THE CONNECTIVE K-THEORY OF SPINOR GROUPS

LUÍSA MAGALHÃES

Abstract

We study the properties of the connective K-theory with \mathbb{Z}_2 coefficients of the Lie groups Spin(n). This generalises some work of L. Hodgkin.

0. Introduction

In a previous paper [4] we obtained the Hopf algebra structure of $k^*(G; Q(P))$ where G is a compact connected Lie group and Q(P) is the quotient ring of \mathbb{Z} with respect to a multiplicative subset generated by a set of primes, such that $H^*(G; Q(P))$ is torsion free.

Here we study the properties of the connective K-theory of the Lie groups Spin(n). Since $H^*(Spin(n);\mathbb{Z})$ is torsion free if $n \leq 6$, we are only interested in the cases where $n \geq 7$. We will see that $k^*(Spin(n))$ has only two torsion and we will give the algebra structure of $k^*(Spin(n);\mathbb{Z}_2)/\{x \in k^*(Spin(n);\mathbb{Z}_2): t^{-1}x = 0\}$ for $n \geq 7$ (t^{-1} is the canonical generator of $k^*(pt)$).

Our paper generalises part of earlier work of L. Hodgkin, who computed the usual K-theory of compact Lie groups [3].

1. Preliminaries

Let k and K denote, respectively, the spectrum for connective K-theory and the usual K-theory. There is a natural map of ring spectra $j: k \to K$. We recall that $k^*(pt) = \mathbb{Z}[t, t^{-1}]$, the Laurent polynonial ring generated by the reduced Hopf bundle $t^{-1} \in K^{-2}(pt)$ and its inverse, and that $k^*(pt) = \mathbb{Z}[t^{-1}]$. We denote by $m: k \to k$ the morphism of spectra corresponding to multiplication by t^{-1} .

If we introduce \mathbb{Z}_p coefficients in the *k*-cohomology we still obtain an associative multiplication in $k^*(-;\mathbb{Z}_p)$.

Let $H\mathbb{Z}$ be the Eilenberg-MacLane spectrum with integer coefficients. There is a map of ring spectra $n: k \to H\mathbb{Z}$ such that it induces the homomorphism $n^*: k^*(pt) \to H^*(pt;\mathbb{Z})$ given by $n^*(at^{-n}) = \begin{cases} a \text{ if } n=0\\ 0 \text{ if } n>0 \end{cases}$, $a \in \mathbb{Z}$, $n \in \mathbb{N} \cup \{0\}$ [5].

For each CW complex X and each prime p there is an exact sequence

 $0 \longrightarrow \mathbb{Z}_p \otimes k^*(X; \mathbb{Z}_p) \xrightarrow{\tilde{n}^*} H^*(X; \mathbb{Z}_p) \longrightarrow \operatorname{Tor}_{1, *}^{\mathbb{Z}_p[t^{-1}]}(\mathbb{Z}_p; k^*(X; \mathbb{Z}_p), \longrightarrow 0$ where \tilde{n}^* is $1 \otimes n^* : \mathbb{Z} \otimes k^*(X) \to \mathbb{Z} \otimes H^*(X; \mathbb{Z})$ reduced mod p [4].

L. MAGALHÃES

2. Atiyah-Hirzebruch spectral sequence

Let X be a compact CW complex. We are going to consider the following Atiyah-Hirzebruch spectral sequences: $(E_r^{**}, d_r)_{r\geq 2}$ converging to $K^*(X)$ and $('E_r^{**}, d'_r)_{r\geq 2}$ converging to $k^*(X)$. Let $F_p^m = \ker(K^m(X) \to K^m(X^{p-1}))$ and $'F_p^m = \ker(k^m(X) \to k^m(X^{p-1}))$ be the filtrations. The first spectral sequence is compatible with the Bott isomorphism.

We note that, since $K^q(pt) = 0 = k^q(pt)$ if q is odd and $k^q(pt) = 0$ if q > 0, then: $'E_r^{p,q} = 0 = E_r^{p,q}$ for all $p \in \mathbb{Z}$, $r \ge 2$, q an odd integer; $'E_r^{p,q} = 0$ if q > 0; and all the differentials of even degree are zero. Moreover, we have for all $i, n \in \mathbb{Z}$: $F_{n-1}^i = F_n^i$ and $'F_{n-1}^i = 'F_n^i$ if n-i is even; $F_n^i = F_{n+1}^i$ and $'F_n^i = 'F_{n+1}^i$ if n-i is odd; $m^*(F_n^i) = F_n^{i-2}$ and $'F_n^n = k^n(X)$.

The same notations will be used when we introduce Z_p coefficients.

2.1 Proposition. [4]:

Let X be a compact CW complex. Then:

- i) $j_*^{**}: {}^{t}E_*^{p,q} \to E_*^{p,q}$ is an isomorphism for $q \leq -\dim X + 1$,
- ii) $j_{iF_n}^*$ is an isomorphism onto F_n^m for all $m \in \mathbb{Z}$ and $n \ge m + s 1$, if $d_r = 0$ for r > s, where j_s^{**} and j^* are the obvious morphisms induced by $j: k \to K$.

2.2 Proposition.

Let X be a CW complex such that $K^*(X)$ is torsion free. If the differentials d_r in the spectral sequence converging to $K^*(X)$ are zero for r > s (we suppose s odd since the differentials of even degree are zero), then $\{y \in k^*(X) : t^{(-s+1)/2}y = 0\} = \{y \in k^*(X) : \lambda y = 0 \text{ for some } \lambda \in \mathbb{Z} - \{0\}\}.$

Proof:

We consider the spectral sequences (E_r^{**}, d_r) and (E_r^{**}, d_r') converging to $K^*(X)$ and $k^*(X)$, respectively.

We have the following commutative diagram for all $m \in Z$, $i \ge 0$:

where j^* and j^{**} are the maps induced by $j: k \to K$ and p' is the map of the extension exact sequence.

Let $y \in k^m(X)$ be such that $\lambda y = 0$ for some $\lambda \in \mathbb{Z} - \{0\}$. Since j^* : $F_m^{m-s+1} \to F_m^{m-s+1}$ is an isomorphism (by 2.1) and $K^*(X)$ is torsion free, then $t^{(-s+1)/2}y = 0$.

We suppose now that $y \in k^m(X)$ and $t^{(-s+1)/2}y = 0$. To finish the proof it is enough to show that $\lambda y \in F_{m+s-1}^m$ for some non zero integer λ (by 2.1).

We are going to prove by induction on $i \ge 0$ that there exists $\lambda \in \mathbb{Z} - \{0\}$ such that $\lambda y \in F_{m+2i+2}^m$.

For i = 0 we have $j^{**}p'y = 0$ which implies $p'y \in imd_s$. Since all the differentials d_r are torsion-valued [1], there exists $\lambda \in \mathbb{Z} - \{0\}$ so that $\lambda p' y = 0$. Therefore, by the exactness of the extension sequence, $\lambda y \in {}^{t}F_{m+2}^{m}$ as required.

The inductive step is proved in the same way and the result follows.

2.3 Proposition. [4]:

Let X be a compact CW complex and let L be equal to \mathbb{Z} or \mathbb{Z}_p (p prime), then $x \in H^p(X; L)$ lies in the image of $n^* : k^*(X; L) \to H^*(X; L)$ if and only if x considered as an element of $E_2^{p,0}$ is an infinite cycle in the spectral sequence (E_r^{**}, d_r') converging to $k^*(X; L)$.

3. The Lie group Spin(n)

In [2] Borel proved that:

- i) $H^*(Spin(n); \mathbb{Z}_2)$ is an algebra with a simple system of generators x_i, x_j where degree $x_i = i \in S_n = \{i \leq n-1 : i \text{ is not a power of } 2\}$ and degree $x = 2^{s(n)-1}$, s(n) is the integer such that $2^{s(n)-1} < n \leq 2^{s(n)}$. Moreover, for all $i \in \mathbb{N}$ we have: $Sq^{i}x_{j} = {j \choose i}x_{i+j}$ if $j \in S_{n}$, $i+j \in S_{n}$ and $Sq^{i}x_{i} = 0$ otherwise; $Sq^{i}x = 0$.
- ii) $H^*(Spin(n);\mathbb{Z}_2)$ is torsion free if $n \leq 6$ and is an abelian group isomorphic to the direct sum of copies of \mathbb{Z} and \mathbb{Z}_2 if $n \geq 7$.

We are interested in the cases where $n \ge 7$.

By the results of [3; III-2] and proposition 2.1 we conclude that in the spectral sequence converging to $k^*(Spin(n); \mathbb{Z}_2)$ the only possibily non zero differential is d'_3 : $E_3^{m,q} \rightarrow E_3^{m+3,q-2}$ and that it coincides with d_3 when q < 0. Therefore, we will use the same symbol d_3 for both.

If we identify $E_3^{m,q}$ with $H^m(Spin(n); \mathbb{Z}_2)$ when q is even and less or equal to zero, we get $d_3 = Sq^1Sq^2 + Sq^2Sq^1$ and we have the following relations:

- i) $d_3x_i = \begin{cases} x_{i+3} \text{ if } i \text{ is odd, } i+3 \in S_n \\ 0 & \text{otherwise} \end{cases}$; $d_3x = 0$; ii) if $2i \in S_n$ then $x_{2i} = d_3x_{2i-3}$;

- iii) $x_i^2 = \begin{cases} x_{2i} \text{ if } 2i \in S_n \\ 0 \text{ if } 2i \notin S_n \end{cases}$ and $x^2 = 0$.

We are going to describe $kerd_3/imd_3$. We will use the following notation:

- a) $S_n^1 = \{i \text{ odd} \in S_n; i+3 \in S_n\}, S_n^2 = \{i \text{ odd} \in S_n : i+3 \in S_n \text{ and } 2i+6 \notin S_n\}$ S_n and $S_n^3 = \{i \text{ odd} \in S_n : i + 3 \in S_n \text{ and } 2i + 6 \in S_n\};$
- b) $y_j = x_j x_{j+3}$ if $j \in S_n^2$ and $z_k = x_k x_{k+3} + x_{2k+6}$ if $k \in S_n^3$;
- c) \bar{u} is the image under the projection $kerd_3 \rightarrow kerd_3/imd_3$ of any element $u \in kerd_3$.

L. MAGALIIÃES

3.1 Proposition.

Using the above notation, $kerd_3/imd_3$ is a \mathbb{Z}_2 exterior algebra generated by $(x_i)_{i\in S_1^1}, \bar{x}, (\bar{y}_j)_{j\in S_2^2}$ and $(\bar{z}_k)_{k\in S_2^3}$.

Proof:

We consider the differential algebra $A = (H^*(Spin(n); \mathbb{Z}_2), d_3)$. First we note that it is enough to prove that $H_*(A/(x))$ is an exterior algebra on the generators $(\bar{x}_i)_{i \in S_n^1}, (\bar{y}_j)_{j \in S_n^2}$ and $(\bar{z}_k)_{k \in S_n^n}$ ((x) denotes the ideal generated by x).

Let B_n denote $H^*(Spin(n); \mathbb{Z}_2)/(x)$. We are going to prove the result by induction on $n \geq 6$. We note that B_n is isomorphic to a subalgebra of $H^*(Spin(n); \mathbb{Z}_2)$. We shall therefore use the same notation for the corresponding generators of both algebras.

The inductive hypothesis is obviously true for n = 6.

We have three different cases to consider:

- i) n-1 is a power of 2. Therefore $B_n = B_{n-1}$.
- ii) n-1 is odd. Therefore B_n has one more generator, x_{n-1} , than B_{n-1} . Since $d_3x_{n-1} = 0$ and $x_{n-1} \notin imd_3$ the result follows.
- iii) n-1 is even and it is not a power of 2. Thus B_n has one more generator, x_{n-1} than B_{n-1} and $x_{n-1} = d_3 x_{n-4}$.

We consider now the following exact sequence:

$$0 \longrightarrow (x_{n-1}) \stackrel{i}{\longrightarrow} B_n \stackrel{p}{\longrightarrow} B_n/(x_{n-1}) \longrightarrow 0$$

where i is the inclusion and p is the projection. It induces the exact triangle:

$$\begin{array}{ccc} H_*((x_{n-1})) & \xrightarrow{\mathfrak{s}_*} & H_*(B_n) \\ & & \swarrow & \swarrow \\ & & & \swarrow \\ & & & H_*(B_n/(x_{n-1})) \end{array}$$

We can replace $B_n/(x_{n-1})$ by B_{n-1} because they are isomorphic as differential algebras. Clearly, $d_3x_i = 0$ if $i \in S_n^1$, $d_3y_j = x_{j+3}^2 = 0$ if $j \in S_n^2$ and $d_3z_k = x_{k+3}^2 + x_{2k+6} = 0$ if $k \in S_n^3$.

We have to distinguish two subcases:

a) $\frac{n-1}{2}$ is even. Here $S_n^1 = S_{n-1}^1 \setminus \{n-4\}, S_n^2 = (S_{n-1}^2 \setminus \{r\} \cup \{n-4\} \text{ and } S_n^3 = S_{n-1}^3 \cup \{r\}$, where $r = \frac{n-7}{2}$.

By induction, we have $H_*B_{n-1} = \Lambda_{\mathbb{Z}_2}((\bar{x}_i)_{i\in S_{n-1}^1}, (\bar{y}_j)_{j\in S_{n-1}^2}, (\bar{z}_k)_{k\in S_{n-1}^3}$. The generators $(\bar{x}_i)_{i\in S_n^1}, (\bar{y}_j)_{j\in S_n^2\setminus\{n-4\}}(\bar{z}_k)_{k\in S_n^3}$ belong to $imp_*; p_*\bar{z}_r = \bar{y}_r;$ and $\partial_*\bar{x}_{n-4} = \bar{x}_{n-1}$. As $d_3(a\bar{x}_{n-4}) = a\bar{x}_{n-1}$ in B_n if a is a cycle ,we have that $\partial_*(\bar{a}\bar{x}_{n-4}) = \bar{a}\bar{x}_{n-1}$ if $\bar{a} \in H_*B_{n-1}$. Thus $imp_* = \Lambda_{\mathbb{Z}_2}((\bar{x}_i)_{i\in S_n^1}, (\bar{y}_j)_{j\in S_n^2}, (\bar{z}_k)_{k\in S_n^3-\{r\}}).$ We denote by R the algebra imp_* . The map ∂_* is R-linear and as an R-module $H_*(B_{n-1})$ is free on the two generators 1 and \bar{x}_{n-4} . Moreover $\partial_* 1 = 0$, $\partial_* \bar{x}_{n-4} = \bar{x}_{n-1}$ and the map

$$B_{n-1} \rightarrow (x_{n-1})$$
$$a \rightarrow a x_{n-1}$$

is an isomorphism of differential modules. Therefore $H_*((x_{n-1}))$ a is free *R*-module isomorphic to $R\bar{x}_{n-1} \oplus R\bar{x}_{n-4}\bar{x}_{n-1}$ and H_*B_n is isomorphic to *R*. $1 \oplus R\bar{x}_{n-4}\bar{x}_{n-1}$, as a \mathbb{Z}_2 -vector space.

To check that $H_{\bullet}B_n$ is an exterior algebra on the given elements, it remains to show that they have zero square, which can be easily verified.

b) $\frac{n-1}{2}$ is odd. The proof is similar to the previous one.

3.2 Lemma.

The kernel of j^* : $k^*(Spin(n); \mathbb{Z}_2) \rightarrow k^*(Spin(n); \mathbb{Z}_2)$ is equal to the set $A = \{y \in k^*(Spin(n); \mathbb{Z}_2) : t^{-1} = 0\}.$

Proof:

The inclusion $kerj^* \supset A$ follows from the equality $F_r^{r-2} = F_r^{r-2}$ (proposition 2.1). The other inclusion $kerj^* \subset A$ is trivial.

3.3 Proposition.

The kernel of $j^*: k^*(Spin(n); \mathbb{Z}_2) \to k^*(Spin(n); \mathbb{Z}_2)$ is mapped isomorphically onto imd₃ by the map $n^*: k^*(Spin(n); \mathbb{Z}_2) \to H^*(Spin(n); \mathbb{Z}_2)$.

Proof:

We will show first that $n^*(kerj^*) = imd_3$.

Since $E_{\infty}^{i,0} \approx kerd_3$ and $E_{\infty}^{i,0} \approx kerd_3/imd_3$ we have the following commutative diagram:

where j^{**} is the projection. It follows from the exactness of the rows that $n^*(kerj^*) = imd_3$.

It remains to show that $n^*_{|kerj^*}$ is injective. This is implied by the injectivity of $j^*_{|imm_*}$ (lemma 3.2).

We are now able to describe $k^*(Spin(n);\mathbb{Z}_2)/imj^*$. We note that by propositions 2.3 and 3.3 the map n^* induces an epimorphism $\bar{n}^* : k^*(Spin(n);\mathbb{Z}_2)$

 $/imj^* \to kerd_3/imd_3$. Thus we can take elements $(\bar{w}_i)_{i\in S_n^1}, (\bar{u}_j)_{j\in S_n^2}, (\bar{v}_k)_{k\in S_n^3}$ and \bar{w} in $k^*(Spin(n); \mathbb{Z}_2)/kerj^*$ such that $\bar{n}^*(\bar{w}_i) = \bar{x}_i, \bar{n}^*(\bar{u}_j) = \bar{y}_j, \bar{n}^*(\bar{v}_k) = \bar{z}_k$ and $\bar{n}^*(\bar{w}) = \bar{x}$. These elements are uniquely determined modulo Imm^* . Furthermore all of them have zero square since the square of the elements of odd degree in $K^*(Spin(n); \mathbb{Z}_2)$ is zero [3].

Therefore there exists an algebra homomorphism

$$g: \Lambda_{\mathbb{Z}_2[t-1]}((\bar{w}_i)_{i\in S_n^1}, (\bar{u}_j)_{j\in S_n^2}, (\bar{v}_k)_{k\in S_n^3}, \bar{w}) \longrightarrow k^*(Spin(n); \mathbb{Z}_2)$$

It is easy to verify that g is an isomorphism.

We have therefore the following theorem.

3.4 Theorem.

The $\mathbb{Z}_2[t^{-1}]$ algebra $k^*(Spin(n);\mathbb{Z}_2)/\ker j^*$ is an exterior algebra generated by $(\bar{w}_i)_{i\in S_2^1}, (\bar{u}_j)_{j\in S_2^2}, (\bar{v}_k)_{k\in S_2^3}$ and \bar{u} .

The next proposition is an immediate consequence of proposition 2.2.

3.5 Proposition.

The torsion coefficients of $k^*(Spin(n))$ are two and for all $y \in k^*(Spin(n)) 2y = 0$ if and only if $t^{-1}y = 0$.

Acknowledgement: I would like to thank Dr. Alan Robinson for some interesting comments during a visit by the author to Warwick University.

References

- M.F. ATIYAH AND F. HIRZEBRUCH, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. A.M.S. 3 (1961), 7-38.
- A. BOREL, Topology of Lie groups and characteristic classes, Bull. Am. Math. Soc. 61 (1955), 397-432.
- 3. L. HODGKIN, On the K-theory of Lie groups, Topology 6 (1967), 1-36.
- L. MAGALHÃES, Some results on the connective K-theory of Lie groups, Bull. Can. Math. Soc. 31 (1988), 194-199.
- 5. J.P. MAY, " E_{∞} ring spaces and E_{∞} ring spectra," Lecture Notes in Mathematics 577, Springer-Verlag, 1977.

Keywords. connective K-theory, Spinor groups, Atiyah-Hirzebruch spectral sequence 1980 Mathematics subject classifications: 55N15, 55N20

> Centro de Matemática Faculdade de Ciéncias Universidade do Porto PORTUGAL

Rebut el 28 de Març de 1989