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EXPLORING W.G. DWYER’S
TAME HOMOTOPY THEORY

HaANS SCHEERER AND DANIEL TANRE

Abstract

Let 8, be the category of r-reduced simplicial sets, r > 3; let £ _, be the

‘category of {r — 1)-reduced differential graded Lie algebras over Z. Ac-
cording to the fundamental work [3] of W.G. Dwyer both categories are
endowed with closed model category structures such that the associated
tame homotopy category of S, is equivalent to the associated homotopy
category of £ _,. Here we embark on a study of this equivalence and
its implications. In particular, we show how to compute homelogy, coho-
melogy, homotopy with coefficients and Whitehead products {in the tame
range) of a sinplicial set out of the corresponding Lie algebra. [urther-
more we give an application (suggested by E. Vogt} to w.(BI'3) where
BT3 denctes the classifying space of foliations of codimension 3.

0. Introduction

In {13], . Quillen defines the structure of a closed model category on the cat-
cgory L ? of 1-reduced differential graded Lic algebras over @ and constructs an
equivalence of categories between the rational homotopy category of 2-reduced
simplicial sets and the homotopy category of &?. In (3], W.G. Dwyer proves
that a similar construction can be performed with respect fo systerns of sub-
rings of Q. For r > 3, he obtains an equivalence between his {ame homotopy
theory of r-reduced simplicial sets and a corresponding homotopy theory of
(r — 1)-reduced differential graded Lie algebras over Z. This theory is recalled
below in more detail. In [13], D. Quillen also shows how to detect the various
essential rational homotopy invariants of a simplicial set in the corresponding
Lie algebra. This point of view has been very useful in rational homotopy the-
ory for explicit caleulations as well as for theoretical purposes. In the present
paper we embark on determining the cssential tame homotopy invariants of a
simplicial set, e.g. homology, cohomology and cup-products, homotopy groups
with coefficients and Whitehead products, from the corresponding Lie algebra.
We give alsc an application to 7,{BT3) where BT denotes the classifying space
of foliations of codimension 3. This application was suggested by E. Vogt. Since
the paper [3] and its sequel [4] there has been -at least te our knowledge- no
further study of W.G. Dwyer’s tame homotopy theory and its implications. We
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hope that our results render this theory more accessible. Working with it has
the advantage that no finite type conditions have to be imposed on the sim-
plicial sets. This is e.g. the case in the tame homotopy theory via differential
forms devcloped by B. Cenk! and R. Porter [2] (A report on that theory is
given in [14]}.

Before we can state our results we have to recall the main result of W.G.
Dwyer’s tame homotopy theory.

Let 7 be an integer, v > 3 and let s always be r — 1. Let R, be a tame ring
system, i.e. an increasing sequence of subrings ; (j = 0) of Q such that R;
contains the inversc of each integer & with 26 — 3 < j.

Let S, be the category of rreduced simplicial scts. The tame closed model
category structure on S is defined as follows : cofibrations arc injective maps ;
weak equivalences are maps f : X — Y such that the induced homomorphisms
T k(XY ® Ry — mrau{Y) ® Ry are isomorphisms for all k > 0 ; fibrations are
the maps having the right lifting property {RLP) with respect fo the class of
trivial cofibrations, i.e. g: X — Y is a fibration if in any diagram

A — X

4
-
B ' — Y

a right lifting, indicated by the dotted arrow, exists.

"w

Here and in the sequel, “—+" {resp. “—", resp. “=") denotes a cofibration

{resp. fibration, resp. weak equivalence}.

Let Ch, be the category of sreduced chain complexes (over Z) with the
following closed model category structure : cofibrations are injective maps with
dimensionwise projective cokernels, weak eguivalences are maps f such that
Hoypx{f) ® By, is an isomorphism for all k ; fibrations are maps g which are
surjective in degrees > s, for which H,.; (kernel {g)) is a Rg-module and
cokernel H,yi{g) has no p-torsion for p invertible in Ry, k£ = 0.

Let £, be the category of s-reduced differential graded Lie algebras over Z.
It is given the following closed model category structure : fibrations and weok
equivalences are as in Ch, ; the cofibreiions are the morphisms having the
{LLP) with respect to the class of trivial ibrations. {Note that the underlying
Lie algebras of cofibrant objects are retracts of free Lie algebras on free abelian
groups and hence are also free}. The category of Lie algebras we use will be
discussed shortly in section 1.

For X € S, let GX be the loop group of X ; let Laz GX be the Lazard
completion of GX, (denoted by log GX in [3]), considcred as a simplicial
Lazard Lie algebra. Let A-Laz, be the category of s-reduced simplicial Lazard
Lie algebras. Then there are adjoint functors {the left adjoint always appears
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as the upper arrow} :

Laz G
S, A-Laz,

There is another pair of adjoint functors :

where N denotes the normalization of a simplicial module, {note that NL is a
Lie algebra for a simplicial Lie algebra L}, and where N* is a left adjoint of IV,
(N* is denoted by UN* in [3]).

The category A-Laz_ is also endowed with a closed model category structure :
FRbrations (resp. week equivelences) are maps f such that Nf is a fibration
{resp. weak equivalence) in £, ; cofibraitons are maps which have the (LLP)
with respect to trivial fibrations.

Let A := NLaz G ; since Laz G and N carry weak equivalences to weak
equivalences, so does A. Hence it induces a functor A : Ho-§, — Ho-L, of the
associated homotopy categories. The other functors have total derived functors
in the sense of [12] ; let 1 : Ho-£, — Ho-S, be their composition.

The main result of [3] now says that one obtains equivalences of categories :

A
Ho S, Ho-L, .
I

For each closed model category D, we denote by (D)., {D}; and (D}.y the full
subcategories of D, consisting of the cofibrant, fibrant and cofibrant-fibrant
objects of D respectively.

In section 1, if Y € £, and A is an abelian group, we define m,4x(Y; 4) as
the {s + k)** homology group of the complex ¥ ® A. We will show :

Theorem A. If X € 8, is a Kan complezr and A is a cyclic Rg-module, then
the homotopy groups with coefficients, w-+x{X; A} are isomerphic to
TornlA(X); A), where Topn(—; A} is the derived functor of wayx(—; A).

Therefore, if Ly — A{X) is a cofibrant model, i.e. Ly is cofibrant and
Lx = AM(X) a weak equivalence, we have :

Trau(X; A) = oy (Lx; A) .

We will also prove :
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Proposition. Every H-space X, (r — 1)-connecied with r > 2, such that
71 16{X) is a Re-module, is of the homotopy type of a weak product of Eilenberg-
MacLane spuaces.

In particular, the loop space §1X of a tame (1e. fbrant) space in S is
homotopy equivalent to a weak product of Eilenberg-MacLane spaces. In fact,
we will deduce the proposition from this particular case. Some version of this
result has been established in [5], [6].

In section 2 we will show how one can build cofibrant models of L € £, in
a simple way. Together with the results of section 1, this allows to construct
meodels of A{X) in examples. But it is also possible to build a functorial cofi-
brant model, i.c. a functor F : £, — (L,),, together with a natural weak
equivalence FL = L. This construction will be useful for theoretical purposes.

In section 3 we will study the homology of X € &, through £,. First, if
L e L, debne abL € Ch, as L/T'\ L where I’y L is the commutator subalgebra
of L, and dencte by oabl € Ch, the suspension of {he chain complex abL. We
will prove :

Theorem B. If Mx € L, is o functorial cofibrant model of M(X), X € 8.,
then there is a canonical isomorphism :

Ho1{X; Ry) = Hopr{oabMx; Ry)for k> 0.

In section 4 we will display the diagonal in homology. For this purpose, i
L = (I{V), 81} is a cofibrant object in £, we define Ay : ¢abL — gabL®gabL
from the quadratic part of the differential in the universal enveloping algebra
UL. The map induced in homology by Ay does not depend on the choice of
V, we denote it by Ar. We will prove :

Theorem C. If Mx € L, is a functorial coftbrant model of M(X), X € 8.,
then the morphism

Apry + Hepp{loabMy; Ry) — Hopp(oabMx @ cabMx; Ry)
can be identified with the reduced diagonal
Hopo(X; Ri) — HepnlX A X Ri)
in o canonical way.
As a consequence, we get a natural isomorphisin
HEH(X: Ry = HS % (gabMx; Ry)

compatible with cup products. The additive isomorphism can be obtained in a
more direct way, as indicated in section 5.
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In section 6, if X € &, is a Kan complex, we compute Samelson and
Whitehead products with coefficients in a cyclic Rx—module A by means of
the functor A . They correspond, modulo a suspension, to the bracket on
Festh(AMX); A) induced by the Lie structure of A{X).

Finally, the following application will be given in section 7. Let BTa be
the classifying space of foliations of codimension 3 and let y € w4(BTs) be &
generator. Then we get :

Theorem D. The element [y,y] ® 1 € w7{BT'3) ® Q is non trivial. Never-
theless, any homomarphism from n:{BL3) into o subring R of Q, containing
1, L and different from Q, is trivial on [y, y].

We would like to mention that the results of this paper have been announced
in the notes [16], [17], [18].

1. Homotopy groups

We first have to introduce some notations and conventions.

Let £ be the category of differential graded Lie algebras over Z. We note
that the underlying Z-module of X € £ may have 2- and 3-torsion and that we
require only the following identities for the Lie bracket :

@) fz,y] = - (-)F Py, 2]
for homogeneous «, y, (| — | will always denote the degree}.

@) (e [y, 2] + ()W, [z, 2] + (-1, [z, 9] = 0.

The category L, is the full subcategory of £ given by the s-reduced objects.

Let Ch {resp. Ch,) be the category of chain complexes which are zero in
degrees < 0 {resp. s-reduced chain complexes) over Z.

We have a functor L : Ch — £ which is left adjoint to the forgetful functor
L — Ch ; in fact, L{V) is the free differential Lie algebra on V.

Let Ab denote the category of (ungraded) abelian groups.

Let C be a model category and F : C — D a functor {compare [12, L4]).
If F carries weak equivalences in C into isomorphisms in D, then F induces
a functor F : HoC — D, such that F oy = F, where v: ¢ — Ho-C is the
canonlcal map.

If D is also a model category and F' carries weak equivalences in C into weak
equivalences in D, we will also write F for the induced functor ¥ : Ho-C —
Ho-D.

If F carries weak equivalences between cofibrant objects of € into isomor-
phisms (resp. weak equivalences) in D, we will write F Ho-C — D (resp.
T HoC — Ho-D) for the derived (resp. total derived) functor of F.

Similar conventions will be followed in the dual situation.
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Definition 1.1. For X € £ and A € Ab, we denote by m;{X; A) the j*»
homology group of the complex X @ A. {Note that later on, in section 3, we
will introduce H;(X} 1).

Lemma 1.2. Let A be a Ri-module, then the functor mepiu{—; A): £, — Ab
has a left derived functor :

:ﬁ's-i-k(_; A} B HO_.£_3 - A.é .

Proof: For X € Ch,, we have H,p((X; Bi) 2 H,11(X; Z) @ Ri, by the uni-
versal coefficient formula. Let now f: X — Y be a weak equivalence in £,. If
A is torsion-free, then w4 (X; A} — 7, 41(Y; A} is an isomorphism for | < k,
again by the universal coefficient formula. But this is also true in general if X
and Y are cofibrant; the lemnma follows now from [12, (Proposition 1, § 1.4)].

In particular, if A is torsion free, then T,y (—; 4) : Ho-L, — Ab exists. M

Recall the definition of homotopy groups with coefhicients [10]. For a Kan
complex X € §,, we let mry b {X; Ry) 1= 7, 10{X) ® Rg. If A is a cyclic Re-
module of finite order, we define m, £(X; A) := [M(A4,r + k£ — 1), X), where
[—, —] denctes the set of homotopy classes of maps and M{A4,n) is a Moorc
complex with H,(M{A,n};Z)=A. In this case we always want to assume
k > 1, such that M(A4,r + k — 1) may be chosen in §,. For k = 0 the results
of [10} give a canonical isomorphism 7.(X; A)2 7. (X) ® A. Hence, for our
purposes we will take this formula as a definition for (X 4).

We can now state theorem A more precisely :

Theorem 1.3. Lei A be a cyelic Ri-module. Then there is a natural iso-
morphism w1 (X; AY =T o1 (MX); A) for Kan complezes X € S,.

In porticular, if Lx 5 N Loz GX is o weak equivalence with Lx cofthrant,
then w11 {X; A) 27,1 6{Lx; A).

Proof: To define T we have to take a trivial fibration Lx 5 A(X) with Lx
cofibrant ; then the adjoint N*Lx — Laz GX is a weak equivalence by lemma
1.4 below.

By (3] we have isomorphisms

Tr+k(X; Be) 2054 6{GX; B} = moi(Laz CX; Re) 2 moy x(N* Lx; Ri)
2 merk (NN Lx; Re) = mopi{lx; Rie)

because Lx — NN*Ly is a weak equivalence by (3, proposition 8.2).

Suppose now that 4 is of finite order. According to [10] , there is an exact
sequence

0= m(Y)® A - mo{Y; A) — Tor{ma—1{Y),A) = 0
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which is natural in ¥ and which is compatible with the isomorphisms
i X Re) Zwo4{GX; Ri) and mppg (X A) = w1 (GX; A) . By the five
lemma the sequence of isomorphistas 7, 4. (X; B )22, . w1 {N*Lx; Ry) yields
the corresponding sequence of isomorphisms 745 {X; A)2. . Za.yp(N*Lx; A).
By lemma 1.5 below we have an isomorphism ne & (N* Lx; A)2T 51 (NN Lx; A).
Finally, T, (N N*Lx;A) is isomorphic to Ty x(Lx;A), because Lx = NN*Lx
is a weak equivalence. W

Lemma 1.4. For X € &, let f : Lx — NLaz GX be a weak equivalence
in L, with Ly cofibrant. Then the adjoint ¥ : N*Lx — Laz GX is a weak
equivalence in A-Laz,.

Proof: By definition, f# is a weak equivalence if N f# isone. In the diagram
N{f#)
NN*({Lx) -—— NLazGX

Im @, "

-
-

Lx’

the arrow (1) is a weak equivalence by (3, proposition 8.2] and {2} is again f,
hence N{f#) is a weak equivalence. W

Let the category Ch of chain complexes over Z be endowed with its usual
structure of 2 closed model category (see [12]) : weak eguivelences are the
homology isomorphisms ; cofibrations are the injective maps with dimension-
wise projective cokernel and fibrations are the maps being surjective in degrees
greater than 0. Then, for 4 € Ab, the functor Ch = Ab, X +— H.{X; A) has a

left derived functor Ho-Ch — Ab, X — ﬁn(X ; A).

Lemma 1.5. Let G be a simplicial abelian group and let A be g cychc finite
gbelian group, then : n,(G; AY= H, (NG, A).

Proof: Recall that N is the normalization functor. We consider the pairs of
adjoint functors

¥
P
&
P
=

where S is the category of simplicial sets with its usual structure {see [12[) of
a closed model category and A-Ab denctes the category of simplicial abelian
groups.

For X € S, ZX is the simplicial abelian group generated by X ; it is obtained
by dimensionwise application of the free abelian group functor ([12, I1.5.3]).
The functor { is an inclusion. The closed model category structure on Ch is
transferred to one on A-Ab by the equivalence N {with quasi-inverse N~1}. One
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verifies that the functors induce adjoint functors of the associated homotopy
categories. Hence :
7o (iG; A) = [M{A,n - 1},iG|s = [ZM(A,n —1),Gla-a8

= [NZM(4n~1),NClgw % WNGlen = (W.QNGlos

where W is the complex
O W B Wy = 0.,

with W, = W,,_1 = Z and f is the multiplication by the order of A.
The isomorphism (+) is induced by a weak equivalence W — NZM (A, n—1).
Moreover, QNG 5 NG is a trivial ibration with QNG cofibrant and (%)
holds by definition.
Clearly, [W, QNGlon, = H (QNG;A) = H (NG;A). W
Remark 1.6. If A is of finite order, the isomorphism

Trii(X; A} 2 TosnlLx; A)

of theorem 1.3 depends on a choice of a weak equivalence W — NZM (A, r +
k—2).

Proposition 1.7. Let X € &, be fibrant, v > 3, lel QX be a loop space of
X in S, Then QX has the homotopy type of [[ros K{mi(X},i — 1).

Corollary 1.8. Let X € &, be an H-space, s > 2, such that 7g1:(X} is a
Ri-module for all k > 0. Then X is of the homotopy type of a weak product of
Eilenberg-MacLane spaces.

Proof of proposition 1.7: We may take IX = GX. Then GX — Laz GX
induces isomorphisms :

Terk{GX) = mpi{GX) ® R = worn(Laz GX)® Ry .

But Laz GX is in particular an object in A-Ab, hence homotopy equivalent to
a product of Eilenberg-MacLane spaces (|9, theorem 24-5]}. Thus the result
follows. M

Proof of corollary 1.8: If ¥ denotes the suspension, then there is a retraction
25X — X. Because of the assumption on the homotopy groups of X, we have
also a retraction H{LX), — X, where (£X); is the tamed X {or TX made
fibrant in 8,). Hence, X is a product of Eilenberg-MacLane spaces as a retract
of a product of Eilenberg-MacLane spaces. To see this one may e.g. apply the
theorem of Moore ([22, ch. IX, theorem 1.9]). B

Remark 1.9. Versions of these results (1.7 and 1.8} have been shown in [5)],
[8].
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2. Models

Notations:

(1) For M, N € £ we denote by M LN the sum (free product) of the Lie
algebras M, N.

(2) For M € L and V € Ch a free complex with differential 8, let r: V - M
be a chain map of degree —1 {i.e 78 = —dam7) . Then there is exactly one Lie
algebra differential d, on M UL{V) with: du = dps, d:-(v) := 7{v) + Gv, for
all v € V. This differential Lie algebra will be denoted by M U, L{V).

Let now s be an integer, s > 2.

Remark 2.1. Since £, is 2 closed model category, any X € L, has a
cofibrant “model”, i.e. there is a cofibrant M{X) ({free, as Lie algebra, on a
free abelian group) and a weak eguivalence M{X) — X. For computational
purposes, it might be interesting to construct cofibrant models with a “small”
number of generators.

Construction 2.2: Building “small” models.

Let X € £,. We inductively construct a differential free Lie algebra M(F) to-
gethef with a morphism M AN X, such that 7.4 (f*); R;) is an isomorphism
for I < k.

We may start the induction at k = —1, by setting R_; := Z and M-} := 0.

Suppose M® f%) are constructed.

{(a) Choose classes [a;] € mosrp1(X;Rep1), ¢ € I, such that {[a;]} and
ffk)(vrs+k+1(M(");Rk+1)) generate msik+1{X; Fry1) and such that a, € X.
Then let W be a free Z-module generated by wy, i1 € I, luy]l = s+ k+ 1, and
define a map M® UL{W)} L X by :

gaeos = FH ) glws) == ay .

Then, obviously, 7,1:(g; R;) is an isomorphism for [ < k and a surjection for
i=k+1 : '

For the next step, let us redefine M®) ;= M®F) UL(W) and F&¥) .= g

(b} Note that 7, (X; Re) = oy { X)® Re. Choose cycles z; € Zy i1 (MED
such that their images in 7,411 (M%); Ry, 1) generate
kernel (moyxr1{F): Ris1)). Hence in particular [f(F(2) ® 1) =0 in
Tsrks1(X:Rep1), or )@ 1 = Ox (3, wi; ® au;) for some wy; € X,
@ ; € R4y, Assuming that all denominators of o ; are invertible in Ry, we
may multiply z; by their product to get 3, and it is still true that the classes
of %; generate kernel (r i ry1(F*; Rey1)). But now, we have :

F®EYO1=0x(0;)®1 forsome W € X .

Hence, the order of F (%) — 8x () is invertible in Riyp. Multiplying Z; by
this number, we finally have f%*)(3,) = 8x () and the classes of Z; still generate
the kernel. :
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Let W be a free Z-module generated by w;, ¢ € I, with jw;| = s+ %+ 2. Then
we define M®+Y) = M) U, L(W), with 7{w;) =%, and MF+D 1 x
as the extension of f¥) by the map L{W) — X given by w; +— ;. Then
7spi{F5T1: Ry) is an isomorphism for § < k + 1.

{c} Finally, the cofibrant “small” model for X is obtained as
M{X} = lgank). [ |

Remark 2.3. The above construction also works without any restriction
on s and the ring system K,. Only the conclusion that the result is cofibrant
refers to the closed model category structure of L.

Proposition 2.4. There exisis a functorial cofibrant model, i.e. a functor
L, S (L,)c together with o naturel week equivalence F(X) — X.

Proof: The arguments are adapted from {3]. It suffices to'do the construction
for the constant ring system R, = Z, {see remark above).

(a) Let X € L, We denote by Zs4i(X) the free Z-module (concentrated
in degre~e s + I} generated by the set of cycles Z,1:(X). We define M;?) =
USRS L{Z (X)), The inclusions Zep{X) € X define a morphism M)(f) -+ X
which induces a surjection of m,.

Given f : X — Y, we obtain MO(f) : MY — M as induced by the
restrictions of f to Z (X)) — Z, (YY) ; L.e. the diagram

M}?} —_ X
lM(‘”(j) lf commutes.
MO vy

{b) We now define functorial extensions M‘g}) C M;f') C .,.ME{“%) C ...

together with a natural map a(;J'k) : M§;+k) — X which induces & surjection
of 7, and isomorphisms of #; for ¢ < s+ k. Suppose M§f+k), af,i““} are defined.

Let Px be the free Z-module generated by

s+k stk
{(z,7) € Zs+k+l(M§(+ )) x Xs+k+2/0fg(+ )(l) = 8x(z)} .
The elements p € Py are given the degree |p| = s + k + 2. Define ;
M§;+k+1) = M§f+k) U, L{Px), with 7(p} = z for p={z,z), and define
M§;+k+1) ‘*5(’:”) X
as the extension of aE-,?J'k) by the map L{Px) — X given by p = (2,7} — 2.

Then, a(;“cﬂ) induces still a surjection of w, and isomorphisms of w,, for
i<s+k+ 1L
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Given f: X — Y, we have an induced map Px — Py, defined by
(z,5) = (MEYR(F)(2), f(z))
which gives M{HRTU(£): METEHD g2 tEHD),
(¢} Finally, we define My = lime,f). | |

Remark 2.5. It is also possible to construct functorial fbrant models but
we do not need this construction here.

Corollary 2.6. The functér F induces a functor F . Ho-L, — Ho-(L,).
which is an equivalence of categories.

This proof is clearly part of gencral constructions with model categories as
follows.

Lemma 2.7. Lei C be a model category and F : C — (C), a functor with a
natural weak equivalence F{(X) — X. Then F wnduces ¢ functor F : Ho-C —
Ho-(C). which is an equivalence of categories.

Proof: This is a particular case of proposition 2.3 of [13], nevertheless we
give the proof which is really simpler.

Let f: X — Y be a weak equivalence in €. From the diagram :

FX) — X

Lk

Yy o v
we deduce that F{X) — F{Y) is a weak equivalence. Hence F induces
F : Ho-C — Ho-(C)., because the homotopy categories are localizations with
respect to the classes of weak equivalences.

Similarly, the inclusion i : {(C). — C induces i : Ho-(C). — Ho-C. We claim
that 7 and F are quasi-inverses. This follows from the fact that, for X € C,
io F(X) = F{X) — X is a natural weak eguivalence, hence an isomorphism in
the homotopy categories. B

3. Homology

In this section we prove that the homology H,.4{X; R} of X € &, is naturally
isomorphic with the homology H, i1 {A{X); R;) which has to be defined.

Definition 3.1. Let ab : £, — Ch, be the funcior ebchanization i.e.
ab{X) = X/T: X, where I'' X is the commutator subalgebra of X.

Let i: Ch, — L, be the inclusion. (For V' € Ch,, the underlying Lic algebra
of (V) is abelian).
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ab
Proposition 3.2, The functors L, > Ch, are adjoint and their total
dertved functors are adjoint functors ;
ab
Ho-L, Ho-Ch, .

i
Proof: The adjoininess of {ab, 1) is clear. To prove the second part, we note
that, by definition, ¢ maps fibrations to hbrations and weak equivalences to
weak cguivalences. Hence we can apply the proposition in the appendix to this
section. M

Remark 3.3. It can be shown morc directly that ab maps cofibrations
to cofibrations : if X — X UL{W) is a free map, then its abelianization
ab{X) — ab{X)®W is a cofibration. Since any cofibration is a retract of a free
map, the result follows. Similarly, it can be shown more directly that ab maps
weak equivalences between cofibrant objects to weak equivalences.

We denote by ¢ : Ch, - Ch, the suspension functor : o(A)gq1 1= A ;
8,04) = —08a. Note also that the functors H,..,{—; R;) induce functors

F,—_H(—; R;) . HO-@T — /_4__b_

Definition 3.4. For X € £, and A a Ry-module, we define :
Hewi{X; A) = Hyi{cabX; A).
Now we can restate theorem B as :

Theorem 3.5. Let 4 be a Ri-module, the functors Ho-§, — Ab, X
Hoyi{(X; AY and X — H 1 {M(X); A) are isomorphic for k > Q.

To prove it, we first have to establish the analogue of proposition 3.2 for
simplicial Lazard Lie algebras :

Definition 3.6. 1) Let Laz be the category of Lazard Lic algebras. By
definition, each X € Laz is equipped with a central serics X = TgX D ThWX o

. establishing the Lazard structure.

We define abX = X/ X, Then ab: Laz — Ab is a functor which has a right
adjoint j: Ab — Laz given by #{V} =V with IhZ'VW =0, V € Ab.

2} Similarly, we have the simplicial analogues denoted by the same letters :

a.b
A-Laz, — _ A-Ab, .
i
Note that A-Laz, has the closed model category structure described in the
introduction and A-Ab_, the category of s-reduced simplicial abelian groups,
is given the closed model category structure obtained by the equivalence of
categories N : A-Ab, — Ch_.
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ab
Proposition 3.7. The functors A-Laz, | A-Ab, are adjoint with ad-
J
joint total derived functors :
ab
Ho-A-Laz, | Ho-0-Ab,

2
Proof: We again apply the proposition in the appendix to this section. By

definition, § maps fbrations to fibrations and weak equivalences to weak equiv-
alences. W

The pairs of functors in 3.2. and 3.7. are related as follows :

Lemma 3.8. Consider the diagram :

L, o= Ale,
N

abl]’i .‘i‘]J'ab

Qb-s L A'@s
N

then ab N* and N~ 'ab are isomorphic.

Proof: The right adjoint functors are Nj and iN which are equal. Hence
their left adjoints are isomorphic. W

Proposition 3.9. Suppose there is ¢ functor S, — (£,)., X — Lx, such
that there is a notural weak equivalence Ly — NLazGX . Then there is a
natural chain map abLx — NabGX which is a weak equivalence in Ch, .

For any group G we denote by abG its abelianization ; similarly, if G is a
simplicial group (like GX), then abG is its {degree-wise) abelianization.

Proof: Let f : Lx 5 NLazGX be given. Then the adjoint f# : N*Lx —
Laz GX is a weak equivalence by lemma 1.4.

Now N*Ly and Laz GX being cofibrant, we obtain a weak equivalence (by
proposition 3.7 and lemma 3.8) :

N labLy = abN* Ly — abLazGX ZabGX

and hence a weak equivalence ab Ly = NabGX, which is natural in X if f
depends functorially on X. #

Proof of theorem 3.5: We first recall some facts from the theory of simplicial
sets ([9, section 26]).
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Let X € 8, and R C Q a subring. We denote by RX the reduced simplicial
free R-module generated by X which can also be considered as a chain complex.
Denote by 7 : X — G X the canonical twisting function ; dencte as well by
7: X — abGX the composition X - GX — gbGX. Then7: X — abGX
induces a chain map of degree —1 : ZX — abGX, which induces isomorphisms
of homology groups. It follows that the map 7 : ZX — oabGX, defined by
z ++ o{—7z) is a chain map inducing an isomorphism in homology.

Consider now the following diagram where F is the functorial cofibrant model
of 2.4 :

lazC N F
Horx — A-Lez, —— Li—— (L), . Hr

S

— Laz @ N F et
Hop “Ho8,— Ho-A-Laz,— Ho-L———Ho- (L) Hrii

For the natural isomorphism between H,yx(—; A)FNLaz G and H.{—; A},
we may take the isomorphism induced by

NZX — oNabGX — gabFNLazGX .

{Note that the right one is established in 3.9).
Let now L € Ho-L, ; by definition, H,«{L; A) is equal to H,+(cabQL; A)
with @L — L a trivial fibration and QL cofibrant. In the diagram,

2L
L7 1~
FL . L

the dotted arrow, making the diagram commute, exists. Moreover, an arrow,
making the diagram homotopy commute, is unique up to left homotopy. It
follows (3.2} that FL — QL induces a unique isomorphism in homology. Ad-
ditionally, this isomorphism depends functorially on morphisms L — K, i.e.

QL —— QK
-k

4 N

FL —_— FK

homotopy commutes. This proves the theorem.
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Appendix to section 3. On total derived functors of adjoint functors
between closed model categories.
F
Let C, D be model categories and C D adjoint functors. Denote the

class of cofibrations, fibrations and weak (%uivalences by cof, fib, we respec-
tively. Then theorem 3 of [12, {Section 1.4} says the following :

Assume F(cof) C cof and F(f) € we for any weak equivalence f € (C)e,
assurme G{fib) C fib and G(g) € we for any weak equivalence g € (D) ; then
the total derived functors

F
HoC Ho-D
G
exist and are adjoint.
F
Proposition. Let C D be adjoint functors between closed model cot-

egories such that :
(i) G(fib) C fib,
(1) Glwe) C we.
Then F satisfies the obove conditions and hence
F
Ho-C— " Ho-D
G
exist and are adjoint.

Proof: The proof will be based on [12] without detailed references.
{1) We first show that F(cof) C cof and F{cof Nwe) C cof N we.

In a closed model category, cof {resp. cof Nwe) is the class of morphisms
having the left lifting property (LLP) with respect to fib N we (resp. ftb).
Hence, if f : X » Y is a cofibration in C, we have to show that in any diagram

FX — A

A
)
FY —— B
a left lifting h exists. Applying G one obtains the diagram
X — GFX — GA

el

vy . GFY — GB

Voorer
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in which a left lifting h exists. But then its adjoint h is a left lifting for FF.
Stmilarly, one proves F{cof N we) C cof Nwe.
(2) Let A, Be(C),, f: AS B. We form a diagram :

A . RA
b

4
B . RB

with RA, RB € {C).;. A morphism g making the diagram commutative exists.
Hence ¢ is a weak equivalence and therefore a homotopy equivalence in the
ordinary sense, becanse RA and RB are in (C).y, i.e. there exists ¢’ : RB —
RA with g’ og ~idgs and go g’ ~ 1dpg.

We want to show that the image of Fg in Ho-D is an isornorphism. This will
imply that Fg is a weak equivalence because D is a closed model category.

B Let X € (CYey 0, : X ___, Y . If &, 8 are left homotopic, then we
claim that Fa and F@3 are left homotopic.

A left homotopy between o, § may bg fhosen as H in the diagram :
XvX — X

Bo+&
IH

~r =

X — X
Applying F we get a diagram FotPg
FXvFX —— FY

| NI

Fo -
X — " FX

and we need only to show that Fo € we.
But 8y : X — X is a weak equivalence and a cofibration, hence Fo is a weak
equivalence, because Fd; is one and 08y = idy.

{4) It follows that Fyg' o Fg is left homotopic to idrgas and Fgo Fg' is left
homotopic to idrrp. Now, the images of left homotopic maps in the homotopy
category are equal ; hence Fg becomes an isomorphism in Ho-D.

The diagram -
FA »—— FRA

pr ~ng

FB ~—- FRB
shows that Ff is a weak equivalence. B
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4. The homology of the reduced diagonal

Let L € £ such that the underlying Lie algebra is frec on a free Z-module
V. For the sequel we fix V. We derote the underlying Lie algebra by L{V)
and the space of commutators of length 4 by LFI(V). The differential 87 can
be written as 8, = ¥, 8;, where 3;{V') C LE+1(V). For instance, 8y and &
are the linear and the quadratic part of d; respectively.

Let aablL be the suspension of abL. = V ; 0 ® ¢ : abL @ abl, — agabL & cablL,
z®y— (—1)*lox ® oy, is a chain map of degree 2.

One verifies that the universal enveloping algebra of L(V?} is T(V). The
canonical map of L{V) into T(V) is denoted by u : L{V} — T{V)

Definition 4.1. We define Ay : gabl — cabLl @ gabl as
Ay :i=(cQc)ouodoo
{Note that Ay is of degree 0).

Lemma 4.2. (1) With these de_ﬁmtzons Ay is cocommutative and a map of
chain complezes.

(2) Let f: L ={L{V),8.) — L' = (L{V"),8,)) € L, then f induces
aabf : gabl — cabl’ and Avyiooabf is chain homotopic to (gabf ®aabfloAy.

Proof: Both parts follow by a straightforward calculation. For (2), we note
that a homotopy is defined by ov — {o ® o){fiv), where f; is the quadratic
partof f. B

Remark 4.3. As a consequence, we note that the map induced by Ay in
homology does not depend on the choice of V' ; we denotc it by
Ayp : H(eabL) — H{oabL & oabl).

Then theorem C can be restated as :

Theorem 4.4. Let X € S, L = (L(V),8r) € (£,). and L = NLazGX be
o weak equivalence. Let A : QpX — QuX @ QuX be induced by the dicgonal
X—-XxX.

Then the diagram

gabl @ Qg cNabGX ® Q3 NQ,X
jﬂv JN&
cabl ® gabl ® Qy —— oNabGX ® o NabGX & Qy —— NQX @ NQu X

commautes in homology Hyyy(—; Ry) forl > 0, where Q; = Z[%] (Note that
the horizontal arrows induce isomorphisms).

The proof will be modelled on proposition 6.5 in [13].
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Denote the canonical twist by 7 : X — GX. Let G := LazGX for sake of
simplicity and let f‘{) =G> f‘l D ... the series defining the Lazard structure
on G. Let 7 also denote the composition X — GX — & and denote by 7y
and 7, the compositions X — G — [o/T1 @ Qe, X — & — [o/lb @ Qo
respectively. Note that ['g/T' ® Qo denotes the localization of the 2-nilpotent
group [p/Ty away from 2.

Lemma 4.5. The diagram

— (—n1), o oa
Qo X Tn_1{T0/T1 ® Q2)

l» e Jva
P A 1

z{:).

Tn{ QX @ QuX) —— m2(To/T1® Do/t @ Qa) {—’?Tnmz(f\/fb ® Qa}

commutes, where :

(i) Qo X @ QX and [o/Ty ® To/Ty are dimensionwise tensor products of
stmplicial groups.

(i) 7' @ 7" (z @ y) := nidoz @ domry.

i) () f‘o/f‘1®f‘o/f‘1 RQz — f‘l/f‘g ®@Qy is induced by the commutator :
(z,y) = zyz~ly~.

{iv) 8 is the boundary homorphism of the sequence

* D To@Qa > To/To®@Qa — To/T1®@Qa — « .

Note that -21-( . } defines a bijection of the subgroup of skew-symmetric tensors
of To/T'y ®T'g/T'y @ Q2 onto ' /T ® Qo.

Proof: Let o € 1,.(Q,X) be represented by z = Y a.z € N{Q,X) ; ie.
diz=0foralli=0,... ,n. It follows that, foralli =0,... ,n:

{4.6) Zax=0 forany y#£+*.

diz=y

{In the computations, we will use 6.1. of {13]).

On the lower path z will go to %Eaz {nidox , domix).

On the upper path we have to caleulate 8(Za,;717]. To this end we have to
choose some element 2’ € N{['y/T ® Q,) being mapped to Ta,i{z). We may
view Lo /T2®Q3 as a Lie algebra in a canonical way since it is a nilpotent group
of class 2 which is local at the set of primes different from 2 {compare [21]}.
Therefore, the equation Ya,mx makes sense ; clearly Ba,mz maps to a1 .
Moreover, for § > 0, we have d;{3" a,10x) = 3 a.d;mez = 3 aymed;4 17, which
is zero by equation {4.8) and the fact that o = 0.
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Hence 8{3_, ar1z] will be represented by do(3 a.72z). Now, do() ax7ex) =
Y a.dpmz = S a, (radox) ! - {7edhz), where the dot is multiplication in the
group f‘g/ 'y ® Q2. We can express the multiplication by the Baker-Campbell-
Hausdorff formula :

I
do(} " armaz) =Y au(—7adoz + Tz - 5 (redo, 2d12)) -

We note several facts :

(i) the sums Y ay7adox, ¥ az72d1x vanish because of {4.6).

(i) the commutstor {radoz, T2diz) only depends on the classes of the
corresponding elements in f‘g/ I'1, hence :

{rodox , Tediz) = (ndox , 1d1x) .

(iii} i diz = midpx + domix
Finally, we get :

1
dg(z QrTax) = —5 Z az{ridpz , dorizy M

Proof of theorem 4.4: We first need some notations. Let A be a chain complex
over Q2. Then we denote by sym {A ® A) the symmetric tensors in 4 ® A4, by
ssym {A ® A) the skew symimetric oncs. We have canonical retractions :

2 A®A— sym(A® A),a®b — %(a®b+ (~1)p @ a) |

similarly p: A®@ A — ssym(A Q@ A).
Furthermore, we note that up to homotopy a “diagonal” A factors as in the

diagram : _ NA _ o
NQ,X — NQX®NQX

I

sym(NQ, X ® NQ, X)

This follows from the fact that the interchange map fixes the elements of
image {NA},.

For any Lie algebra X we denote the descending central series by ' X = X,
MX:=[X,X],... .f L €L, wedenote by I L/[';L, j > ¢, the induced chain
complex. _

Let now L = (L{V),8.) > NLaz GX be as in the statcment. Let

8’1 . Hl-(I“GL/flL ® QQ) — H,;_l(I‘lL/Fg.E ® Q'z}
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be the boundary homomorphism defined by the exact sequence
0= L/To L ®Qy = Tol/T2L®@Qy = ToL/TiL® Qs — 0.

Note that 8] is induced by &, the quadratic part of the differential 8, on L{V).

Clearly, abL @ Qu 2 TZL/ThL ® Q2 and

ssym{abL @ abL ® Qo) 2 [ L/TH2L ® Q3 .

Next, we note :

1) N(Ty/Tup) = NTL/NT

2) [i{NLazGX) C NT,.

1} is cbvious ; one proves 2) by induction on i :
It is trivial for ¢+ = 0. Fyom the commutator map lo®l — T;11, we derive
N(To)® N([) — N{fy®T,) — N(Ti11), and hence Tir1(NTg) € N(Dipy)
(Note the different meanings of “®” here 1).

Recall that L — NIy = NLaz GX gives rise to map abL — N{To/Ty),
which is identical with g L/T L — NTg/NT.

Thus, the left side of the following diagram commutes. Note that

Ay : H{abL) — H{abL ® abL) is obtained from Ay by composing with the
appropriate suspensions.

Hi1(sbl © Qs HoaN(RofT)8Q) ————  H(NT,X)
[ fs
Hi D LT L @ Q) Bl N T2 0 Qa) {Nau

“ e

Bia(orym{adl @ bLOQ)) — | Hoolsaym{N(Re/T1}® R(E/F2) 8 Qe) —  Hi{eym(NT,X NG, X))

S !

H;_1{abl. & abl @ Qy) — H;-:{N(f'df':)@ﬁr(f‘off‘l)@Q?j "—. HS(NG:XQNE:X)

Let #: NQuX — N(T'o/T'1)@Qq be induced by 71 (see the conventions before
lemma 4.5). Then § is given by the formula S{a ® 6) = (- 1)I*7{(a) ® 7(b) by
[18, proposition 6.4).

The right half also commutes by lemma 4.5. Hence, taking the appropriate
suspensions proves the thecrem. A

5. Cohomology

Definition 5.1. Let 4 be a Ry-module (in the ungraded sense} and L € £, ;
then we set : —
H™(L; &Y := H™ % {pabL; A) .
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Remark 5.2. If M is a cofibrant model of L, then :
H™E(L; A) 2 H™ *(gabM; A) .

Theorem 5.3. a) The functors H™H5(—; AYo A and H™+*(—; A) from S, to
Ab are isomorphic.

b) Let A be Ry or a quotient ring of Ry, Then the cup product structure
on HST5(_; A) corvesponds to the cup product structure on HS'H5(—; A)o )
derived from 4.1.

Proof: This follows from the results of sections 3 and 4. @
We would like to mention a different proof of the first part of 5.3. This gives
us the occasion to introduce a path object for abelian fibrant ohjects of £;.

Definition 5.4. Let P'(¢,dt} be the free commutative algebra with divided
powers, with |[{] = 0 and |df| = —1. Let L € £,, then we set :

(LD, = (T, dty® L), for p>s,
(LDYe = Z,(T(t,dt) @ L) .

Then L7 is a differential Lie algebra with Lie bracket given by
e@z,b®y):=(-1)"1ab® [z,y) .
Direct computations give :

Lemma 5.5. (i) The canonical inclusion I — L! is a homology isomor-
phism (over Z).

(i1) If L is abelian, then the evaluation maps L given byt =0,1t =1
are Lie algebra morphisms.

(i) If L is abelian fibrant, then LT is a path object for L, i.e. there is a

commutative diagram !
L —= LxL

\T{c 0,t=1)

Lemma 5.6. Let A be a Ri-module. Let ASH® be the graded module which
is A in degree (s + k) and zero in other degrees ; we consider it as an abelian
differential Lie olgebra. Let X € &, and Lx a cofibrant model of MX) ;
then there is an isomorphism [X, u(ACT*)|s = H***(abLx; A) , where p
Ho-£, — Ho-S, 1is the equivalence of categories given in [3].

Proof- Since AT*) ig abelian, the addition AGTR) x AGHR) _, Als+k) g 5
morphism in £,. This defines a multiplication on p(A®+K)) such that we have
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the following sequence of isomorphisms :

[X,;J.(A(s-l-k))]_ér o [X(X),A(S'HC)]E‘ o [Lx’ A(s+k)]£’ (g)[abe}A(s+k)]£’

{’=“)[{1be  ASTRN oy o HPE (b Ly A)

Part (*) is due to the commutativity of the Lie algebra A(s+®) |

part (xx) follows from the fact that the path object L’ of L := Als+®) jn £
is alsc a path object of L in the category of chain complexes. B

Corollary 5.7. The space u{ACHR)) is equivalent in Ho-S, io the Eilenberg-
MacLane space K(A,r + k) and H™VR(X; A) = H*Vo(abLx; A).

Proof: In lemma 5.6, let X be a sphere S™* and let L 5 MS™) be a
cofibrant model. By section 3, we have :

R if i=1

, provided 0<i<k .
else -

Hs+£(abL; Rk) = {

It follows that :
A if =k

HV*(abL; A) = {
C elge .

Remark now that an Eilenberg-MacLane space K(A,r + k) is fibrant in §, ;
hence K{A,r + k) is a fibrant model of u(AG+*Y). Therefore, by remark 5.8
below :

H™Y(X; A2 (X, K (A r+ k)|s = [X, K{(A,r + k)|s, = H* *(abLx; A)

for XeS.. 1

Remark 5.8, Let X,Y € 8, and let Y be tame (i.e. fibrant). Then ¥ is
also fibrant in S (3.2 of [3]) and we have [X,Y]s = [X,Y]s , for we may take
the samc cylinder object in both theories.

6. Samelson and Whitehead products

We refer to [10] for the definitions of Whitchead and Samelson products {to
be recalled below) and a study of their interrelations. The objective of this
section is to prove the following :
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Proposition 6.1, Let X € 8, be @ Kan complex and let Lx — AX) be
a weak equivalence with Ly cofibrant. Let r+ k> 14+ m+ 1 andlet A be a
cyclic Ry-module. Then, under the isomorphisms of theorem 1.3, the Whitehead
product

T141({X; A) X T 1 (X3 A) = Frgmy1 (X A)
corresponds to the map induced by the Lie bracket

m{Lx; A) X mm{Lx; A) = Tim{Lx; 4) .

Remark 6.2. The Whitehead product is identified with the Samelson pro-
duct by way of the commutative diagram

w
T4 {X; A) X T2 (X5 A) o Mg {X; 4)

1{—1)‘3><8 la

m{GX; A) X 1 (GX; A) L 1em{GX; A)

where & : mpp1(X; A) — m(GX; A) is the connecting homomorphism in the
path fibration over X.

To prove the proposition it suffices to show the corresponding statement

about Samelson products, i.e. the Samelson product
m(GX; A) X #m(GX; A) — 14 (GX; A)
corresponds to the Lie bracket as stated above.

To begin, we observe the following things :

(a) There is no need to take any precautions with respect to the p-primary
parts for p = 2,3, because by calculating in the “tame range” the usual diffi-
culties are ruled out.

{b) We have to distinguish the cases where A is Ry and where A is finite. In
addition, if A is finite, the situation where [ or m is equal to s requires special
attention. But we shall give the proof only for A finite with {, m > s, because
the necessary adaptations of the arguments to the other cases are natural.

Next, we shortly recall the definition of Samelson products with coefficicrts
using the notations of section 1 and we will immediatly consider only those in
the “tame range”.

Let A =Z/¢Z be a2 Rp-module. Let G be a s-reduced simplicial group. Let
ae m(GiA), B € mn(G A) withi+m < s+ k Let o, 8 be represented by
maps f: M({A,l -1} — G, resp. g: M{A,m —1) — . Consider the map
< fog > M(AL - 1) x M(A,m—1) — G, (z,y) — fl@)a(y)f(z) " gy)™"
Then, there is a factorization of < f,g > as follows

MAL-1)x MAm—-1) 7 ¢

I
4 [
-

M(Al+m—1) —— M(AI-DAMAm-1"
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and a canonical arrow ¢ {see [10]} which exists only in Ho-S {by abuse of lan-
guage we denote it as above). The Samelson product [a, 8] is then represented
by ce.

If G € A-Laz,, then G will be considered as simplicial group or simplicial
Lie algebra according to the context.

Lemma 6.3. Let G € A-Laz, with central series (G;) defining the Lazard
structure. Let P = M(A,1— 1) x M(A,m —1). Assume that for some i the
map of groups of homotopy classes

[P, G) — [P,G/Gi]

induced by € : G — G/G; is bijective.
Then < f,g > is homotopic to f, g] where [f, g is defined by the Lie structure
of G via the formula [f,g(z,¥) = [f{z}, 9(v)).

Proof: It suffices to prove that ®{< f,g >) =< &f, ®g > is homotopic to
[®f,®g). Set f := ®f, § = @g. Then by the formula of Baker-Campbell-
Haussdorff we have < f,§ >= [f,§] + v where v is a finite sum of iterated
brackets of length > 3 in f,§ with some coefficients. By the inverse of the
Baker-Camphbell-Haussdorff formula {[8]) v can be interpreted as an element
in '3 {morg(P, G/G.)), the third term of the lower central series of the group
mors{P,G/G;). But the group [P, G/G;] is nilpotent of class < 2, because P
is a product of two suspensions. Hence % is homotopic to zero. B

Proof of proposition 6.1:

{a) By section 1 we have weak equivalences GX — LazGX « N*Lyx, hence
there is an isomorphism <, 1 (N*Lx; A) = wes1£{GX; A) compatible with the
Samelson products.

{b) We verify the conditions of lemma 6.3 for Laz GX. We will rely heavily on
§ 8 of [3] and will therefore adopt the corresponding notations. Let Y := GX
and I';Y the lower central series subgroups of ¥ ; let EY := LazG'X and E,Y
the central series subgroups of EY defining the Lazard structure. Then, by (3,
§ 8], for ¢ large and a given prime number p there are isomorphisms

Trpt(Y/IY) ® Zip) = 1ot (EY/EY) @ Ly

for t < 2p - 4, where Z,) denotes Z localized at p. Moreover for i large
Tyt Y/T:Y Y 2wy (Y). Hence we also have

‘JT,-.H,(Y) & Z(?) "=V7T,-+g (EY/E,,Y) @ Z(.p) .
Let now p be a prime occuring as factor of ¢ {recall A = Z/gZ). Then we

have p > %’—3, {+m <s+khencer+2p—42>r+k It follows that the map
EY — EY/E;Y induces isomorphisms of 7,4,(—)® Zg, for r+t < r+ k. The
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dimension of P is less than r + k. Hence [P, EY| — [P, EY/E.Y] is bijective
(because these groups are torsion groups whose orders involve only the prime
factors of ¢).

(c) Let f,g represent elements a € m(N*"Lx; A), 8 € mm(N"Lx; A) . Let
a € m(Lx; A), b € mm{Lx; A) correspond to a, § via the equivalence Lx —
— NN*Ly . Then it suffices to show that [e,d] € mmyi{Lx; A) corresponds to
(e, B] which is represented by [, 4] .
Hence we have to consider the following diagram :
MALI-1) x M(Am—1) —2 NDxxN‘Lx —1 N7Lx

-
o

-
-
-
-
- C
-
—

MAL~D)AMAmMm—1) =~

[e
M{Al+m—1)

According to the procedure in section 1, we form the foliowing diagram:

L.
NZ(M(A,l—1) x M(A,m—1)) — NN*Lx x NN*Lx —];NN‘LX

S R

NZ(MAI-DAMAm—1)- " Lx x Lx . Iy
~ ’ -
NZM(Al+m-1)

To obtain [a, b] we apply €€ to a canonical class in
Him(NZM(A 1+ m—1);4). &

7. Application

Having identified enough algebraic invariants of spaces X in the model Lx
of A(X) we can now do a little computation.

Proposition 7.1. Let X be 3-connected, ma{X) & Z[3] and lety € 7a(X) be
a Z[}]-module generator. Note that H*(X; R) = Hom(r4(X), R) for any sub-
ring R C Q, with 1 € R. Let ar be the corresponding generator for H'(X; R)
with ap(y) = 1. Assume aqUaq =0, but that for all R as above, R # Q, the
map R — H¥(X; R), r — r{ag U ag), is injective. Then we have :
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(i) ly, ¥ ®1# 0 in 17{X) ® Q,
(i) If R # Q, %, % € R, then any homomorphism 7;{X) — R vanishes
on [y, y]. In particular, [y, 4] ®1 i3 not in any direct summand R of m:(X)® R.

Example 7.2. The proposition might be interesting because it applies to the
classifying space BTy of CP-foliations of codimension 3, p # 4. This is not the
place to recall what is known about the structure of #,BI'3. (E.g. it is proved
by S. Hurder [7] that there is a surjective homomorphism #sBT3 — R?). But
this result seems to be new.

We have to show that BT'; satisfies the assumptions of the proposition. The
condition on my follows from theorem 2 of [19]. The condition on ag U aq
is Bott vanishing ; the condition on ap{J ap can be proved by following the
method in the appendix of (1], see also [20]. Thus theorem D is established.

Remark 7.3. This application has been proposed to us by E. Vogt. He
arrived at the result by different methods which are, however, similar in spirit.
In [15], there will appear a proof within a different algebraization of tame
homotopy theory.

Proof of proposition 7.1:

We work in the category S5 and may replace X by a taming {i.e. a fibrant
model} of X.

We first construct a naive cofibrant model M of /\(X } according to section
2. In degrees < 7 it looks as follows :
uly, [§$ ?]
Ziy [‘ga g]

[ olus cn] | ~a
-3

i) ea -

We need one generator § in degree 3 corresponding to y ; the differential is 0
in degree 3 and 4 and on decomposables of degree 7. The elements z; and w;
denote generators. We set :

Sw; =1,§,8) + ) s,

with ;, sj cZ

Assume now that f : n7(X) — R is a homormorphism. We may look at f as
a homomorphism wg{M & It} — R or a homomorphism Zg{M ® B) — R which
vanishes on boundaries, i.e. image (3 ® 1g).

Clearly, Zg{ M @ R) is a direct sumnmand in M ® R, so we may finally interpret
f as a homomorphism Mg & R — R which vanishes on boundaries. Hence,
setting F{[4, %)) = u, f{z:) = w;, we have :

(7.4) rjut y siui=0 forall 7.
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We identified the cohomelogy of X as the cohomology of the module of in-
decomposables of M, the cup-product as given by the quadratic part of the
differential. Thus we see :

(o Uar)(w;) = £2r; .

But, if (7.4) holds, %u(aRUaR) is a coboundary, namely £6{2) with ¢¥(2;) = u;.
Hence equation {7.4) has no solution with u € R, u # 0.
If [, 7] were 2 boundary in M @ Q, then we had aqUaq #0. B
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