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A NOTE ON CHARACTERIZATION OF
MOISHEZON SPACES

K. RAMA

Abstract

In this note a necessary and sufficient condition for a compact complex
space X to he Moishezon is obtained; it can be seen as the exislence of a
line bundie L on X such that, for some point £ € X, the first cohomology
groups of X with values respectively in L&m, and L@m?2, venish. {Here
m . denote the ideal sheaf at z).

1. Grauert and Riemenschneider [1], {7] conjectured a characterization of
a Moishezon space in terms of "almost (quasi) positive” coherent sheafs on
it. The problem in proving this was to obtain Moishezonness of a compact
complex space X if it carries an almost positive coherent sheaf. From then
a number of characterizations of Moishezonness with additional assumptions
to the hypothesis of the conjecture have been obtained [7], [12], [9], [5], [10].
For example, in [8] it was assumed that X is Kahler, Some of these are in
such a way that the proofs can be obtained by using Kodaira's techniques:
namely blowups, Kodaira's Vanishing and embedding theorems. Siu [11] has
succeeded in proving a stronger version than the conjecture. His proof is by
using, the powerful theorem of Hirzebruch-Riemann-Roch and giving estimates
on the dimensions of the cohomolagy groups of X with coefficients in a power
of a line bundle which has a non strictly positive curvature form. It deals,
more generally with one of the fundamental questions of obtaining holomorphic
sections for non strictly positive line bundles.

The present note gives a characterization of Moishezon spaces using Kodaira's
techniques.

2. Since compact complex analytic space can be desingularized and coherent
analytic sheaves can be made free {modulo torsion) by proper modifications,
a characterization of Moishezon space X can be stated in terms of compact
complex manifeld X and line bundles (locally free sheaves) over X. We prove
the following:
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Theorem. Let X be an irreducible, n-dimensional compact complex mani-
fold. Then X is Moishezon (i.e. the transcendence degree of the field of mero-
morphic functions on X is equal fo the complez dimension of X ) if and only if
there exists a line bundle L over X such thei forr =1,2,

HYX,L®m.) =0 for some pointz € X
(m, demnotes the ideal sheaf of x).

Proof: To prove the "if" part, consider the exact sequences
0—ml —0x — Ox/m: —0,r=1,2
Then cne can deduce the exactness of
(a) HYX,L) 5 HYX,L®Ox/m:) — H X, L®m]) for r = 1,2

using the given vanishing for r = 1, we get from {a) that the map a, Is onto.
This means that the global holomorphic sections of L generate the stalk L, =
HYX,L®0Ox/m,). Hence the meromorphic mapping s : X — P™ induced by
a basis s3,...,8, of H%(X, L} is holomorphic at z € X and separates points
in a neighbourhood of z. .

For r = 2, the sequence (a) gives the surjectionof ap : HY(X, L) —» H%( X, L@
Ox/mz2} This implies that s has maximal rank at z. That is, 5 defines a
closed embedding near z. Then for a suitable neighbourhcod U of z in X,
there exist meromorphic functions fi,..., fn on P™ such that d(fli.w; YA A
A fal,ny)(s(z)) £ 0 (since s{U} becomes on n-dimensional complex submani-
fold of an open subset of P™). Since s is meromorphic, the functions fi,..., fa
can be lifted to meromorphic functions gy, ..., g, on X which are algebraically
and analytically independent with dgy A --- A dgn(z) # O {by a theorem in
[6]). Thus X is Moishezon. Conversely assume that X is Moishezon. Then
by Theorem 4 of [7] there exists a line bundle H on X which is positive on a
dense open set ¥/. Let ¢ € U. Consider the blow up (X,11) of X at z. Let
E, be the line bundle on X associated to the divisor II~*(z). Then E?

Iln—lt,,)
is positive by standard arguments (2], [3], [7]. Since [I*H is semipositive ev-

erywhere and positive on [17{{/ — z) there exists a positive integer p such
that for r = 0,1, T = II"H" ® E;Hf is semipositive everywhere and positive
in II-(U) for all v > p (note that E*"" is positive in a neighbourhood of
[I¥{z) and trivial cutside 171 (U} {[3]). Observe that X is Moishezon, being
a modification of a Moishezon space [4]. Hence by applying Theorem 3 of [6]
for a trivial bundle and T, it follows that

HYX H QB " ®@Kg)=0,1>1,v> p,r=0,L
By Kodaira’s formula (3], Kz = [I*Kx @ EX !, we get, in particular,
HYX TYH*Q@Kx)®E:)=0,r=1,2
ie. HY(X,L®ml)=0,7=1,2,bytaking L=H* @ Kx. &
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