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Abstract

Let w be a generalized Jacobi weight on the interval [~1,1] and, [or each
function f, let Spf denote the n-th partial sum of the Fourier series of f
in the orthogonal polynomials associated to w. We prove a result about
uniform boundedness of the operalors S, in some weighted LP spaces.
The study of the norms of the kernels K, related to the operators S,
allows us to obtain a relation between the Fourier series with respect to
different generalized Jacobi weights.

Let w be a generalized Jacobi weight, that is,

N
w(z) = Mz)(1 - )*(1+ 2’ [[lz -t , z € (-1,1]

=1

where

ay By > =1t € (~1,1), t; £ ¢, Vi # 5, _

b) # is a positive, continuous function on [~1,1] and w{k,6)6~! € L{(0,1),
w(ih, §) being the modulus of continuity of k. _

Let dp = wiz} dz on [—1,1] and let 5, {n > 0) be the n-th partial sum
of the Fourier series in the orthonormal polynomials with respect to du. The
study of the boundedness

(1) 1Srfleriuwrany < CHlFNLr(urdpy,

N
where w(z)=(1-o)*(+ o)t [Jlz-ul™,  abgecR

i=1

*The authors have been supported by CAICYT PBA5-0338.
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N
and v(z) = (1 — 221+ ) H |z — 25|, AB,G,eR

i=1

was done by Badkov {[1]) in the case u = v by means of a direct estimation of
the kernels K {z,y) associated with the polynomials orthogonal with respect
to du. Later, one of us {[10]} considered the same problem, with u and v not
necessarily equal; his mcthod consists of an appropriate use of the theory of
A, weights. He found conditions for {1) which generalized those obtained for
u = v by Badkov. However, this result, which we state below, follows only in
thecasey > 0,i=1,..., V.

Theorem 1. Lety > 0,i=1,...,N and 1 < p < co. If the inequalities

A+{a+ l)(% — 1) < min{}, &1}

@ B+(B+1)(} - 3) < min{}, &)
Gi+({n+ 1)(% - %) < min{%,j";—l} {i=1,...,N)

at (a4 (3 - 3) > —min{g, o
(3) b (B 12— 1) > — minfd, B2}
g,:+(7.-+1)(lp - D> —min{d, 38} ((=1,...,N)

and
(4) A<ag, B <5 G < g
hold, then

3C > 0 such that "Sﬂf”by(upd‘u) < C"f"LP(deJ‘) Vf e LP{uPdy), ¥n e N.

The objective of this paper is to show that the result remains true without
the restriction v; > 0 and that conditions {2}, (3} and (4) are also necessary
for the uniform boundedness:

Theorem 2. Let 1 < p < co. Then, there exists C > 0 such thot

ISnflcequramy S Clfllisrayy VF € LP(vPdy), ¥n €N,
if and only if the inequalities (2}, (3) and {4) are salisfied.

For the sake of completeness, we give a brief sketch of the proof of theorem
1 (see also [10]). By using Pollard’s decomposition of the kernels K,{z,y) {see
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8], [5]), the uniform boundedness of S, can be reduced to that of the Hilbert
transform with pairs of weights

(| Pas () Pulz)Pw(z), |@n(z) P (1 — 22) Pu(z)Puiz)' ")
and
(10 (2)P(1 — 22)Pu(z)Pw(z), |Pag1 ()| "Po(z)Pw(z)~7),

Q. being the n-th orthonormal polyncmial relative to the measure {1 — =% dp.
Using now Hunt-Muckenhoupt-Wheeden and Neugebauer results {see (2], (6]},
together with some known esthmates for generalized Jacobi polynomials {see
{8) below}, for the above uniform boundedness the following conditions turn

out to be sufficient:
(ui:vfa) € AP((“I: 1))

and
(ﬁ‘ivﬁi} S AP(("lv 1})

for some & > 1, with A, constants independent of n, where

tn(z) =(1 - )P (1 -z + n—2)~P2atD)/4
x{1 4 2)PHB(1 4+ x + n2)~POD/
N
X H |z — ti|9m+'~ﬁ{|z — ;| + n—l)—p‘n/2‘
i=1
vz} ={1 - I)Awaﬁl—p)+p(l —zr4 n—?)p(2a+3)/4
x{1+ x}Bp+ﬁ(I—p)+p(1 + x4+ n—z}p(2ﬁ+3)/4

N
x H |z — t,-]c“’”-'(l_”){lr — &+ n—l)ma!ﬁ

=1
and similar expressions for @, and o,
These conditions are easy to check using the simpler result (see [10]}:

Lemma 3. Let {z,}n>0 be a sequence of positive numbers converging to C.
Letr,s,R, S € R. Then,

Ozl (2] + z)%, 21 * (2| + 22)) € 4Ap((-1,1))
with a constant independent of n if and only if the following inequalities hold:

r > =1 R<p-1; R<ry
r+s>-1; R+S<p-1; R+85<r+s.

At least in the case u = v (thus g; = G;, V1), inequality R < 7 requires v = 0
Yi. But, with this assumption, theorem 1 follows.
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Let us introduce now some notation: {P,(z}}, {k.} and {K,.(z,y)} will be,
respectively, the orthonormal polynomials, their leading coefficients and the
kernels relative to dy; if ¢ € (—1,1}, {P(z}}, {k$} and {KS(z,¥)} will be the
corresponding to (z — ¢)2du. Then, it is not difficult to establish ¥n € N the
relations

Knlz, c)Knlc,y) .

(5) Kﬂ(xly) = (I - C)(y - C)Kfa—l(:rs ?}) + Kn(c C) '
K k)
(6) Kn(w,0) = 32 Pal) () — 5= Pasa{Q) Pr_y ().
i n+1

It can be also shown (see [4, theorems 10 and 11}, and {9, pag. 212]) that

(7 TR S

n—oa K n—co kn+1 2

If we define

N
d{z,n) = (1 -z +n7 %)~ @aV/4(1 | 5 4 n=2)-(20+1)/4 [Ttz - il + nty—/2,

i=1
it is known ([1)} that there exists a constant C such that Yz € [-1,1], Yre N

(8) |5 (z)| < Cd(z,n).

There are also some well-known estimates for the kernels, one of them being
this ([7, pag. 4 and pag. 119, theorem 25)): if ¢ € (—1,1) and the factor |z — ¢
occurs in w with an exponent 4, there exist some positive constants C; and
C2, depending on ¢, such that Yn e N

(9) Cint < Kole,¢) < Con™* L,

From now on, all constants will be denoted €, so by C we will mean a
constant, possibly different in each occurrence. Using (6}, (7) and (8) we obtain
the following result:

Proposition 4. Let 1 < p < o0, 1/p+ 1/g = 1 and suppose the inequality
(3} holds. Let —1 < c < 1 and let v and g be the exponents of |z — c| in w and
u, respectively. Then, there exists a positive constant C such that ¥n > Q;

Cnlr#D/a=s g < (v 1)(1/2— 1/p)+ 1/2

Kz, )l Loqurwy < § Cn"2(ogn)}® if g = (v+ 1)(1/2 - 1/p) + 1/2
Cn1/? Fly+1)(1/2-1/p)+1/2< g
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Proof: From (8) it follows that |P.{c)| < Cn/?. Since { PS} is the sequence
associated with (z — ¢)2dy, it also follows from (8} that

1Pl < Clle — | +n7 1) d(z, n).
Now, from {6) and (7) we get:
(10) |Ka{z, )] < C%{|z — o + n~ 1) Hd(z, ).
Let us take ¢ > 0 such that |¢; — ¢| > ¢ for all t; # ¢. We can write:

”Kﬂ(z:c)”ip(upw}
:/ | Knlz, c)|?’u(z)pw(3:)dz+f | Kz, c)|Pu{z)?w(x)dx
|lz—c|>e Jz—c|<e

Using (10}, we obtain for the first term
[ I oruarues
lz—cl2e

< Cn?17? fi CECE 2" Pd(z, n)Pu(z)Pw(z)dz

1
< CHM/Qf d(z, n)Pulz)Puwlz}dz.

It is easy to deduce from {3) that this last integral is bounded by a constant
which does not depend on n, 50 '

(11) f | &z, o) PulzyPw(z)dz < CnP/2.
|Jz—cl>e
Let us take now the second term; since for |z — ¢| < ¢ there exists a constant
C such that Ya d{z,n) < C(lz — ¢ + n=)7/2%, u{z) < Clz —cl? and wiz) <
Clz — |7, we have
f Kz, )PP w(z)dz
|z—el<e
< Cnm’ﬂ/ (|z — ¢| + n=3)"Pd(z, n)Pul{z)Pw(z)ds
lz—el<e

< Cnp’)’,’zf (lx _ C| + n—l)-—p(1+1/2)|z _ C19p+'7d.'}:
|x—c|<e
1
< Cnm/‘z/ (y+n-—l)—p(l+7/‘2)ygp+7dy
¢

_ 1
= P/ 2Py /2y —gp—y—1 / {ny + 1)_"(1+"'/2)(ny)9”+"'ndy
0

= OpPr/2p(i+y /2 —gp—vy—1 /n(r + 1) 7P/ Dpertr gy,
0
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Taking into account that p(1++v/2)—gp—v—1 = pl(y+1){1/2—1/p) —g+1/2]
and there exist some constants C; and Cg such that C; < r+ 1< Cy on [0, 1]
and Cir <r+ 1 < Cor on (1, n), we finally get the inequality

(12)
i
f | Kn (z, o) |Pulz)Pwi{z)dze < CrPr/ el D(1/2-1/p)—g+1/%] f 7P g
|z —e|<e 0
+ O/ 2el(v {12 1/p)—g+1/2] fﬂ P+ 1/ 2=1/p)—g+1/2]-1 4,
1

Since (3) implies gp+ v > — 1, the first term is bounded by
(13)

1
Cnm/2+P[(‘r+l)(1/2—1/P)—9+1f2]f PPV dr < Cpp1/2el(y+ 1{1/2=1/p)—g+1/2]
o

For the second term, let us consider separately the three cases in the statement.

a) g < (y+1)(1/2—1/p)+1/2, then —p{(v+1)(1/2—1/p)—9+1/2)-1 < —1.
Thus

/n pPlOFDO/2-1/P) gt /21 g
1
In this case, {12) and (13) imply:

/ | K (2, }Pulz)Pwiz)dz < CnPY/ el 1)(1/2-1/p)—g+1/2)
|x—e¢|<e

Since p[{y + 1){1/2 - 1/p) — g + 1/2] > 0, from this inequality and (11) we
obtain

1K n(z, c)"EP(qu) < Cnpr/2teliy+1)(1/2=1/p)—g+1/2]
= CpPllr0-1/p)—g) _ Cnrlr ) fa—g]

as we had o prove.

B I {(v+13(1/2—-1/p)+1/2 < g, then —p[{g+1}{(1/2—1/p)—~g+1/2]—1 > —1.
Therefore

/ " A 2Rt 1/ gy RO L2 =g+ 1/2]
1

By {12) and (13), it follows
f [Kn{z,c)Pulz)Pulz)ds < CnP/?
Jz—c|<e

and
"Kn(xa c)“f‘,p(upw) < CnP’Y/Q‘
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) fg={y+1}){(1/2-1/p)+1/2

/" PPl D(1/2-1/P)=g+1/21-1 gy, _joe .
i

hence,
/ |Knlz, c)[Pu(z)Pwiz)dz < CnP"?logn
|Jz—e] <&

and
“Kn(:s, C) ||?.."(qu) < Cﬂp?/z log 72.

This concludes the proof of the proposition. B

Corollary B. Let 1 < p< oo, Ifp+ 1/g = 1 and suppose the inequality (2)
holds. Let —1 < ¢ < 1 and v and G be the ezponenis of |z — ¢| in w and v,
respectively. Then, there exists ¢ positive constant C such that Vn € N

Cn/? G < (y+1{(1/2— 1/p) + 1/2
1Kz, )| Laqu-owy < § Cn?2(logn)'/? if G = {y+ 1}{1/2 - i/p) + 1/2
Cnlytl/ptC iy + D{I/2-1/py+1/2< G

Proof: Just apply proposition 4 to the weight v—! and keep in mind the
equality 1/2—-1/p=1/g—1/2. B

The following result is just what we need to extend theorem 1 to the general
case y; > — L.

Corollary 6. Letl <p<oo, l/fp+ 1/g=1. ,S"nppose the inegualities (2),
(3) and (4) hold. Let —1 < ¢ < 1. Then, there exists a positive constant C'
such that ¥n > 0: '

|| K‘n{xr C) " LP{uPw) || Kn(x: C) u Laf{v—%w) < CKﬂ(Cv C) .

Proof: Tt is a simple consequence of proposition 4, corollary 5 and the esti-
mate {9). The only thing we must do is to consider each case in these results
separately. W

Note. Although it will not be used in what follows, corollary 6 also holds
when ¢ = %1. The proof is similar: starting from other expressions for
K., [z, £1), analogous results to proposition 4 and corollary 5 can be obtained,
and then corollary 6 follows.

We are now ready to prove our main result:
Proof of theorem 2: a} Let us assume first that the inequalities {2}, {3} and

(4) hold. We prove that the operators S, are vniformly bounded by induction
on the number of negative exponents »;. If 4 > 0 Vi, the result is true, as
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we saw before (theorem 1). Now, suppose there exist k negative exponents -,
with £ > 0, and the result is true for k — 1. Let ¢ € {—1,1) be a point with a
negative exponent <. Let us remember the formula (5):

Kn(z, ) Knlc,y)

Ka(z,3) = (& = Oy = )KL (o9) + =5

We define the operators:

1 K. {z,c)Kn{c,y)
-1 KR{C,C)

Rof(z) = / (5= 0y ~ K1 (o ) F i)y

T.f(z) = Fyyw(y)dy,

Then, S, = T, + R.. We are going to study firstly the operators T,,:

Ko(z,c) [

Tnf(x) = Kn(c, C) 1

Kale,y) F{yywly)dy,

thus
I 1Ko, ()~ M F ) e @) wly)dy

"Tnf"L?(qu) = ||Kn(a7,c) "LP(qu}

Kﬂ (C, C) .
I Kn (2, )l 1o gur | En (2, () N Loqu)
<
B Ka(c,<) IFollzeguy
— "Kn(Igc)"LP(qu)"Kn(I,C)"Lq(u_qw) )
= Kn(c! C} "fl!LP(UPw).

From corollary 6 it follows
"Tﬂf”L"(uPdp) S C"f”[.p(updp.) Vf € L‘P(Upd.u)’ YneN.

So, we only need to prove the same bound for the operators H,. But, if we
denote by S¢ the partial sums of the Fourier series with respect to the measure
(z — ¢)Y?wlz)dz, it turns out that

i
Rof(@) = (@-o) [ - OKE @ f6ued =@ - 953 (1, 0),

whence

"Rﬂf"Lp(qu) < C"f"f.”(u”w})vf € Lp(va)avn €N

ﬁ“(z - C)S:——l(yfs?)c:x)"LP(ui’w)SC"f”LP(va) ¥fe LP(TJP’EU),V?‘L €N

@z = )55 19@N Loqur ) S Oz — Agllrwruy Vg € LP{|z — cPvPw), ¥R e N
S5 _ 1 9(T} ] Lo flz—cppur )y S Cllgll Lo (z—cpporwy Yg € LP(|z — c[PvPw), YR e N

<‘::>u‘s'ﬂlrca,—Ji..":?(x)”L*’(t'.n”(z»e:)"ﬁ.p)gC||£f'i|.!.F’(~.-3F’(z—c)'-"u.r) Vg € Lp(ﬁp(z - C)Qw),Vn €N,
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where i(z) = |z — ¢|'~*/Pu(x) and #(z) = jz — |~ Po{z).

Therefore, we must prove the boundedness of the partial sums 53 with the
pair of weights (4, ). But the Fourier series we are considering now corresponds
to the Jacobi generalized weight (z — ¢)?w(z}, which has only k& — 1 negative
exponents vy;, since on the point ¢ the exponent is v+ 2 > 1. By hypothesis, the
theorem holds in this case and we only have to see that the conditions in the
statement hold for the weights (z—c)2w(z), |z —c|'~%/Pu(z} and |z—c|' ~%/Pu(z).

- Bxcept for the point ¢, these weights have the same exponents as w, u and
v, Thus, those conditions are the same and therefore they are satisfied. At the
point ¢, the exponents are, respectively. vy +2, 9+1-2/p, G+ 1-2/p.

8c, we have to check the inequalities

2 1 1 y4+2+41

_ = T AY i) JreT -
(G+1 p) (y+2+ )(p )<m a{g—5—bh

2 1 L1 y+2+1
(g-!-1—5)+(‘¥+2+1)(5—§)>—m1n{-2-,T}

and
2 2
G+l-——-<g+1—-.
b r

It is clear, from our hypothesis, that they are satisfied. Consequently, we have
usc—-lg(z)“L’{i’(m—r:)zw} < C"Q“Ll’l’(ﬁ’(:—t}“m} Vg € Lp(ﬁp(z _C)Qw)v Vn e N.

Thus,
"Rnf"}_,p(upw) < GHf"Lv(va) Vf c LP(‘UPT..U), Vr el

and
180 fllLrqurny < Chfllreyy VF € LP(¥Pu), YreN.

Therefore, the result is true for k negative exponents ;. By induction, it is
true in general and the first part of the theorem is proved.

b) Now, assume that the operators S, are uniformly bounded. Let us prove
that {2}, (3) and (4) are satisfied.

From a result of M4té, Nevai and Totik {[3, theorem 1]), it follows

u € LP(dp);
e L9(du);
wiz) 721 - 22y HMRu(z) € LP(w(x)dz);
w(z) 21 — 22~ Yu(z) ™t € L¥(w(x)dx).
These conditions are equivalent to {2) and {3). Thus, we only need to prove

{4}, that is:
3C > 0suchthat u < Cv p—a.e
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In fact, we are going to show that the same € of the hypothesis works. First
of all, let us note that from the hypothesis it follows

(14) 1B Lequrdn) < CHRI Lrivram

for every polynomial R, since S, R = R if n is big enough.

It is clear that there exists a polynomial ¢ such that both |Q|Pu? and |Q|Pv?
are u-integrable. Let us dencte v’ = |Q|?u” and v’ = |[@|Pv?. Then, for every
F € LP(w'dp) 0 LP{v'du) there exists a sequence of polynorsials R, such that

1
lim f [F = Ral™(@’ +v')dp = 0.
—1

TE— 0D

From this and (14) we obtain

1
/ P

~ tim [RnQ|”updu<C?’ lim / |R.QPvPdy = CP [ IFIPv du.

Tn—o0

Taking now E = {z € [-1, 1], u{z) > Cu{z)} and § the characteristic function
on E, we deduce u(E} =
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