THE CONNECTIVE K-THEORY OF SPINOR GROUPS

Luísa Magalhães

Abstract

Abstract

We study the properties of the connective K-theory with \boldsymbol{Z}_{2} coefficients of the Lie groups $\operatorname{Spin}(n)$. This generalises some work of L. Hodgkin.

o. Introduction

In a previous paper [4] we obtained the Hopf algebra structure of $k^{*}(G ; Q(P))$ where G is a compact connected Lie group and $Q(P)$ is the quotient ring of \mathbb{Z} with respect to a multiplicative subset generated by a set of primes, such that $H^{*}(G ; Q(P))$ is totsion free.

Here we study the properties of the connective K-theory of the Lie groups $\operatorname{Spin}(n)$. Since $H^{*}(\operatorname{Spin}(n) ; \mathbf{Z})$ is torsion free if $n \leq 6$, we are only interested in the cases where $n \geq 7$. We will see that $k^{*}(\operatorname{Spin}(n))$ has only two torsion and we will give the algebra structure of $k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right) /\left\{x \in k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)\right.$: $\left.t^{-1} x=0\right\}$ for $n \geq 7\left(t^{-1}\right.$ is the canonical generator of $\left.k^{*}(p t)\right)$.

Our paper generalises part of earlier work of L. Hodgkin, who computed the usual K-theory of compact Lie groups [3].

1. Preliminaries

Let k and K denote, respectively, the spectrum for connective K-theory and the usual K-theory. There is a natural map of ring spectra $j: k \rightarrow K$. We recall that $k^{*}(p t)=\mathbf{Z}\left[t, t^{-1}\right]$, the Laurent polynonial ring generated by the reduced Hopf bundle $t^{-1} \in K^{-2}(p t)$ and its inverse, and that $k^{*}(p t)=Z\left[t^{-1}\right]$. We denote by $m: k \rightarrow k$ the morphism of spectra corresponding to multiplication by t^{-1}.

If we introduce \mathbf{Z}_{p} coefficients in the k-cohomology we still obtain an associative multiplication in $k^{*}\left(\quad ; \boldsymbol{Z}_{\boldsymbol{p}}\right)$.

Let $H Z$ be the Eilenberg-MacLane spectrum with integer coefficients. There is a map of ring spectra $n: k \rightarrow H \mathbf{Z}$ such that it induces the homomorphism $n^{*}: k^{*}(p t) \rightarrow H^{*}(p t ; \mathbf{Z})$ given by $n^{*}\left(a t^{-n}\right)=\left\{\begin{array}{lll}a & \text { if } n=0 \\ 0 & \text { if } n>0\end{array}, a \in \mathbf{Z}, n \in \mathbf{N} \cup\{0\}[5]\right.$.

For each $C W$ complex X and each prime p there is an exact sequence

$$
0 \longrightarrow \mathbf{Z}_{p} \otimes k^{*}\left(X ; \mathbf{Z}_{p}\right) \xrightarrow{\dot{n}^{*}} H^{*}\left(X ; \mathbf{Z}_{p}\right) \longrightarrow \operatorname{Tor}_{1, *}^{\left.\boldsymbol{Z}_{p} t^{-1}\right]}\left(\mathbf{Z}_{p} ; k^{*}\left(X ; \mathbf{Z}_{p}\right), \longrightarrow 0\right.
$$

where \tilde{n}^{*} is $1 \otimes n^{*}: \mathbf{Z} \otimes k^{*}(X) \rightarrow \mathbf{Z} \otimes H^{*}(X ; \mathbf{Z})$ reduced mod $p[4]$.

2. Atiyah-Hirzebruch spectral sequence

Let X be a compact $C W$ complex. We are going to consider the following Atiyah- Hirzebruch spectral sequences: $\left(E_{r}^{* *}, d_{r}\right)_{r \geq 2}$ converging to $K^{*}(X)$ and ($\left.{ }^{\prime} E_{r}^{* *}, d_{r}^{\prime}\right)_{r \geq 2}$ converging to $k^{*}(X)$. Let $F_{p}^{m}=\operatorname{ker}\left(K^{m}(X) \rightarrow K^{m}\left(X^{p-1}\right)\right.$) and ${ }^{\prime} F_{p}^{m}=\operatorname{ker}\left(k^{m}(X) \rightarrow k^{m}\left(X^{p-1}\right)\right)$ be the filtrations. The first spectral sequence is compatible with the Bott isomorphism.

We note that, since $K^{q}(p t)=0=k^{q}(p t)$ if q is odd and $k^{q}(p t)=0$ if $q>0$, then: ${ }^{\prime} E_{r}^{p, q}=0=E_{r}^{p, q}$ for all $p \in \mathbf{Z}, r \geq 2, q$ an odd integer; ${ }^{t} E_{r}^{p, q}=0$ if $q>0$; and all the differentials of even degree are zero. Moreover, we have for all $i, n \in \mathbf{Z}: F_{n-1}^{i}=F_{n}^{i}$ and ${ }^{\prime} F_{n-1}^{i}={ }^{\prime} F_{n}^{i}$ if $n-i$ is even; $F_{n}^{i}=F_{n+1}^{i}$ and ${ }^{\prime} F_{n}^{i}={ }^{\prime} F_{n+1}^{i}$ if $n-i$ is odd; $m^{*}\left(F_{n}^{i}\right)=F_{n}^{i-2}$ and ${ }^{\prime} F_{n}^{\prime n}=k^{n}(X)$.

The same notations will be used when we introduce \mathbf{Z}_{p} coefficients.

2.1 Proposition. [4]:

Let X be a compact $C W$ complex. Then:
i) $j_{s}^{* *}:{ }^{\prime} E_{s}^{p, q} \rightarrow E_{s}^{p, q}$ is an isomorphism for $q \leq-\operatorname{dim} X+1$,
ii) $j_{W_{n}^{m}}^{*}$ is an isomorphism onto F_{n}^{m} for all $m \in \mathbf{Z}$ and $n \geq m+s-1$, if $d_{r}=0$ for $r>s$, where $j_{s}^{* *}$ and j^{*} are the obvious morphisms induced by $j: k \rightarrow K$.

2.2 Proposition.

Let X be a $C W$ complex such that $K^{*}(X)$ is torsion free. If the differentials d_{5} in the spectral sequence converging to $K^{*}(X)$ are zero for $r>s$ (we suppose s odd since the differentials of even degree are zero $)$, then $\left\{y \in k^{*}(X)\right.$: $\left.t^{(-s+1) / 2} y=0\right\}=\left\{y \in k^{*}(X): \lambda y=0\right.$ for some $\left.\lambda \in \mathbf{Z}-\{0\}\right\}$.

Proof:

We consider the spectral sequences ($E_{r}^{* *}, d_{r}$) and (${ }^{\prime} E_{r}^{* *}, d_{r}^{\prime}$) converging to $K^{*}(X)$ and $k^{*}(X)$, respectively.

We have the following commutative diagram for all $m \in Z, i \geq 0$:

where j^{*} and $j^{* *}$ are the maps induced by $j: k \rightarrow K$ and p^{\prime} is the map of the extension exact sequence.

Let $y \in k^{m}(X)$ be such that $\lambda y=0$ for some $\lambda \in \mathbb{Z}-\{0\}$. Since j^{*} : ${ }^{\prime} F_{m}^{m-s+1} \rightarrow F_{m}^{m-s+1}$ is an isomorphism (by 2.1) and $K^{*}(X)$ is torsion free, then $t^{(-s+1) / 2} y=0$.

We suppose now that $y \in k^{m}(X)$ and $t^{(-s+1) / 2} y=0$. To finish the proof it is enough to show that $\lambda y \in{ }^{\prime} F_{m+s-1}^{m}$ for some non zero integer λ (by 2.1).

We are going to prove by induction on $i \geq 0$ that there exists $\lambda \in \mathbb{Z}-\{0\}$ such that $\lambda y \in{ }^{\prime} F_{m+2 i+2}^{m}$.

For $i=0$ we have $j^{* *} p^{\prime} y=0$ which implies $p^{\prime} y \in i m d_{s}$. Since all the differentials d_{r} are torsion-valued $[1]$, there exists $\lambda \in \mathbf{Z}-\{0\}$ so that $\lambda p^{\prime} y=0$. Therefore, by the exactness of the extension sequence, $\lambda y \in{ }^{'} F_{m+2}^{m}$ as required.

The inductive step is proved in the same way and the result follows.

2.3 Proposition. [4]:

Let X be a compact $C W$ complex and let L be equal to \mathbb{Z} or \mathbb{Z}_{p} (p prime), then $x \in H^{p}(X ; L)$ lies in the image of $n^{*}: k^{*}(X ; L) \rightarrow H^{*}(X ; L)$ if and only if x considered as an element of ' $E_{2}^{p, 0}$ is an infinite cycle in the spectral sequence (${ }^{\prime} E_{r}^{* *}, d_{r}^{*}$) converging to $k^{*}(X ; L)$.

3. The Lie group $\operatorname{Spin}(n)$

In [2] Borel proved that:
i) $H^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$ is an algebra with a simple system of generators x_{i}, x where degree $x_{i}=i \in S_{n}=\{i \leq n-1 ; i$ is not a power of 2$\}$ and degree $x=2^{s(n)-1}, s(n)$ is the integer such that $2^{s(n)-1}<n \leq 2^{s(n)}$. Moreover, for all $i \in \mathbf{N}$ we have: $S q^{i} x_{j}=\binom{j}{i} x_{i+j}$ if $j \in S_{n}, i+j \in S_{n}$ and $S q^{i} x_{j}=0$ otherwise; $S q^{i} x=0$.
ii) $H^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$ is torsion free if $n \leq 6$ and is an abelian group isomorphic to the direct sum of copies of \mathbf{Z} and $\mathbf{Z}_{\mathbf{2}}$ if $n \geq 7$.
We are interested in the cases where $n \geq 7$.
By the results of $[3$; III-2] and proposition 2.1 we conclude that in the spectral sequence converging to $k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$ the only possibily non zero differential is $d_{3}^{\prime}:{ }^{\prime} E_{3}^{m, g} \rightarrow{ }^{\prime} E_{3}^{m+3, g-2}$ and that it coincides with d_{3} when $q<0$. Therefore, we will use the same symbol d_{3} for both.

If we identify $E_{3}^{m, q}$ with $H^{m}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$ when q is even and less or equal to zero, we get $d_{3}=S q^{1} S q^{2}+S q^{2} S q^{1}$ and we have the following relations:
i) $d_{3} x_{i}=\left\{\begin{array}{cc}x_{i+3} \text { if }: \text { is odd, } i+3 \in S_{n} \\ 0 & \text { otherwise }\end{array} ; d_{3} x=0\right.$;
ii) if $2 i \in S_{n}$ then $x_{2 i}=d_{3} x_{2 i-3}$;
iii) $x_{i}^{2}=\left\{\begin{array}{c}x_{2 i} \text { if } 2 i \in S_{n} \\ 0 \\ \text { if } 2 i \notin S_{n}\end{array}\right.$ and $x^{2}=0$.

We are going to describe $k e r d_{3} / i m d_{3}$. We will use the following notation:
a) $S_{n}^{1}=\left\{i\right.$ odd $\left.\in S_{n} ; i+3 \in S_{n}\right\}, S_{n}^{2}=\left\{i\right.$ odd $\in S_{n}: i+3 \in S_{n}$ and $2 i+6 \notin$ $\left.S_{n}\right\}$ and $S_{n}^{3}=\left\{i\right.$ odd $\in S_{n}: i+3 \in S_{n}$ and $\left.2 i+6 \in S_{n}\right\} ;$
b) $y_{j}=x_{j} x_{j+3}$ if $j \in S_{n}^{2}$ and $z_{k}=x_{k} x_{k+3}+x_{2 k+6}$ if $k \in S_{n}^{3}$;
c) \bar{u} is the image under the projection kerd $d_{3} \rightarrow$ kerd $d_{3} / i m d_{3}$ of any element $u \in$ kerd $_{3}$.

3.1 Proposition.

Using the above notation, kerd ${ }_{3} /$ imd $_{3}$ is a \mathbf{Z}_{2} exterior algebra generated by $\left(x_{i}\right)_{i \in S_{n}^{1}}, \bar{x},\left(\bar{y}_{j}\right)_{j \in S_{n}^{2}}$ and $\left(\bar{z}_{k}\right)_{k \in S_{n}^{3}}$.

Proof:

We consider the differential algebra $A=\left(H^{*}\left(\operatorname{Spin}(n) ; \mathbb{Z}_{2}\right), d_{3}\right)$. First we note that it is enough to prove that $H_{*}(A /(x))$ is an exterior algebra on the generators $\left(\bar{x}_{i}\right)_{i \in S_{n}^{1}},\left(\bar{y}_{j}\right)_{j \in S_{n}^{2}}$ and $\left(\bar{z}_{k}\right)_{k \in S_{n}^{3}}((x)$ denotes the ideal generated by $x)$.

Let B_{n} denote $H^{*}\left(\operatorname{Spin}(n) ; \boldsymbol{Z}_{2}\right) /(x)$. We are going to prove the result by induction on $n \geq 6$. We note that B_{n} is isomorphic to a subalgebra of $H^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$. We shall therefore use the same notation for the corresponding generators of both algebras.

The inductive hypothesis is obviously true for $n=6$.
We have three different cases to consider:
i) $n-1$ is a power of 2 . Therefore $B_{n}=B_{n-1}$.
ii) $n-1$ is odd. Therefore B_{n} has one more generator, x_{n-1}, than B_{n-1}. Since $d_{3} x_{n-1}=0$ and $x_{n-1} \notin \mathrm{imd}_{3}$ the result follows.
iii) $n-1$ is even and it is not a power of 2 . Thus B_{n} has one more generator, x_{n-1} than B_{n-1} and $x_{n-1}=d_{3} x_{n-4}$.
We consider now the following exact sequence:

$$
0 \longrightarrow\left(x_{n-1}\right) \xrightarrow{i} B_{n} \xrightarrow{p} B_{n} /\left(x_{n-1}\right) \longrightarrow 0
$$

where i is the inclusion and p is the projection. It induces the exact triangle:

We can replace $B_{n} /\left(x_{n-1}\right)$ by B_{n-1} because they are isomorphic as differential algebras. Clearly, $d_{3} x_{i}=0$ if $i \in S_{n}^{1}, d_{3} y_{j}=x_{j+3}^{2}=0$ if $j \in S_{n}^{2}$ and $d_{3} z_{k}=x_{k+3}^{2}+x_{2 k+6}=0$ if $k \in S_{n}^{3}$.

We have to distinguish two subcases:
a) $\frac{n-1}{2}$ is even. Here $S_{n}^{1}=S_{n-1}^{1} \backslash\{n-4\}, S_{n}^{2}=\left(S_{n-1}^{2} \backslash\{r\} \cup\{n-4\}\right.$ and $S_{n}^{3}=S_{n-1}^{3} \cup\{r\}$, where $r=\frac{n-7}{2}$.
By induction, we have $H_{*} B_{n-1}=\Lambda_{\mathbf{z}_{2}}\left(\left(\bar{x}_{i}\right)_{i \in S_{n-1}^{1}},\left(\bar{y}_{j}\right)_{j \in S_{n-1}^{2}},\left(\bar{z}_{k}\right)_{k \in S_{n-1}^{x}}\right.$. The generators $\left(\bar{x}_{i}\right)_{i \in S_{n}^{2}},\left(\bar{y}_{j}\right)_{j \in S_{n}^{2} \backslash\{n-4\}}\left(\bar{z}_{k}\right)_{k \in S_{n}^{3}}$ belong to $i m p_{*} ; p_{*} \bar{z}_{r}=\bar{y}_{r}$; and $\partial_{4} \bar{x}_{n-4}=\bar{x}_{n-1}$. As $d_{3}\left(\alpha \bar{x}_{n-4}\right)=a \bar{x}_{n-1}$ in B_{n} if a is a cycle, we have that $\partial_{*}\left(\bar{a} \bar{x}_{n-4}\right)=\bar{a} \bar{x}_{n-1}$ if $\bar{a} \in H_{*} B_{n-1}$. Thus $i m p_{*}=\Lambda_{\mathbf{z}_{2}}\left(\left(\bar{x}_{i}\right)_{i \in S_{n}^{2}},\left(\bar{y}_{j}\right)_{j \in S_{n}^{2}}\right.$, $\left.\left(\bar{z}_{k}\right)_{k \in S_{n}^{3}-(r\}}\right)$.

We denote by R the algebra $i m p_{*}$. The map ∂_{*} is R-linear and as an $R-$ module $H_{*}\left(B_{n-1}\right)$ is free on the two generators 1 and \bar{x}_{n-4}. Moreover $\partial_{*} 1=$ $0, \partial_{*} \bar{x}_{n-4}=\bar{x}_{n-1}$ and the map

$$
\begin{gathered}
B_{n-1} \rightarrow\left(x_{n-1}\right) \\
a \rightarrow a x_{n-1}
\end{gathered}
$$

is an isomorphism of differential modules. Therefore $H_{*}\left(\left(x_{n-1}\right)\right) a$ is free R module isomorphic to $R \bar{x}_{n-1} \oplus R \bar{x}_{n-4} \bar{x}_{n-1}$ and $H_{*} B_{n}$ is isomorphic to R. $1 \oplus R \bar{x}_{n-4} \bar{x}_{n-1}$, as a \mathbf{Z}_{2}-vector space.
To check that $H . B_{n}$ is an exterior algebra on the given elements, it remains to show that they have zero square, which can be easily verified.
b) $\frac{n-1}{2}$ is odd. The proof is similar to the previous one.

3.2 Lemma.

The kernel of $j^{*}: k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right) \rightarrow k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$ is equal to the set $A=\left\{y \in k^{*}\left(\operatorname{Spin}(n) ; \mathbb{Z}_{2}\right): t^{-1}=0\right\}$.

Proof:

The inclusion kerj ${ }^{*} \supset A$ follows from the equality $F_{r}^{r-2}={ }^{\prime} F_{r}^{r-2}$ (proposition 2.1). The other inclusion kerj* $\subset A$ is trivial.

3.3 Proposition.

The kernel of $j^{*}: k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right) \rightarrow k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$ is mapped isomorphically onto imd d_{3} by the map $n^{*}: k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right) \rightarrow H^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$.

Proof:

We will show first that $n^{*}\left(k e r j^{*}\right)=i m d_{3}$.
Since ${ }^{\prime} E_{\infty}^{i, 0} \approx k e r d_{3}$ and $E_{\infty}^{i, 0} \approx k e r d_{3} / i m d_{3}$ we have the following commutative diagram:

where $j^{* *}$ is the projection. It follows from the exactness of the rows that $n^{*}\left(\right.$ kerj $\left.^{*}\right)=\operatorname{imd}_{3}$.
It remains to show that $n_{\text {|kerj }}^{*}$ is injective. This is implied by the injectivity of $j_{\text {limm. }}^{*}$ (lemma 3.2).
We are now able to describe $k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right) / i m j^{*}$. We note that by propositions 2.3 and 3.3 the map n^{*} induces an epimorphism $\bar{n}^{*}: k^{*}\left(\operatorname{Spin}(n) ; \boldsymbol{Z}_{2}\right)$
$/ \mathrm{imj} j^{*} \rightarrow$ kerd $_{3} / \mathrm{imd}_{3}$. Thus we can take elements $\left(\bar{w}_{i}\right)_{i \in S_{n}^{1}},\left(\bar{u}_{j}\right)_{j \in S_{n}^{2}},\left(\bar{v}_{k}\right)_{k \in S_{n}^{3}}$ and \bar{w} in $k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right) / k e r j^{*}$ such that $\bar{n}^{*}\left(\bar{w}_{i}\right)=\bar{x}_{i}, \bar{n}^{*}\left(\bar{u}_{j}\right)=\bar{y}_{j}, \bar{n}^{*}\left(\bar{v}_{k}\right)=$ \bar{z}_{k} and $\bar{n}^{*}(\bar{w})=\bar{x}$. These elements are uniquely determined modulo Imm** Furthermore all of them have zero square since the square of the elements of odd degree in $K^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)$ is zero [3].

Therefore there exists an algebra homomorphism

$$
g: \Lambda_{\mathbf{Z}_{2}[t-1]}\left(\left(\bar{w}_{i}\right)_{i \in S_{n}^{2}},\left(\bar{u}_{j}\right)_{j \in S_{n}^{2}},\left(\bar{v}_{k}\right)_{k \in S_{n}^{3}}, \bar{w}\right) \longrightarrow k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right)
$$

It is easy to verify that g is an isomorphism.
We have therefore the following theorem.

3.4 Theorem.

The $\mathbf{Z}_{2}\left[t^{-1}\right]$ algebra $k^{*}\left(\operatorname{Spin}(n) ; \mathbf{Z}_{2}\right) /$ kerj* is an exterior algebra generated $b y\left(\bar{w}_{i}\right)_{i \in S_{n}^{1}},\left(\bar{u}_{j}\right)_{j \in S_{n}^{2}},\left(\bar{v}_{k}\right)_{k \in S_{n}^{3}}$ and \bar{u}.

The next proposition is an immediate consequence of proposition 2.2.

3.5 Proposition.

The torsion coefficients of $k^{*}(\operatorname{Spin}(n))$ are two and for all $y \in k^{*}(\operatorname{Spin}(n)) 2 y=$ 0 if and only if $t^{-1} y=0$.

Acknowledgement: I would like to thank Dr. Alan Robinson for some interesting comments during a visit by the author to Warwick University.

References

1. M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. A.M.S. 3 (1961), 7-38.
2. A. Borel, Topology of Lie groups and characteristic classes, Bull. Am. Math. Soc. 61 (1955), 397-432.
3. L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967), 1-36.
4. L. Magalhäes, Some results on the connective K-theory of Lie groups, Bull. Can. Math. Soc. 31 (1988), 194-199.
5. J.P. MAY, " E_{∞} ring spaces and E_{∞} ring spectra," Lecture Notes in Mathematics 577, Springer-Verlag, 1977.

Keywords. connective K-theory, Spinor groups, Atiyah-Hirzebruch spectral sequence 1980 Mathematics subject classifications: $55 \mathrm{~N} 15,55 \mathrm{~N} 20$

Centro de Matemática Faculdade de Ciéncias Universidade do Porto PORTUGAL

