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A bstrac t

A NOTE ON CHARACTERIZATION OF
MOISHEZON SPACES

K . RAMA

In this note a necessary and sufficient condition for a compact complex
space X t.o be Moishezon is obtained ; it can be seen as the existente of a
line bundle L on X such that, for some point x E X, the first cohomology
groups of X with values respectively in L®my and L®m', vanish . (Here
rn y, denote the ideal sheaf at x) .

1 . Grauert and Riemenschneider [1], [7] conjectured a characterization of
a Moishezon space in tercos of "almost (quasi) positive" coherent sheafs on
it . The problem in proving this was to obtain Moishezonness of a compact
complex space X if it carries an almost positive coherent sheaf. From then
a number of characterizations of Moishezonness with additional assumptions
to the hypothesis of the conjecture have been obtained [7], [12], [9], [5], [10] .
For example, in [8] it was assumed that X is Káhler . Some of these are in
such a way that the proofs can be obtained by using Kodaira's techniques :
namely blowups, Kodaira's Vanishing and embedding theorems . Siu [11] has
succeeded in proving a stronger version than the conjecture . His proof is by
using the powerful theorem of Hirzebruch-Riemann-Roch and giving estimates
on the dimensions of the cohomology groups óf X with coefficients in a power
of a line bundle which has a non strictly positive curvature form . l t deals,
more generally with one of the fundamental questions of obtaining holomorphic
sections for non strictly positive line bundles .
The present note gives a characterization of Moishezon spaces using Kodaira's

techniques .

2 . Since compact complex analytic space can be desingularized and coherent
analytic sheaves can be made free (modulo torsion) by proper modifications,
a characterization of Moishezon space X can be stated in tercos of compact
complex manifold X and line bundles (locally free sheaves) over X . We prove
the following :
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Theorem. Let X be an irreducible, n-dimensional compact complex mani-
fold. Then X is Moishezon (i .e . ¡he transcendence degree of the field of mero-
morphic functions on X is equal to the complex dimension of X) if and only if
there exists a line bundle L over X such that for r = 1, 2,

H1 (X,L ® m') = 0 for some point x E X

(m x denotes ¡he ideal sheaf of x) .

Proo£ To prove the "if' part, consider the exact sequences

0-~mx--,Ox -.+ Ox/,�z --~0,r=1,2

Then one can deduce the exactness of

(a)

	

H°(X, L) --r. H° (X,L ® Ox/ �,.) ,H1(X,L ® m') for r = 1, .2

using the given vanishing for r = 1, we get from (a) that the map a,- is onto .
This means that the global holomorphic sections of L generate the stalk Lx =
H° (X, L®Ox/� , x ) . Hence the meromorphic mapping s : X -+ P' induced by
a basis s1,. . . , s er, of H'(X, L) is holomorphic at x E X and separates points
in a neighbourhood of x .

For r = 2, the sequence (a) gives the surjection of a2 : H°(X, L) --+ H°(X,L®
Ox/*nx). This implies that s has maximal rank at x . That is, s defines a
closed embedding near x . Then for a suitable neighbourhood U of x in X,
there exist meromorphic functions f1,...,f,, on Pm such that d(f1 l, (u» A . . . A
d(fnj,(u»(s(x)) :~ 0 (since s(U) becomes on n-dimensional complex submani-
fold of an open subset of P') . Since s is meromorphic, the functions fl , . . ., fn
can be lifted to meromorphic functions g1, . . . , g,, on X which are algebraically
and analytically independent with dg1 A . . . A dg,,(x) 7É 0 (by a theorem in
[6]) . Thus X is Moishezon . Conversely assume that X is Moishezon . Then
by Theorem 4 of [7] there exists a line bundle H on X which is positive on a
dense open set U . Let x E U . Consider the blow up (X, II) of X at x . Let
E,; be the line bundle on X associated to the divisor II -1 (x). Then E*16-1(.)
is positive by standard arguments [2], [3], [7] . Since II*H is semipositive ev-
erywhere and positive on II-1 (U - x) there exists a positive integer t such
that for r = 0, 1, T = II*Hv ® E.,*," +' is semipositive everywhere and positive
in II-1 (U) for all v >_ p (note that E*"

+,
is positive in a neighbourhood of

II-1 (x) and trivial outside II-1 (U) ([3]) . Observe that X is Moishezon, being
a modification of a Moishezon space [4] . Hence by applying Theorem 3 of [6]
for a trivial bundle and T, it follows that

H'(X, II*Hv ® E*"+r ® KX) = 0, l > 1, v > ls, r = 0,1 .

By Kodaira's formula [3], KX = II*Kx ® Ex-1 , we get, in particular,

H1(X,II*(H" ® Kx) ® Eir ) = 0, r = 1, 2

i .e . H1(X, L 0 m') = 0, r = 1, 2, by taking L = HP 0 Kx .
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