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Co-FREDHOLM OPERATORS. IV

H. BERCOVIC

Abstract

The purpose of this paper is fo develop, in the context of operators of class
g, a theory of Fredholm complexes analogous to that in [6], including
an index stability result under perturbations. As a by-product, a simple
proof of the additivity of the index for Cy-Fredholm operators will be
given.

1. Introduction

In order to simplify both notation and statements we begin by reformulating
certain facts in the theory of operators of class (g in terms of Hilbert modules
over the algebra H ™ of bounded analytic functions in the unit disc. Let K be
a complex Hilbert space, and denote by L{K)} the algebra of bounded linear
operators on K. If T € L(K) is an operator of class Cy then we can turn K
into an H*°-module by setting

(1.1) wk = uw(T)k, u€ H®, ke K.

This module has the following properties:
(i) [kl < |lwlloollk)l, v € H=, kE € K (in the terminology of [3], K is a
contractive module);
(i1} for each k € K the map «w — uk is continuous if H* is given its weak®
topology and K is given its weak topology,
(ii1) K has nontrivial annihilator in H*, ie, {u € H® : uk = 0 for all
k € K} is a nonzerc ideal in H°,
Conversely, if K is a Hilbert H°-module satisfying (i}, (i) and (i), then {1.1)
holds for some operator T of class Cy. Therefore, a Hilbert H*-module sat-
isfying (1), (it) and {iii) will be called a Co-module. If K is a Co-module and
K' C K is a closed subspace such that uk € ' forallu € H® and k € K,
then K' is called a submodule of K. (Given a submodule X' C K one can
form the guolieni module K/K’'. With the quotient norm this is yet another
Co-module which can be identified as a Hilbert space with K © K’ {the orthog-
onal complement of K/ in K'). If K| and K; are Cy-modules then we denote
by Hom( K3, K, } the Banach space of continuous H*-module homomorphisms
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from K, to K. {These homomorphisms correspond, of course, with the inter-
twinings between the associated operators of class C.] We write End{K) for
Hom({ K, K). The modules K, and Ky are quasissmilar if there exists a quast-
affinity in Hom{K}, K;}; we recall that a guesiaffinity is an operator which
is one-to-one and has dense range. It follows from well-known facts (<f. [1])
that quasisimilarity is indeed an equivalence relation for Cy-modules. We write
Ky ~ Kp if Ky and K are quasisimilar.

Let K be a Cj-module, and let {, -} denote the scalar product in K. We
define the adjoini Cy-module K* as follows. As a Hilbert space, K* = K, and
multiplication of £ € K* by u € H*, denoted u#k, is given by

{1.2) {uftk by = {k,u™h), ke K,
where 2~()) = u(}). K K determined via {1.1) by an operator T of class
Oy, then K* is likewise determined by the operator T™. Clearly, if ¢ €
Hem{ K, K3), then the Hilbert space adjoint * belongs to Hom{ K3}, K[},
For every Co-module K we denote by Lat K the lattice of 2ll submodules of
K. Given a homomorphism ¢ € Hom{ K}, K3}, there is an induced map ¢y :
Lat Ky — Lat I{; given by @ (M) = (oM™, M € Lat K. Wesay that wisa
lattice-isomorphism if o, is one-to-one and onte. Fix now a homomorphism ¢ €
Hem{ K, Kz}. Then kery is a submodule of X; and {ran ¢}~ is a submodule
of K5. One can write now

{1.3) P = jpp,

where j : (ranp)” — K7 denotes inclusion, p : K; — K/ kery denotes the
canonical proiection, and @{k + kery) = ok, k € K,. Clearly ¢ is a quasi-
affinity. We say that ¢ has full range if @ is a lattice isomorphism. We record
for further use the following result from [1] (cf. Lemma 1.20 in Chapter 7).

1.4. Lemma. If ¢ € Hom{K;, K3) then ¢} 13 ene-fo-one if and only if
{¢*)+ is onto. Thus o has full range if and only if
(i) w4+ 12 onto Lat ({ran )" }); and

(ii} (" )+ is onio Lat {(ran p*}7).

The second part of the lemina is not stated in [1], but the reader should have
no difficulty deducing it from the first part. Let us note that ¢ has full range
if it has closed range. Indeed, if ¢ has closed range then the homomorphism ¢
in (1.3) is in fact invertible.

Next we introduce a notion that corresponds with property { ) for operators
of class Cp (cf. Chapter 7 of [1]}. A Co-module K is said to be finiie if it is not
quasisimilar to any of its proper submodules. An equivalent characterization
is that for every ¢ € End(K) we have kerp = {0} if and only if {ran @)™ = K.
We collect for further reference some basic facts about finite modules (cf. [1]).
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1.5. Propoesition.
(i) The property of finiteness is preserved by quasisimilarity,
(i1} Let K be a Co-module and K’ ¢ submodule. Then K is finite if and only
tf both K' and K/K' are finite,
(iii)y A Co-module K is fintde if and only if K* i3 finite.
(iv) If ¢ € Hom(K;, K2) and ot least one of the modules Ky and Ka is finite
then ¢ has full range,

A basic fact in the sequel is the following result which compensates for the
fact that homomorphisms with full range do not usually have closed range. (see
Proposition 6.9 and Corollary 6.10 in Chapter 7 of [1]).

1.6. Proposition. Let K, K' and K" be Cy-modules, and o € Hom{ K’, K),
B € Hom{ K", K}. Assume that (ran )~ s finite and ran o C (ran §)~. Then
() (" (xan B)" = K€"
(1) {ran e Nran §)~ D ran a; and
{iti) of K is cyclic then o {ran B) contains a cyclic vector of K'.

We recall that K has a cyelic vector £ if X = {H*k)™. In general K
has finite cyche multiplicsty if there exist vectors ky, ka2, ...,k € K such that
K ={H"k + H®2 + - + H®,)~. It is known that modules with finite
multiplicity, in particular eyclic medules, are finite,

Next we introduce an equivalence relation on the class of finite Cp-modules.
Two modules K and K are eguivelent if there exists a finite module K, and
w € End(K) such that Ky ~ kerip and Ko ~ coker v = K/f(ran ¢)~. It is
shown in [1] that this is indeed an equivalence relation (the proof of transitivity
was first done in [4]}). We will write [K] for the equivalence class of the medule
K, and we will write [K] = oo if K is not 2 finite module. The operation

[£q] + [Ko] = [K) & Ko

turns the set of equivalence classes into a commutative semigroup with unit
{the zero module}. We record for further use some results proved in [1].

1.7. Lemma,
(1) If K1 and K3 are quasisimiler then (K1) = [Ka].
(il If K' is a submodule of K then [K] = [K'] + [K/K').

We finally define the notion of semi-Fredholm homomorphisms - these are
precisely the Cy-semi-Fredholm operators defined in Chapter 7 of [1].

Let K: and K2 be two Cy-modules, and ¢ € Hom(K, K2). Then ¢ is said
to be semi-Fredholm if

{1) ¢ has full range; and
(it) either keryw or coker y is finite.
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A semi-Fredholm homomorphism o is Fredholm if
(3ii} both kery and coker ¢ are finite.
If © is a semi-Fredholm homomorphism, the indez of ¢ is defined as

ind @ = [ker¢| — [coker ¢].

It is important to note that the semigroup of equivalence classes of finite
modules does not have the cancellation property, and 50 it cannot be embedded
in a group. Therefore differences in that semigroup must be treated formally;
thus,

[#1] - (K] = [K5] - [Ky}

simply means [K|+[K4] = [K2]+[K;]. See Chapter 7 of [1] for an identification
of this semigroup as the class of generalized inner functions.

We conclude this section with a userful elementary result about homomor-
phisms with full range.

1.8, Lemima.

(i) Let vy and py be Co-module homomorphisms. Then vy @ g has full
range if and only if both ¢y and @2 have full range.

(i) Let @, ¥ € Hom(K:y, K3) be such that (ran zf))' is finite. If @ has full
range then @ + ¢ hes full range.

Proof: (i) Set ¢ = w1 @ 2 and note that @ = @1 @ Paz. Therefore it suffices
to consider the case in which ) and y are quasiaffinites. That ¢, and ¢,
are lattice-tsomorphisms if ¢ is a lattice isomorphism is easy to see, and left as
an exercise for the reader, Assume that i and ; are lattice-isomorphisins,
say p1 : K1 — K}, 92 : Ko — K}. To show that ¢4 is onto it suffices to
show that its range contains every cyclic module M’ C K| ® K. But if M’
is such a module, there are cyclic modules M C K| and M) C Kj such
that M' C M} ® M}. Choose submodules M: C Ki, M, C K3 such that
(,01+(.Mr1) = M;, 592+(M2) = M:; and note that {p+(M1 & MQ} = M{ [43] Mi
Thus ¢ : M) @ My — M| @ M} has dense range and, since M) @ M, is finite, it
must have full range by Proposition 1.5(iv). Thus there exisis M C M; @ M,
such that @ (M) = M'. It remains to be shown thal ¢, is one-tc-one, but
this follows at once from the first part of the argument applied to »*, and from
Lemma 1.4,

(i) We can assume without loss of generality that (ran ¢ +ran ¢}~ = K».
Under this assumption, the homomorphism p : {ran $}~ — coker i, obtained
by restricting the canomical projection to (ran ), has dense range, whence
we deduce that coker ¢ is finite. It follows that ¢ is semi-Fredholm and hence
@ +1 is semi-Fredholm by Theorem 7.1 in Chapter 7 of {1]. In particular, ¢+
has full range. B
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2. Complexes

We define a complez to be a homomorphism é € End(K), where K is some
Co-module, and 2 = 0. Most of the complexes we will consider will be Z5-
graded. This means that K can be written as a direct sum A = Ko @ K; such
that 6Ky © Ky and §K:1 © K. In this case it is convenient to denote o €
Hom(Ko, K1) and & € Hom( K, Ko) the restrictions of § to the two summands.
The homology module H{8) of a complex & is the Cy-module ker é/{ran §)~. If
§ is Zy-graded we have H(8) = Ho(6) @ H1(6), where Ho(8) = ker 8y /(ran ;)™
and Hi{8) = ker §; f{ran 86)™.

A Z,-graded complex & will be called a semi-Fredholm complez if

{1} & has full range; and
(i1) either Hyp(8) or H,(6) is finite
A semi-Fredhollm complex § is Fredholm if
(i1} both He(é) and H,(é) are finite.
The indez of the semi-Fredholmn complex 4 is defined as

ind(8) = [Ho(6)] — [F1(5)].

To see the relationship between semi-Fredholm homomorphisms and semi-
Fredholm complexes, we can associate with every homomorphism ¢ € Hom{ Ko,
K\) a complex § € End( Ky & K1) by setting g = ¢ and & = 0. Then ¢ is
semi-Fredholm if and only if é is semi-Fredholm, and ind(é) = ind{y).

2.1. Proposition. Lei § € End(Ko @ K,) be & Zo-graded complez. If
at least one of the modules Ky and Ky i3 fintte then § 13 semi-Fredholm and
ind(6) = [Ko) — [K1). If both Ko and Ky are finite then § is Fredholm.

Proof: If cither Ky or K5 is finite then we know that & and §, must have
full range. Thus & has full range by Lemma 1.8. If Kj is finite then ker bg C Ky
is also finite, and hence Hp(8} = kerdp/{ran §,)” is finite. Analogously we
conclude that § must be semi-Fredholm if K 15 finite, and Fredholm if both K
and K; are finite. To calculate the index we note that Kg/ ker g ~ (ran )~
so that

[Ko] = [ker 8] + [(ran &6)7} = [He{8)] + [(ran &:)7] + [(ran é6)7]

Analogously,
[K1] = (H1(8)] + [(ran )7 + [(ran o)),

whence

(Ko} + (H:(8)] = [K:] + (Ho(8)),

and this immediately gives the index of §. B
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The preceding proposition hes some immediate consequences pertaining to
exact sequences. A sequence

(2.2) Ko 25 Ky 5 Ky

of homomorphisms will be said to be Cy-ezact if
(i} wo has full range; and
(i1} keryp; = {ran po) .
Recall that {2.2) is exact if keryp; = ran g, so that exactness implies Ch-

exactness but not conversely. Analogously, a complex § is Cp-exact if it has full
range and H(§) = {0}.

2.3. Corollary. Let § € End{ Ko & K;) be a Z;-graded complez. Suppose
that § i3 Cy-ezact and af leasi one of the modules Ky and Ky is finite. Then
both Ky and Ky are finile, and [Kp] = [K;].

Proof: We have ind{$} = 0, and hence [Kp] = [K;] by Proposition 2.1. B

2.4. Corollary. Let

0—>K{)&K1ﬂ>...~%—_ff{ﬂ——-—b[}

be a Cy-exact sequence of homomorphisms. Then [Ko]—[Ki]+ - +{—1)"[Ka] =
0.

Proof: Define My = Ko B Ko @ ... and M1 = K1 ® K3 @ ..., and define a
complex é € End( M, @ M) by

d{bo D k2 @...) = oo D2k ® ...,
i @b ®.. Y=priki Bk ®.. ..

Then 6 is Co-exact so that [Me) = {M:] by Corollary 2.4, B

This last corollary sllows one to give an easy proof, in the spirit of [7], of
the fact that ind(gp) = ind{¥] + ind{s) if v and ¢ are Fredholm homomor-
phisms, say ¢ € Hom({Ko, K1)} and ¥ € Hom(K, K3). Indeed, one can form
the sequence

(2.5) 3 — kerg 2, ker{zpep) Z4 kerp 25 coker ¢

25, coker (3p) 25 coker 1 — 0,

where g is inclusion, o1k = pk if k € ker(yyp), 2 is the canonical projection

onto coker ¢ = K1 /(ran @)™, wa{k+(ran )~ ) = gk+{ran ($¥p))~, and ps(k+
(ran{we))”) = k+{ran ¢)~. The index formula follows at once from Corollary
2.4 and the following result. :
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2.6. Lemma. The sequence (2.5} is Cy-ezact.

Proof: Since all modules in (2.5) are finite, all homomorphisms ; have full
range. Clearly g is one-to-one and ran wg = kery;. That wp, = 0 1s
immediate. Now, clearly kerws = kery N {ran ¢)~, and since ¢ is Fredholm,
there exists a submodule M C Ko such that {pM) ™ = ker . Since (M)~ C
ker ¢, we have M C ker(¢yp) and hence

(ran @1}” D (1 M)™ = (M)™ = kerps.

Next note that

kerpz = {k 4 (ran )~ : ik € {ran ()} }, and

ran w2 = {k + (ran @)~ : Pk = 0},
so that clearly wapz = 0. Suppose that k is such that ¢k € (ran{sy))™, and
denote by M; C K; and My C K, the cyclic modules generated by k and
pk, respectively. Since o has full range, there exists My C Ky such that
(YoMs)~ = M,. By Proposition 1.8 we have that M; N ¥~ (M) is dense
in M. Thus, given € > 0, there exists ¥’ € M; such that ||k — k') < £ and
Yk' = ypuoh for some h € Ky. Then we can write

k' + (ran @)~ = k' ~ oh + (ran ¢)” € ran 2

because (k' —ph) = 0. Since £ > 0 is arbitrary, it follows that ran ¢; is dense
in ker ;. We have

ran @3 = {¢¥k + (ran (Pp)}” 1 k € K1}, and
kers = (' + (ran ()" K€ (ran ¢) ),

and it is immediate that ran 3 is dense in kerpy. Finally, ¢4 is onto. K

3. Homomorphisms between complexes

Let §' € End(K') and é§ € End{K) be two complexes. A homomorphism
w8 — § is simply an element ¢ € Hom(K', K) such that pé' = §p. If 6§ and
' are Zz-graded with decompositions K' = K} @ K} and K = K| @ K}, we
will also require that oK} C K;,j = 0,1. If ¢ : § — & is a homomorphism,
there is an induced homomorphism . € Hom{H(§'), H(8)) defined by @.(k' +
(ran §)7) = k' + (ran §), ¥’ € ker$’. This homomorphism is well-defined
since wker 6" C keré and ¢fran '}~ C (ran §)~.

Consider now an exact {not just Cy-exact!) sequence

(3.1) 06— 24526 0

of homomorphisms between complexes. By analogy with ususal homological
algebra [2] we will define a connecling homomorphism 8 : H(6”) — H(4') as
follows., Consider an element k" € ker §”. Since ¢ is onto, we have k" = ¢k
for some k, and ok = 8"k = §"k" = 0. Therefore ék = k' for some K,
and @'k’ = bpk' = 88k = 0 so that § k' = 0 because @ is one-to-one. We set
(k" +(ran &) )=k 4+ (ran §)".
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3.2, Lemma. The map 8 is ¢ well defined homomorphism m Hom(H{6"),
H(&)).

Proof: Let &',k and k" be such that §"k" = 0, vk = ¥, and ok’ = ék. It suf-
fices to prove that there exists a constant ' > 0 such that dist(%",(ran §")7} <
1 imnplies dist(k', (ran §')7) < C. To do this cbserve that since 3 has closed
range, there exists a constant A > 0 such that dist(k, ker ¢} < A||k|. Anal
ogously, since ¢ has closed range, Bilpk|| > [&'| for all . Assume that
dist{k",(ran §"')7) < 1, and choose & such that ||&" — &"k{|| < 1. Choose next
ky such that ¥k = k7 and note that we must have

dist(k — 8ky, ker ) < A,

By exactness, we must be able to find ¥} such that ||k — 6k — k||| < 4. We

have then
6k — ok} | = [16Ck ~ k1 — k]| < All8]

so that
1K — &kl < Bllo(k’ - &5} = Bllk — 6okl || < BA|IS].

Thus dist(k',(ran §)”) < BA|S]l. We conclude that & is well-defined and
I8l < BAJ|8)|. =

I 6 € End(K) is a complex then §* € End(K*} is also 2 complex. Moreover,
since ker §* = (ran 6)1 and (ran §*)~ = (ker )L we see upon identifying H(6)
with keré & (ran 8§}~ that H(8*) = H(8)* Now, il p: 4§ — §is a homomor-
phism, then ¢* : §* — § is another homomorphism and hence there is an
induced (¢*). € Hom(H{8*), H{§™)}. If we identify H{6") = H(8)"* as above,
it is immediate that (¢*). = (.)*. The following result is of a similar nature,
but somewhat more difficult to verify.

3.3. Lemma. Let & be the connecting homomorphism of the ezact sequence
(8.1). Then the connecting homomerphism of the ezacl sequence

0— & Yo et o
i3 precisely 0°.

Proof: Assume that ¢ € End(K’), § € End{K} and " € End(K"). There
is a unique linear map ¥~ : K" — K O kery such that yp~ = Ik, and a
unique map ¢~ : K — K’ sach that "¢ = Iy and keryp™ = K Sran . In
addition, one can verify easily that (¢*)” = (p™}* and {¢*)~ = {3y~ )*. Upon
identifying H(#') and H(8") as subspaces of K’ and K", respectively, we claim
that

8 = Pysyp 697 |H{E"),
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where Py denotes orthogonal projection onto M. Indeed, if 4" € ker§" then
k = k" satisfles vk = & and hence k' = ¢~ 8k satisfies ok’ = ék. Now the
lemma becomes obvious because the connecting homomorphism of the adjoint
sequence is

Pysuny(9*) 78 (") T |H(8™) = Py (™) 6 (07 ) |H(')
= (Py(syp ™9~ |H(8")) =6". m

With these technical lemmas out of the way, we can prove the Cq-exactness
of the long homeology sequence.

3.4. Theorem. Let & be the connecling homomorphism of the ezact se-
quence (3.1). If &,6 and 8" have full range then the iriangle

HE) 2 HE
N az
H(EH}

15 Co-ezact.

Proof: The equalities &y, = 0, Y,p, = 0, and v, 0 = 0 are immediate.
We will prove that the lattice maps (i, )+, (¥.)+, 2nd & are onte Lat{keri,),
Lat{ker 8), and Lat({ker , ) respectively, and the theorem will follow from Lem-
mas 1.4, 3.3, and the remarks preceding Lemma 3.3. Notice that it suf-
fices to show that the range of {p,)y,... contains every cyclic submodule of
Lat({ker#,), ... .

Leb k+4{ran 6) € kert.,i.e., & € ker § and ok € (ran §"')~. Denocte by M C
ker & the cyclic submodule generated by k, and note that since M C (ran 6"}~
and 6" has full range, we have by Proposition 1.6 that M N ~!{ran §") contains
a eyclic vector ky for M. Thus yk; € ran §”, say vk, = 6”&"”. Now 1 is onto,
so we have ks = k' for some ka, whence yY{k) — ko) = 0. Thus k1 — 8k = &’
for some k', and p(6'k") = 8{k1 — 6k2) = 0. Therefore k' € ker &' and

ky 4+ (ran 8)” = (k' +{ran §')7) € ran o,.

We conclude that the cyclic module generated by k; + {ran )~ belongs to the
range {p, 4. Clearly though this cyclic module coincides with that generated
by & + (ran §)~, and this shows that {y.)+ is onto Lat{ker ¢, ).

Next consider an element & 4 {ran §”")~ € ker&. Thus k" € ker6” and i
k, k' are such that $k = £" and wk' = §k then &' € (ran ). Since &' has full
range, there is a cyclic module M’ such that &' € (8’ M'}~. Now notice that

Sk = k' € (98" M)™ = (§pM')™ = (5(oM' + ker§)7)7,

and since § has full range we deduce that k € (@M’ + ker§)~. Denote by
M the cyclic module generated by K, and by p : (oM’ + keré)™ — (oM’ +
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ker 6}~/ ker § the canonical projection, Then (M’ +ker §}~ / ker é is the closure
of ran{py|M'} and hence it is finite. By Proposition 1.6 there exists a cyclic
vector &; for M such that pky € ran(pp|M') and this clearly implies that
ky €ran + kerd. If ky = kz + k3 with k; € ranp and k3 € ker é, then
k" = ok and $ky = ¥k, generate the same cyclic space. Thus the cyclic
space generated by &' 4 (ran 6"}~ is the range under {3. )+ of the cyclic space
generated by k3 + (ran §)~. Therefore (¥.)4+ is onto Lat{ker 8).

Finally let &' + (ran 8'} belong to kery,, i.e., k' € (ran §}7. Denote by
M the cyclic module generated by k. Since § has full range, M' Ny~ (ran §)
contains a cyclic vector b for M'. Thus pk| € ran §, say ki = §k. We see then
that §"vk = W6k = Yk} = 0 so that in fact ki +(ran 8}~ = d(Yk+(ran §")7).
This implies immediately that 3y is onto Lat(kery,}. W

3.5. Corollary. Assume thai the complezes §', 6, and 8" in the ezact se-
quence {§.1) are semi-Fredholm. Then ind(6) = ind(6') + ind(6"}.

Proof: Since the complexes in question are Z;-graded, the triangle in Theo-
rem 3.4 becomes a hexagon

Hol6') —= Ho(§) —— Ho(")
aT : la
Hi(8) 2 Hi(§) —— Hy(8)
and one can deduce as in Corollary 2.4 that
[Ho(8")] = [Ho(8)) + [Ho(6")] — [H(6] + [Ha(8)] = [H:(6")] = 0.

This implies immediately the index formula. B

4. Stability of the index

As we mentioned above, the semigroup of all classes of finite Cy-modules does
not have the cancellation property. One can nevertheless cancel under certain
circumstances. If K| and K; are finite modules we will write [K;] < [Kq] if
[Ka2) = [K1) 4 [K;) for some finite module K3. The following result is proved
in [1] (see Lemma 6.2 in Chapter 7).

4.1. Lemma. Let Ky, Ky and K3 be finite modules. If [Ki] + [IG] =
[K‘z] + [Ka], [.K:;] < {KI]; and [Kg] < [Kg], then [.Kl} = [.K'z]

We need an additional lemma in order to prove the main result in this section.
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4.2. Lemma. If K; 2K, &, K3 is o Co-ezacl sequence of Co-modules
then [K3] < [K4] + [K5)-

Proof: Using Lemma 1.7 we have

[K2] = [ker ) + [/ ker ) = [(ran )] + [(ran )]
= (K:/ker ) + [(ran $)7] < [K1] + [Ko). B

4.3. Theorem, Let §, §; € End(K) be twe Z3-graded complezes. Assume
that & is semi-Fredholm and (ran{é; — 8)} is finite. Then &; is also semi-
FPredholm and

ind(6y) + [(ran{éy — 6))7] = ind{8) + [{ran(é, — &)} ]

Proof: Let us set £ = §; —§, and denote by K’ the submodule of X generated
by ran € and ran {6¢). Note that ¥ K = Kp @ K is the gradation of K, then
K' = K} @ K, where K{ is generated by ran ¢; and ran(8,e9), and K7 is
generated by ran ¢ and ran{dee, ). Since {ran ¢)~ is finite it follows that K’
is finite. Moreover, K’ is invartant under § and &), Invariance under &' is
obvious, and invariance under §} follows from the inclusions

& ran (8¢} = (6 + ¢} ran{be) = ¢ ran(de} C ran ¢,
birane=(6+e)rane=(d+¢c)rand Ceran § Crane,

where we used the equality (6 4+ €)® = 0. Let us denote by & and &} the
restrictions of § and & to K', respectively, and denote by 6 and 8} the induced
complexes on K" = -K/K'. Thus we have exact sequences

60— & st s o

0 8 L8 st o,
where ¢ denotes inclusion, and 3 denotes the canonical projection onto the
quotient module. We claim that in fact §" = é{. Indeed, this follows immedi-

ately from the fact that ran(é —6;) is contained in K'. Moreover, the complexes
&' and 8] are Fredholm by Proposition 2.1, and

(4.4) ind(8') = ind(6,) = [K4] - (K1),

Next we note that § has full range, and therefore & = & + ¢ has full range by
Lemma 1.8. {ii). We want to argue that &' has full range as well. Indeed,
consider x4+ K’ € (ran 6”7} = (ran §+ K')~. This means that k& € {{ran )™ +
K")~. Denote by M the cyclic module generated by k, and by p the canonical
projection onto the quotient {{ran §}~ + K')/(ran §)~. Since pK' Is dense, this
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quotient module is finite, and Proposition 1.6 implies the existence of a ¢yclic
vector k1 for M such that pk; € pK' or, equivalently, k1 € (ran 8)~ + K'.
Write ky = ko + k3 with k2 € (ran )~ and k3 € K" = ker ¥, and note that
ko + K', by + K', and k + K' generate the same module in X”. Now, if M;
is the module generated by kp, then My C {ran 6}, and hence My = (§N)~
for some submodule N because é has full range. It is now immediate that
(8"$N)~ = (5N)~ is the cyclic module generated by k + K’ = ¢k. An
application of the same argument to " shows that 6" has full range by virtue
of Lemma 1.4,

Suppose now that Hy(6} is finite. The Co-exact hexagon

Ho(8') —— Ho(8) —— Ho(8")

T !

HI(8") —— Hy(§) —— H((8)

implies that Ho{6") is also finite. Indeed, both Ho{4} and H(4') are finite (sce
Proposition 1.5. {ii}). Furthermore, the hexagon

Ho(81) — Holb)) —— Hold\)

[ l

(8} e—— Hi(81) «—— Hi(&1)

implies now that Ha(§) is finite. Indeed, Ho(6]) and Ho(8') = Hy(é") arc
finite. Thus 6§, is semi-Fredholm in this case. The case in which H;{4) is finite
is treated analogously.

We turn finally to the index. The two exact hexagons above give

[Ho(8")] + [Ho(8")] + [H1(6)] = (Ho(&)] + [H: (6] + [H: (")),
[Ho(d)} + [H1(87)) + [H1(6")) = [Ho(83)] + [Ho{8")) + [H:(81)),

where we used the fact that §” = 8. If we add these two relations we get

(H1(8)] + [Ho(61)] + [Ho(8")) + [H1(81)] + [Ho(8")] + [H:(8")]
= [Ho(8)] + [H1(61)] + (Ha{8")] + [Ho(81)] + [Ho(6")] + [H2(8")]-

Now, Lemma 4.2 shows that

[Ho(6")) < [Ho(8)] + [H (&),
[Ho(6")] < [Ho(61)] + {H1 (&)
[H: (8] < [Ho(6)] + [Hi{8}],
(H:(8")] < [Ho(8)] + [Hi(81)],
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and therefore Lemma 4.1 implies
(4.5) [H\(8)] + [Ho(é:)] + [Ho(8)] + [Hi(61)]
= [Ho{8)] + [H:(6:)] + [H1(8")] + [Ho(61)).
Using {4.4) we see that
[(Ho(8')] + [H1(8)] + (K]
= [Ho(8")] + (K1) + [H1(81)) + [Kq)
= [Hi ()] + [Ko] + [Ho(8 )] + [K1)
= [Hi (8 )} + [Ho(8))] + [K7].
Adding [K’] to both sides in (4.5) we get therefore
(#:(8)] + [Ho(6:)] + [Hi(&')] + [Ho(83)] + (K]
= [Ho(8)] + [H:(1)] + [Hi (8] + [Ho(81)) + [K],
and since [Hy(8")] + [Ho(8))] € [K7), we get by Lemma 4.1
[HL{8)] + [Ho{b1 )] + [R') = [Ho(8)] + [H1(61)] + [K'].

Now clearly [K'] < [(ran ¢)7] + [(ran{ée))™] < [(ran €)7] + [(ran £)7)], and a
final application of Lemma 4.1 yields

[H1(8)) + [Ho(é1)] + [(ran €)7] = [Ho(8)] + [H1 (61} + [(ran £)7),

which is the desired index relation. W

5. Concluding remarks

Vasilescu [6] considered complexes of the form

=] [=4 o Oy
(6.1) 0— Xo % X; SH X, 25 .25 X, — 0,
where Xy, X3,...,X, are Banach spaces, and ay, &3,....0q_; are densely

defined closed operators. One can always replace (5.1) by & Zo-graded complex
(Ygﬂayl,é}, where Yg =Xg@X2$,..,Yl =X, ﬂf}XaﬂB..., and

Solzo @Dz ® ...} =z Pz ®... ,
51(Z1GBZ3{B...)=Q1$1&}C¥3£3@... .

Thus considering Z»-graded complexes gives a somewhat more general concept
of Fredholmness and index. For instance, the reguirement that & be semi-
Fredholm only implies that either the odd-numbered, or the even-numbered
homology groups of (5.1) are finite-dimensional.

The theory of Fredholm complexes of Cy-modules could also be done with
densely defined, closed homomorphisms, but I chose to simplify the exposi-
tion by considering only continuous homomorphisms. Qur perturbations in
Theorem 4.3 correspond in the Banach space case with perturbations of finite
rank. Vasilescu allows in [6] compact perturbations. I do not know whether
there exixts a good correspondent, in the context of Cy-modules, of compact
cperalors.
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