ 0}
generated by the circle action of unimodular complex numbers defined
by multiplication on Ty M.

Theorem A. The following conditions are equivalent {Theorem {.7):

1. The surface exp(U,) C M is a complexr curve for allv e TM.
2. |X, JX] = &Z for some smooih function k on T3M .
3. The distribution D = CX ©CZ C T(Ty M) is involutive.

If any of the above conditions is satisfled then cach compler curve
exp (U,} extends uniquely to 6 mazimael, totally geodesic, immersed com-
plex curve & M (Theorem {.9).

The significance of the condition 2 and 3 in the theorem is as follows:
The condition 2 provides a computational methods to check whether F
satisfies the property {1.5). The condition 3 implies that, by Frobenius
Theoremn, the distribution D defines a 2-dimensional complex foliation
Fo of T§ M. The complex curve E is constructed by projecting each leaf
of the foliation F5 by the projection map w onto M.

The curves T share many local propertics in common with the extremal
disks described in the Lempert's theorem. For example, by Theorem
A, any real geodesic curve of F' is contained in one of the curves X,
Furthermore, a generalization of the property (3) in Lempert’s theorem
holds: the complex curves % passing through a point z form a complex
foliation of some neighborhood of z. A less trivial result is the following
generalization of property (1.4}

Theorem B. For each complezx curve 31, there is ¢ canonical splitting
TMjg = TEQT*E, where T1E is an {n — 1)-dimensional holomorphic
subbundle of TM|n. (Theorem 4.9.)
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The significance of the function & in the Theoremn A s its relation
to the holomorphic sectional curvature of F, Note that cach complex
curve in M is naturally equipped with a2 Hermitian metric induced by
F, and, therefore, has an associated Gaussian carvature. Following the
definition by Wong and Royden [W] [R], we define the holomorphic
sectional curvature of F at v by the Gaussian curvature of the curve
exp (V).

Theorem C. If F is a complex Finsler metric satisfying the condition
(1.5) then the holomorphic sectional curvature of F is determined by the
Function k.

Finally, using the result described above, we show that, under the
condition that F is complete and &« = —4 the complex curves T coincide
with the extremal disks. This result was proved earlicr by Faran [F].
Note that, from Lempert’s result, the Kobayashi metric Fg on a strictly
linearly convex domain D € € has constant holomorphic seetional cur-
vature —4. {This is a direct consequence of the fact that every extremal
map f: A — D is an isometry with respect to the Poincaré metric and
Fy such that f{A) is locally defined by exp (U7,).)

4.24 Theorem {F|. Suppese F is a complete complez Finsler metric
on a complex mamfold M with constant holomorphic sectional curva-
ture —4 safisfying the property (1.5). Then F = Fy, where Fio is the
Kobayashi metric on M.

The papcr is organized as follows: In Section 2, we develop basic tools
and prove some basic facts about complex Finsler manifolds. Section 3
is an introduction of Legendre foliations and its application to complex
Finsler manifolds. In Section 4, we prove the main theorem using the
results of Sections 2 and 3.

Throughout the paper, M denotes an n dimensional complex manifold
and F a complex Finsler metric on M. The following notations arc used:

(1) The indices a,b and ¢ range from 1 through 2n, and a, 3, v range

from 1 through 2n — 1. Summation conventions are in force
throughout.

(2) (!, ., z™, 2", ., 22"} denote the rea) coordinates on M ob-

tained from a holomorphic coordinates ¥ +i2™* forv = 1,..., n.

(3) (b, ..,z 2™t L2t L ut et L u®) denote the coor-

dinates on T* M induced by (z!,...,z™, z"*!, .. £2).

{4) For F € C®(T*M), F,, F,4, ... denote %, %r and so on.

(5) If V is a vector field on o manifold M, Y M — Af denotos the

I-parameter family of diffeomorphisms generated by V. Thus, for
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cach z € M, t — eV z is an integral curve of V starting at z (i.e.

¢z =zand L|etVz=V,w.).
Acknowledgments. I would like to thank T. Duchamp for his help
and encouragement, and for introducing me to this subject. I also wish
{0 express my thanks to J. Bland for conversations.

2. Complex Finsler Metrics

In this section, we prove some gencral facts about complex Finsler
metrics. A complexr Finsier meiric on the cotangent bundle of M is a
map F : T*M — R satisfying properties {1.1) and (1.2}, When M is
equipped with a complex Finsler metric, we will call M a complez Finsler
manifold.

2.1 The Geodesic Vector Field and Complex Structure. In
order to define the exponential map, we introduce the geodesic vector
ficld on T*M. Recall that T} is naturally cquipped with a 1-form ¢
defined by the eguation

2n
(22) (=) udz®,
a=1

and that the 2-form d¢ is a symplectic 2-form on T°M (ie. a smooth
closed 2-form on T* M satisfying the non-degeneracy condition (d¢)?” #
0). The geodesic vector field X on T° M is uniquely determined by the
condition

(2.3) X id¢ = ~FdF

In particular, the identity X F = 0 holds. In terms of coordinates, we
have

n
a aF &
(2.4) X=F {Fu—a——a—u}.
; az dxe Ju

To describe how X is related to the complex structure, consider co-
ordinate expression of the complex structure on T°M. The complex
structurc J on M is expressed as

8 _ 7h a . ay 0 -7
(2.5} Jazﬂ = Jn@ where  (J2) = (I N ) ,
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and [ is the (n x n)-identity matrix. The natural complex structure on
T* M is then given by

& _ .8 8 .8

(26) Yoz e grt Jue Tt oub’

It can be directly checked that the complex structure defined by this is
independent of the choice of coordinates. By abuse of notation, we will
denote this complex structurc on T M by J. From the definition above,
it is clear that Jow, =n, 0o J.

Note that condition (1.1) provides a compatibility condition of F and
the complex structure, which can be expressed as follows: Let ¥ be the
redial vector field on Ty M gencrated by the action of R by multiplication
of ¢', t € R. It can be casily checked that Yoand Z satisfy the relation

(2.7} Z=JY.

Thus, if F satisfics the condition {1.1), we have F(e®v) = F(v) and
Fletv) = ' F(v), and therefore the following identities hold:

(2.8) ZF =0, YF=F

Note that the coordinate expressions of ¥Voand 7 are

a L, 8
dus’ Z=-diu Jus’

(2.9) YV =u*

Therefore, conditions (2.8) arc eguivalent to

(2.10) Jeub F, =0, F,u*= F.
2.11 Lemma. The follovang identities are sotisfied:

(212) [z, X)=-JX, [2,JX]=X,
v, X) = X, Y, JX]=JX, [Y,Z]=0.

Proof: The computations in the proof of this lemma are based on

the identities {2.8)-(2.10) and the following basic identities derived from
them:

8 8 8 3 8 , D
v, Zl=1z Z|=0 |vv Z|=-2L |z Z|=spL
l ' 83?"] [ " dxn ' ’ au“] Aue’ I ’ 3u“] * Oub



138 M.-Y. Pang

Now compute [Z, X|] using coordinates:

n
8 QF 8
(2, X]=LzX =Lz {F Z( o B ™ 3an Bu“)}
oF 8
=F ;{(,ZFE)@ ~5st2 ()
Observe that

(ZRJ=Z(3F):3(ZF)+[Z, B]F (}b B)F JEE,.

Ju Jus dus Ou!
Therefore, using the skew-symmetry of Ji, we obtain

2n
am O ,OF &8
|2, X] = -F z (Jb Fb@ o g fz au“)

oF 9
="’{FZ( "5 5?%)}“”'

To show the identity [Z, JX] = X, note that £ =0, and compute
(Z,JX])=Lz(JX)=J(LzX)=J(-JX} =

To prﬁve the identity [¥, X] = X, note that
YF, =Y (E) - 66

Sus
Using this identity, compute [V, X] as follows:

2n
a oF 8
[V, X] =Ly X = .CV{FZ( e 5 %5&?)}
2n
é aF g
SEONCT o)

n
a3 ar a
—”Y{Z(Fﬂ@—@%)}

a=]

8
Y, —|F=F,-F,=0.
[’5?”}

2n

aF &
‘FZ( B_T“T)
a GF a
"FZ{ (a)a‘+a—(ﬁ"a—)}

2n
_ Y Fy\ 9 aF 6 |
_X_-Z{( s ) due  Hze au“} =X

a=1
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The identity |Y, Z] = 0 is clear since the actions of &* and e** commute,
and the identity [Y, JX] = JX follows from the computation:

Y, JX] =Y, Lz X] = —L2[Y, X] + [C2Y, X)= —LzX =JX. ®

2.13 Lemma. The vector fields JX and [X, JX] satisfy the identi-
fies:
(2.14)

C(JX)=dF{JX) =10, aend (X, JX])=dF{{X, JX]) =0

In particular, JX and [X, JX] are tangent to the submanifold SpM C
T M.

Proof: To prove the lemma, recall that we have the identities £x( =
X 1d¢ = -FdF, X F =0 and ({Z) = 0. Also, recall from identities
(2.8) and (2.12) that ZF =0 and JX = [X, Z]. Using these identities
and the fact that £x is a derivation, compute as follows:

CUIX)=C¢([X, Z]) =¢(Lx 2) = Lx({(Z)) = (£x{)(Z) = FdF(Z) =0
dF(JX)=dF(|X,Z))= XZF - ZXF =0

Using these identities again, we complete the proof of the lemma:

X, IXDN=C{(Lx(JXN=Lx{C(IX)} = (Lx{) (IX)=FdF(JX)=0
dF((X, JX]) = X{JX)F-(JX)XF=0.m

2.15 The Exponential Map. The exponential map is defined simi-
larly as in the case of Hermitian manifolds. To define it, we introduce the
dual complez Finsler metric F : TM — R satisfying conditions (1.1)
and (1.2), and define geodesics as curves with locally length minimizing
property with respect to F. We briefly review some concepts of the cal-
culus of variations. For more details about the calculus of variations see
[GF) and [S].

To define F, It TyM = {v € TM|v # 0}, and define a bundle map
U TgM — ToM by "

(2.16) W{w) = 7. (Xyw) for welgM.

In coordinates, we have

2n 8
(2.17) To(w) =Y F(w) Falw) gy

=1 ez, anl L, #27)
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where w = (z!,..., 2%, 2", .., 2%% ), LW ut Y L w?). From (2.17)

and conditions (1.1} and (1.2}, it can be shown that ¥ is a diffeomorphism
with the property that ¥(tw) = t¥(w) for t > 0. The inverse & = ¢~}
is usually called the Legendre transformetion. For example, if F is the
norm induced from the Hermitian metric g, & : TM — T*M defined
by {®(v)}(w) = g{v,w) for v,w € T M. We define F by Fod. It is
clear from the following lemma that F is a complex Finsler metric.

2.18 Lemma. The map ® has the property: ®{zv) = z®&(v) for
zeC.

Proof: Because the identity ¥ (tv) = tT(v) holds for ¢ > 0, to prove
the lemma, it suffices to verify the identity ®(e'v) = e "$(v). Note
that the 1-parameter family of diffcomorphisms ¢t% : TgM — TgM
of the vector field Z is simply the complex multiplication by e'* (i.e.
¢t%y = ¢% . ). Recall from Lemma 2.11 that £ZX {Z X] —-JX.
Also note that from the definition of Lie derivative, E ( . X( :7w))

e (LX) (o7 Using these identities and the identity m o e™*% = m,
we compute

a
{‘I’(c“v)}— LU0 = S fm X} = S m eI X )
= ., (‘C/X){ei7.u} ?T*('-JX)(CU:”) = _J?T.. X(c‘zu) — -—?l‘IJ(e“v),

Thercfore, y{t) = ¥{c'*v) satisfies an ordinary differential equation ' =
—iy with initial condition y(0) = ¥(v). From the uniqueness of solution,
we can conclude that W(e*%v) = ¢ *4¥(v); and from this, it. follows that
E(ety) = ¢ B (v). W

A curve v : [ty,ts] —— M is called a geodesic if it is a critical curve for
the functional

(2.19) f; F(j:)dt ~t1), y(t2) fixed.

Let w € T, M and 7, : (—¢,€) — M be the geodesic such that v,(0) = «
and ’h ==(0} = v. As in the case of Hermitian metrics, it can be shown
that, 7,, is solution of a second order ordinary differential equation (i.e.
the Euler-Lagrange equation [GF)), and hence it is uniquely determined.
It can be also shown that there is an open neighborhood N < T.M of
0 such that 7,.(1} is defined for all + € N. Hence, the exponential
map expy : N — M at r is defined by cxp. (v} = ¥(1). From the
uniqueness of solutions of ordinary differential equations,

(2.20) exp ; (v} = ().
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It is a standard fact from the Calculus of Variations that the projection
of the integral curves of X are geodesics on M. Hence, it follows that the
curve y(t) = m{e'¥w) is a geodesic for all w &€ T7 M such that v(0) = =
and %(O) = m,.X = ¥{w). Therefore, from the identity {2.20}, we
obtain
(2.21)
exp (tF{w))y=~(t) = n{e"*w), or cquivalently, exp (tv) = 7 (e X &(v))

for v = T(w).

2,22 Lemma. For allv € TyM the ezponential map can be expressed
in terms of the geodesic vector field X as follows:

(2.28) ezp (te*v) = {moeX oe %) (D(v))
for se R and t > 0 smail.

Proof: Recall from Lemma 2.18 that we have ®{¢** v) = ¢7**®{v}, and
g4y = ¢ . y. Using the identity (2.21), we compute

exp (te*v) == (e‘xé(c"“v)) =7 {Xe @) =7 (c‘xe“‘“Z@(U)) g |

3. Legendre Foliations

In the following, we give a brief introduction to Legendre foliations.
Although the theory of Legendre foliations is not required in the state-
ment of the main theorem (Theorem 4.2}, it is needed in its proof. For
more detalls about Legendre foliations, we refer the reader to [P).

Let P be a smooth (2m + 1}-dimensional manifold without boundary
with a fixed choice of contact 1-form 5 (ie. 7A (dpy™ # Q). A Legendre
foliation is & foliation F of P by m-dimcnsional integral submanifolds of
7. Two Legendre foliations F, and F; are said to be equivalent if there
is a diffeomorphism ¢ : P — P such that ¢"n = 5, and ' F = F
where " Fy is the foliation of Py whose leaves are inverse image of lcaves
in }-2.

The relation between Legendre foliations and complex Finsler mani-
folds can be scen from the following fact [P):

The unil cotangent bundle S7.M = {w € T*M|F(w) = 1} is
equipped with a natural contact I-form v defined by the pull bock
of € to S;.M and the Legendre foliation F defined by fibers of
m: SEpM — M.

It is shown n [P] that the structure of Legendre foliations defined in
this way determines the metric F uniguely:
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3.1 Proposition. [f F, and F» are equivalent Legendre foliations
on S}l M, and'ShMg where F1 and F» are complex Finsler metrics
on M| and Mo respectively, then My and M» are isomeiric as Finsler
manifolds (i.e. there exists a diffeomorphism ¢ : My — My such that
Fi=Fo (,0,.).

To describe the local structure of the Legendre foliation on S7.M, let
L be the tangent bundle to F. One of the basic local invariants of the
Legendre foliation is defined by the restriction to L of the symmetric
form

(3.2) IT = F,p du® @ du’.

It is shown in [P] that, if the triangle inequality (1.2) holds, then II is
positive definite, and that there is a canonical reduction of the structure
group o O(2n — 1). Note that, from their definitions, the restrictions of
vector fields X and Z on Sp M are tangent to S3-M, and hence they are
invariantly defined vector ficlds on SEM. If (Z,) is a local orthonormal
frame of L with respect to IT, there is a local coframe {82, 7, £8) on SpM
such that

(3.3) £2(Z5) = 83, 8°(X) = 6°(Z5) = 0

satisfying the structure equation:

d6= 2 0 0\ [/6°
dp |=—-13 0 0 © n
@ 0 0 =3 A
(3.4) % 8/ \¢§
—NAER + G%, 87 A EY
+ . 63’? 96 A g’r y

g, 05 A OY + S50 A 0%+ Q%p, 8P A EY

with the following symmetry conditions:

(i) G%gy, Q%p and §§ are symmetric in all indices, and

(ii) R*gy = —R%.p and 7§ = —7h.
Morcover, F is the induced norm of a Hermitian metric if and only if
G® g = @*gy = 0. In this case, the tensors 2% g, and S5 are related to
the curvature tensor of the Harmitian metric. This can be easily stated
in lower dimensional case:

3.5 Proposition. Lei M be a complex curve {i.c. n = 1). Then
F is a norm induced from e Hermition metric with Gaussian curvature
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x if and only if the Legendre foliation on ShM satisfies the structure
equations:

(3.6) dt = —n A gL, dn = @' A&, At = kA8,

The I-forms {n,8,£'} form an inveriantly defined, global coframe on
SLM.

3.7 Lemma. The identity I1{Z,Z) = 1 holds.
Proof: Recall that Z = —Jg b aﬁc' By diffcrentiating the first iden-

tity in {2.10} with respect to 3‘?7, we obtain JEF, +.J8ublF,. = 0. Using
these, we compute

2,2y =Fu Jou" Jow! = ~Jp Fo 2w = F,u* =F =1 on SpM. &

By the lemma, we can find a local frame (Z,) of L such that Z, =
Z, along with a coframe (6%, n,£7) satisfying the condition {3.3) and
the structure cquation (3.4). Let (X, X, Z3) denote the dual frame of
(6>, 7m,¢%).

3.8 Lemma. The wector fields JX and (X, JX| have the following
expressions in terms of the frame (X4, X, Zg):

(3.9)
JX = X\ + 17 (X) Zq

(3.10)
(X, JX) = 225 (X) Xo + { X (n2(X)) + 7500 70 () - 57} 2.

Proof: To prove the leinma, note that the vector JX and [X, JX)
has no component in the direction of X since n(JX) = 9{[X, JX]) =0
(recall from Lemma {2.13) that {(JX) = {{[X, JX]) = 0). To compute
the components in the other directions, we will make vse of the fact that
the Lic derivative £ is a derivation and that the forms %, £ annihilate
X Using the identity JX = —£2X (Lemma 2.11) and the structure
equation (3.4), compute ’

95 (IX) = 6°(= LX) = (L46%) (X) = {Z 2d8" + d(Z 26°)}(X)
= d8°(2, X) = b1a

(XY = £7(— LX) = (Lx£%)(X) = {Z 2dE™ + d(Z 1£7)}(X)
= dE*(Z, X) = n§(X) £8(Z) = n$(X).
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This proves the idemntity (3.9). To compute the component of [ X, JX]
in the direction of X, note that the identity (3.9} implies #*(JX) =10
and compute

8°([X, JX]) = 8” (Lx (I X)) = X(6*(J X)) = (Lx8%) (JX)

— (X 1d8™ + d(X 16*)}(J X) = d8*(J X, X).

Using this identity, the structure equation (3.4) and the identity (3.9)
again, we compute the component, of {X, JX] in the dircetion of X,,:

g (IX, JX]) = d§%(J X, X)
= 73(X) 85(JX) + £2(JX) = 7¥(X) + 7%(X) = 225 (X).

In a similar manner, we compute the component of [X, JX! in the di-
rection of Z,:

EN(X, IX]) = €7 (Lx(J X)) = X{€2(TX)} — (Lx€%) (IX)
= X {£5(JX)} — {X JdE* + d(X 1€ }IX)
= X{rF(X)} + de?(JX, X)
= X{rF (X))} + 75{(X) P (JX) + S§ 6%(J X)
= X (n{ (X)) + =5(X) 7 (X) - ST

From these, the identity (3.10) follows. W

4. The Main Theorem

4.1 Equivalent Conditions. In this scetion, we state the necessary
and sufficient conditions for a complex Finsler manifold to satisfy the
property (1.5). For each v € T, M, let U, be a neighborhood of Q in the
complex line € v C T,.M spanned by v, on which the exponential map
exp is defined. The image exp (U,) defines a surface in M ncar z.

4.2 Theorem. The following conditions are equivalent.

Al exp(U,) is o complex curve for ellv € TM with F(v) = 1.

A2 [X, JX)=kZ on S.M for seme smooth function k.

A3. The disiribution D spanned by X, JX ond Z 1s an involutive dis-
fribution on Sh.M.

Proof: We will prove the theorem by showing (i) the cquivalence of
conditions Al and AZ, and (ii) the equivalence of the conditions A2 and
A3
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(i} To prove the cquivalence of the conditions Al and A2, recall (see
Lemma 2.22) the identity

exp (te*v) = {x oet¥ o 8—32} (P (v))

Thus, if we denote [y, for the surface defined by (£,8) v Cult,s) =
m(c** e %% w) for w € §HM and t > 0 small, condition Al is equivalent
to the condition that [y be a complex curve for all w e Sp M

Suppose that the condition Al holds. Then the surface Iy, is a cornplex
curve for all w € 57.M. To show that the condition A2 holds, we show
(X, JX] = 6Z at © = eXw € S M for sufficiently small € > 0 and
w chosen arbitrarily in §;M. Let {2} denote a family of surfaces
parametrized by 7 defined by the function

(t,5) v Crt, s) = 7(e ¥ %7 X ).

Observe that [','s are complex curves since C,(t,s) = C,-x,,{t — 7, 5.
Also, C and €, coincide when 7 = 0. Morcover, since Cr(t,0) = Cy (t,0)
for any 7 € [0, ¢}, the surfaces I, contain the curve C,, (#,0) in eommont,
and in particular, the curves C, (2,0} have common end point #{w) and
cornmon tangent veetor T = 7, Xy at the point w(a@) when ¢t = . Sinee
€, are complex curves, it follows that they have common tangent space
C-T at w{w).

Let W{r) be the tangent vector at {41} defined by
3;: (e,0).
Then, W({r) € €T for all v € [0,¢], and therefore, all the derivatives of
W(r) are in € T. Using the definition of Lic derivative, we compute the
derivatives of Wi{r):

Wi{r) =

~ AW ,
Wi(r) = el )XZ({_,fxw), o T ™ el )X{ﬁxZ}(ﬂxm
i cmr W s
dr? =T E }X{E‘X[-"XZ} (o™ ¥w) ™3 5~ dr3 “*W*ei )X{K«X LxLy Z}(‘?rxm),

If we lot 7 = e, we obtain
‘.I'T.(JCXZ)@ cCT, TF.(C)(;CXZ),;,E(ET, TT.(;CXAC)(.C)(Z)K". cCT

Since T = m. Xy and LxZ = JX = Xy + n¥(X) Z,, we can conclude
that
(X, JX)a (Lx[X, JX))a e RXg ®R(X1)3 © Ly,
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But from Lemma 3.8, [X, JX] does not have a compenent in the direc-
tion of X and X1, and thus [X, JX)s € Lg. Again, from Lemma 3.8, it
follows that o' (X} = 0, and we obtain

(4.3) JX =X, and (X, JX] = SY Za.

From the structure cquation {3.6), it can be easily shown that the identity
LxZa = Xuo+73(X) Zg bolds. This identity and the second identity of
(4.3) gives

Cx[X, JX]) = Lx (5% Zo = (X 52) Zo + SE(Lx Za)
- {(x 52} Z, + 8% 74(X) } Z,+ 8% X

But, again, since we proved {Lx[X, JX))g € RXg O R{Xi)g © Lg,
components of the vector £Lx[X, JX] in the direction of X, for a # 0
has to vanish. Thercfore, it follows that 8¢ = Ofor & > 1 and {X, JX] =
517, and the condition A2 follows.

To prove the converse, suppose that [X, JX] = «Z holds for some
k € C®(SrM). We prove that the surface defined by C(t,s) =
r{e'¥e™%%w) is a complex curve for all w € T*M by showing that
J %( —7,0) is tangent to the curve €, for small ¥ < 0. Note that
LxlxZ=CLx|X,Z]=Lx(JX)=xrZ, and let 1 = ¢ Xaw. Using the
definition of the Li¢ derivative, we compute

d* | _ix d _uix
o (e Ziexay) = (e {LX Z}erx i)
:-e:ix {EXﬁXZ}(etxuj)
_ EX —tX
= r(e"” @) {e. ' Ziwx gy}
Therclore, if we let W{t) = ef*¥ Zipx gy € Tg(SpM}, W(t) satisfies
a second order ordinary differential equation WY (t) = () W(t) with
initial conditions W{0) = Zs and W/ (0) = JX4. Consequently, we

have W (t) € span{Z;,JXg} for small ¢, and in particular, W(r) =
c_TXZ(,_,fx,b} € span{Z4, JX;}. Substituting @& = e~ "X,

{4.4) W(r) =e."* Zy € span{Za, JXa}.
Using the identity 25+ (7,0) = m. Xy and m, 0o J = J o 7., we obtain

8 a
(T 0)= s #=0

=7 % 2y = km (U X))o = kI (Xy) =k J 62';‘“ (7,0

{m(e™¥e %)}
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for some k € IR, and hence J a—{i‘“(‘?, 0} is tangent to the surface defined
by Cu-

(i) If [X, JX] = «Z holds for some k € C™(S}7. M), then the involu-
tivity of D follows from the identities

(4.5) 2, X)= ~JX, [Z,JX]=X and [X, JX]=«kZ.

The converse of this is an immediate consequence of the the identity
(3.10). =

4.6 Remark.

(1} Note that, in the proof of Theorem 4.2, the two equations n$ (X ) =
0 and 8% = 0 for # > 1 are equivalent to the single condition
[X, JX] = kZ with k = §]. The condition 7${X) = 0 can be
interpreted as a compatibility condition for F and the complex
structure. For example, if F is the induced norm of a Kachler
manifold, this condition is satisfied. In this case, the condition
S5 =0 for £ > 1 puts restrictions on the curvature of the Kaehler
metric. One special case of this is when M is a Kaehler manifold
with constant holomorphic sectional curvature. In this case, it can
be verified using results in [P] that §F = ¢67 for some constant c.

(2} Conditions equivalent to A1-A3 of Theorem 4.2 were introduced
by Royden [R] and Faran [F].

The conditions AI-AJ in Theorem 4.2 can be equivalently stated as
conditions on T35 M.

4.7 Theorem. The follounng conditions are equivalent:

Bl. ezp{U,) is a complex curve for all v € TpM.

B2 [X, JX]=&Z on T M for some k € C®{TgM).

B3. The distribution €X @ CZ C T{Ty M} s involutive.
Moreover, these conditions are equivalent to conditions A1-A3 in Theo-
rem 4.2

Proof: Note that the conditions Al and Bl are clearly equivalent. To
prove the theorem, we show (i} that A2 implics B2, and (ii) that A3
implies B3. The converses of these are trivial to prove.

(i) Suppose that [X, JX|=k Z holdson Sy M for some k € C={SLM).
Extend & to T§M by x{tw) = ? &{w) for allt > O and w € SEM.

We claim that [X, JX] = «Z on Ty M. To show this, we show that
both W = (X, JX]) and W = kZ on T3 M must satisfy the ordinary
differential equation Ly W = 2W. Note that the integral curves of ¥
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are the radial lines in T M. Thus, if both [X, JX] and x Z satisfy the
equation, they must coincide because the identity (X, JX| = £ Z gives
the same initial condition at points on SpM. To show that the vector
ficld [X, JX] satisfics the differential equation, recall, from Lemma 2.11,
that £y X = X and £y JX = JX. Using these identities and the fact
that Ly is a derivation, we compute

Ly (X, JX]=[Ly X, JX]+[X, Ly IX])=|X, JX]+(X, JX]=2{X, JX|.

To show that the vector field x Z satisfies the differential equation, recall
that the vector field Y on T¢ M is generated by the action of R by
multiplication of ¢!. Using homogeneity of x, we obtain the foliowing
identity: For we Tj M,

d .
(Ye)(w) = @l k(e'w) = % B fe®t w(w)} = 2k(w)

Using this identity and the fact that the vector fields ¥ and Z commute
(ie. LyZ =[X, Y| =0}, we compute

(Ly (K Z)} = (YR)Z = 2x Z).

{ii) The proof that the condition AY implies the condition B3 imme-
diately follows from the identities in Loming 3.8. W

4.8 Totally Geodesic Complex Curves. We call a complex curve
T totally geodesic i, for any tangent vector v to the complex curve ¥
and geodesic segment v, @ (—€,e} — M such that ‘%1(0) = v, 7,{t)
is contained in the complex curve for small t. The main result of this
section is that, under condition (1.5), the geodesics of F can be uniquely
extended to immersed complex curves that are totally geodesic subman-
ifolds of M. In fact, these curves are precisely the oncs defined by the
complex curves cxp (U,}'s in condition (1.5).

Theorem 4.9. If the condition {1.5) holds, the complez curve
exp(U,) can be uniquely extended to a mazimal totally geodesic complex
curve § - L M immersed in M. Moreouer, there is o canonical (n—1)-
dimensional holomorphic vector subbundle TLE of f*{TM) iransversal
to 2.,

Proof- Recall from Theorem 4.2 that D = span{X,JX,Z} is an in-
volutive distribution. By the Frobenius theorem, this implics that SpM
is foliated by 3-dimcensional maximal integral submanifolds of D, Let
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¥ be a leaf of this foliation Fp, then there is a well defined 8! ¢ €
action on % since Z is tangent to £. Let us denote the quotient space
%/5! by E. Tt is not difficult to see that T is a complex curve with the
complex structure induced from the complex structure of £ € T M, and
that there is a holomorphic irnmersion § such that the following diagram
commutes:

g nclusion i
(4.10) vrzl lvr
!

= M

Recall that the complex curve exp (I, } is the surface defined by
(4.11) {t,s) — exp (te““'z'u) = (c‘xe_szé(v)) .

From this, it is clear that the complex curve f : £ — M is locally
defined by exp (U,) since etX¢%%w ¢ £. From this, it clearly follows
that f: ¥ — M is totally geodesic.

To define the transversal holomorphic subbundle T1E of f*(TM),
note that 7y : £ — ¥ is a principal circle bundle. Define the fiber T2 %
of TS at 2 € L by TAT = {v € FH{TM)|w{f.v) =Cforallw € £,}.
It is clear that T ¥ is a holomorphic vector bundle with dimension n— 1.

To show that TJ-% is transversal to I, suppose v € TLEZNTE. Note
that ¥(w) is tangent to T for all w € £, since ¥{w) = m. X, and X
is tangent to ©. Moreover, U{w) # 0 becanse w{¥(w)) = wn. X,) =
FFu*=F?=1#0, where w = Sor_ utdz®. Sicew, [T (w) € T, X,
we have fov = 2¥{w) for some 2z € €. But, recall that v € TTE, and
therefore, w(v} = 0. This implies that » = { becanse

wlv) =welw)=z2{w(Tw)}=2. 1

4.12 The Holomorphic Sectional Curvature. If F satisfies the
property (1.5), there is a natural way to define holomorphic sectional
curvature K of F'. In this section, we show that K is determined by the
smooth function s in the condition A2 of Theoremn 4.2.

Holomorphic sectional curvature K of a complex Finsler metric F
has been studied by Wong and Royden [W] [R]. To define K{v) for a
unit vector v € ToM {i.e. F(v) = 1), note that ecach complex curve
U C M tangent to v has a canonical complex Finsler metric. defined
by the restriction }:’]TU TU — R, In fact, because U is of complex
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dimension one, it can be casily seen that the metric F) Ty I8 2 norm
induced by a Hermitian metric g on U If F{v) = 1,

Fla+iBWw) = la+i8| Flv) = Vo2 + 32,

In {W], Wong defined the holomorphic sectional curvature K(v) as the
suprernurm of the Gaussian curvature of ¢ at x € U, where supremum
is taken over all complex curves tangent to v. In the special case when
F is the norm induced by a Hermitian metric, this defines the usual
helomorphic sectional curvature of Hermitian metric. Observe that, if
F satisfies the property (1.5}, then by Theorem 4.2, there is a naturally
defined totally geodesic complex curve of the form exp (U,) tangent to
v. In [R], Royden showed that the Gaussian curvature of the induced
metric g at 2 on this complex curve attains the greatest value and, hence,
it defines the holomorphic sectional curvature K (). Thus, the following
theorem holds:

4.13 Theorem. Let N be a complex submanifold of M, and let K’ be
the holomorphic sectional curvature of the induced metric ﬁ‘“w on N.
Then the inequality

K'(v) < K()
holds every unit vector v fangent to V.

In particuler, if U C M is @ complex curve tengent to a unii vector
v & TM, the Gaussian curvature of the induced metric g defined by }3‘|TU
is bounded from above by K{v).

The function « can be regarded as a function on the quotient space
S51.M/S'. Recall from (2.12) and(4.5) the identities [Z, X] = —JX,
[Z, JX] = X and &Z = [X, JX], and compute

(Zr)Z = L3 Z) = L31X, JX]
=[LzX, IX}+ (X, L2{JX)) = [-JX, JX]+ X, X]=0.
From this identity, we conclude Zx = 0. This implies that the function
% s invariant under the cirele action of unimodular complex numbers

defined by multiplication on T3 M, and hence the function x can be
regarded as a function on SLAM/S '

4.14 Theorem. If K is the holomorphic sectional curvature of F,
K{v} = ko ®(v)
for every unif vector v e TM.
Bcefore we begin the proof, note that by Theorem 4.9 the complex curve

U C M has a unique extension to a maximal totally geodesic complex
curve f: ¥ — M, and that therc is a circle bundle 7y, ' £ — £ over L.
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4.15 Lemma. The fibers of the circle bundle 7y & — T defines a
Legendre foliation F5 with respect to a natural contact I-form defined by
the pull-back of 1 to ©.. The structure equations of this Legendre foliation
are the pull backs to & of the equations:

(4.16) g = —n A€l dn=8' ngt, de' =k A G

Proof: The structurce cquations {4.16) are obtaincd by pulling back
the equation (3.4) to . Note that, since JX = X and Z = Z,, we have
G*(JX)=£2(Z) = 0 for @ > 1. Therefore, on E, we have

dgl = —T}/\§1 + Glllgl /\£1
dn=8'ng
de' =Slgne' + Q' ALl

But, from the identities (4.5), it casily follows that G'yp = 1, = 0 and
51 = k. Hence, we obtain the structure cquations (4.16):

From the equations, it is clear that the pull back to ¥ of 5 is a contact
form since nAdy = A AL #0on 2. W

Proof: To prove the theorem, choose v € T.M and let UV € M be a
totally geodesic cornplex curve such that z € U and v € TR U. Also,
let f: 2 — M be the unique extension of IV described in Theorem 4.9,
and let £y denote the restriction of the circle bundle e 5 — Tto
U. Observe that U is also a submanifold of SEM/S! since U ¢ & =
2/8! ¢ SrM/S'. We cluim that the Gaussian curvature of g on U is
Ky € C*(U), where k is regarded as a function on §;.M/S',

The theorem follows from the claim. To see this, proceed as follows:
Note that by commutativity of the diagram (4.10), # = f o my.. Henee,
ifwe f?U, then ¥{w) = 7. X,, = f. o (ng).X.,. Therefore, the map
¥ St M — SpM sends Yy into the unit tangent bundle S;U of g
Since ¥ is a bundle map over U such that ¥{e*w) = ¢ " U(w), ¥ maps
%y diffeomorphically onto S,U, or equivalently, we have a bundle map
\IJJ_SLU = Qs,u  SU — Yy over U. Thus, since & is constant along

fibers of By and v € T.U/, we have k o $(v) = k(z). By the claim, &{z)
is the Gaussian curvature of ¢ at x € U, and the identity K (v) = ro®{v)
follows.

To prove the claim, we denote the Gaussian curvature of ¢ on U by
k€ C°(U), and show &« = k. Reeall that, from Proposition 3.5, the
Legendre foliation on S;U has the structure cqnations

(4.17) dfl = —pAEL, dij = 0L A £, dEl = kA A g,
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where {§7,71,£'} is the invariant coframe on SzU. The proof of the claim
is done by establishing the cquivalence of the Legendre foliation on S;U
with F3.. This is proved by showing that there is a diffeomorphism
¥ Sy — 53U such that

(4.18) Y =1 arlld To =7y,

It follows that ¥ 8! = #! and %~ = £, and in particular, the pull-back
by i of the equations (4.17} are the structure equations {4.18) of Fg.
The identity g ¢ ¢ = k follows.

We define ¥(w) for w € Ly ¢ T*M as the by pull-back of w to the
tangent space of U. In coordinates, we have
(4.19)

(z',0,.,0,&",0,., 00, . u™ um L a2t )t

bl

wheve (27, ., 2™, 2™t . 2®) is taken so that U C M is locally defined
by «* =0 101 o =;é 1.7+ 1. To complcte the proof, it remains to show
that

(1} 1 maps &y diffcamorphically onto §;U, and

2y v'i=n
{1}: To show that ¢ is a diffeomorphism onto 57U, recall that ¥ maps
Sy onto S,U. Hence, if w € Yy, then the vectors 9(w) and ¥(Jw) =
—J ¥ (w) form an orthonormal frame of T:U for some x € U. The fol-
lowing computation shows that the covectors #{w) and ¥(Jw) = Jy(w)
form the dual coframe of {¥(w), ¥(Jw)}: Using the identities (2.10),
compute

{9} (T(w)) = w(m X)) = FF,u® = F2 =1
{W(Jw)} (T(Jw)) = {Jyp(w)H{—TU{w)} = {d{w)} (¥(w)) =1
{¥(w)} (T{Tw)) = {Y(w)} (=¥ (w)} = {- T (w)} (¥(w))
= {—Jw}(mX,) =uw I FF, =0

Henee $(Zy) C S;U. Since v is a bundle map preserving the circle
action, It easily foll()wx that ¥ is a diffeomorphism.

(2): To prove the identity ¥*f = 5, recall from (2.2) that % = u' dz’ +
1 g™t Thercfore, from (4.19), ¥*7 = u' dz! + w1 dz™+1 On
the other hand, the contact 1-form 7 on £ is defined by the puH back of
n = 22 ‘lu"dr to 3. But, since dz® =0 fora # 1,n+ 1 on &, we have
n=u'de! +w*t dz**!. Hence the identity "7 = 7 follows. ®

The following corallary is a consequence of the proof of Theorem 4.14:
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4.20 Corollary. The Guussian curvature of the induced metric g on
s K‘}E'

4.21 Relation to the Kobayashi Metric. In this section, we prove
a version of a theorem of Faran which states that vanishing of certain
local invariants forces F to be the Kobayashi metric of M, provided that
F'is complete and satisfies the condition K = —4 (sce Introduction). In
the version of the theorcm presented here, the condition of vanishing of
invariants is replaced by the equivalent condition (1.5).

Recall from Lempert’s result described in the introduction that, if
D < €7 is a bounded strictly linearly convex domain with smooth
boundary, then every extremal disk f: A — D Is an isomcetric imbedding
{(i.c. f*Fk coincides with the Poincare norm on A}, and that f(A) is a
maximal totally geodesic complex curve in D, Since the Poincaré metric
has Gaussian enrvature —4, the holomorphic scetional curvature of the
Kobayashi metric Fie is —4.

On the other hand, if F is any complex Finsler metric on a comnplex
manifold M, the condition of constant holomorphic scetional cirvature
K = —4 imposes a restriction on the metric F. In fact, we show that, if
F ig any complete complex Finsler metric with the proportics K = —4
and (1.5), then F must coineide with the Kobayashi metric. To show

this, we need the following lemma due to Ahlfors {A] [K}:

4.22 Generalized Schwarz Lemma. Let (N, g) be o 1-dimensional
Hermitian manifold such that the Gaussian curveture is bounded above
by a negative constont —C. For any holomorphic mop f A — N, the
ineqeality

(4.23) £l < ol

holds for oll v € TA, where | ||, is the norm on N dnduced by ¢ and | ]|
denotes the norm defined by the Poincaré metric on A,

We call a complex Finsler metric F'eomplete if the geodosic vector
field X is complete (or cquivalently, if every geodesic can be extended to
a geodesic defined on all of IR).

4.24 Theorem [F|. Suppose F is a complete compler Finsler metric
on a compler manifold M with constant holomorphic seclional curveture
K = —4 satisfying the property (1.5). The dunl melric F coincides with
the Kobayashi metric Fie of M.

Proof: We verify the equality Fie = F by verifying the inequalitics
FggFandFSFK.
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(1) To show that the inequality Fi < F holds, lot v € TM and recall
fromnr Theoremn 4.9 that there is an immersed totally geodesic complex
curve f) : & — M tangent to v. Since F is a complete metric with
K = —4 and T is totally geodesic, the induced metric ¢ on £ defined
by fff:_‘ is a complete Kaehler metric with Gaussian curvature —4 (see
Theorem 4.14 and Corollary 4.20). Therefore, there is a holomorphic
covering map fz : A — ¥ which is'a local isometry between the Poincaré
metric and g (sce chapter IX of [KN]). By composing fi and f, we
obtain a holomorphic map fiofz 1 & — A that is an isometric immersion
with respect to the Poincaré metric and F (ie. {{(fiof2)' F}{(w) = |w]).
Recall that the Kobayashi metric Fie{v) is defined as the infimum of
I£72|| over all complex enrve f @ A — M tangent to v. Hence, the
inequality follows:

Fre(w) < ||[(fio fo) vl = F(v) for veTM.

{ii) To prove the inequality F(v) < F{v), note that, for each complex
curve f: A — M tangent to v € TM, there is a Hermitian metric metric
gy on A defined by f *F. By Theorem 4.13, the Gaussian curvature xs
is bounded above by —4. Applying the Generalized Schwarz Lemma
4.22 to the identity map id + A — (A, g7), we obtain the inequality
{f*F}w) < |wl, or cquivalently, F{(f.w) < [lw| for all w € TA. In
particular, this implies that F{») < ||f*v|| for any complex curve tangent
to v. Since Fix{v) is the infimum of || f*v|} over all such f, the inequality
F(v) < F(v) follows. &
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