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THE TOPOLOGICAL CENTRALIZERS OF
TOEPLITZ FLOWS AND THEIR Z,-EXTENSIONS

WOICIECH BULATEK AND JAN KWIATKOWSKI

Abstract

The topological centralizers of Toeplitz flows satisfying a condition {5h)
and their Zs-extensions are described. Such Toeplitz flows are topo-
logicaliy coalescent. If {gg,qi,...} is a set of all except at least one
prime numbers and Iy, f1,... are positive integers then the direct sum
@20 Z4ili @ Z can be the topological centralizer of a Toeplitz flow.

Introduction

In this paper we study the topological centralizers of Toeplitz flows and their
Z,—extensions. Toeplitz flows are obtained as the orbit closure of special points
in {0, 1}? called Toeplitz sequences. They were introduced by Jacobs and Keane
[2]. Many metric and topological properties of Toeplitz flows were investigated
by those authors and by Williams [10]. Markley [6], [7] has examined Toeplitz
sequences as characteristic sequences over zero-dimensional groups. Lemaniczyk
[5] used special Toeplitz sequences to produce examples of Z;-extensions over
dynamical system with discrete spectrum that have Lebesgue component of
finite multiplicity. A regular Toeplitz sequence w with a period structure {p,},
t > 0, defines a cocycle ¥, on the group G of py-adic integers. A cocycle ¥,
determines a skew product transformation Ty, on & x Z;. Each transformation
S commuting with Ty can be identified with a pair (7, f), where T, is a
rotation of @ by ¢ and f is a measurable function, f : G — Z, [8]. In this case
it is natural to say that T, can be lifted to S € C(Ty) (the metric centralizer
of Ty). The problem how big is the set of such ¢'s was investigated in [4].
In [3] this set is described for Morse cocycles. But the same problem can be
considered from the topological point of view. A dynamical system (G, m, 1),
(rm the Haar measure, T the unit element of (') is metrically isororphic to
B(w) = (O(w), i, ¢), where ¢ is the shift and g the unique o-invariant measure

[2]- The cocycle ¢, becomes a continuous cocycle o, ¥, : Ofw) — Z2 [5]. The
latter enables one to define a Z;—extension (-)Y:;F) = {0{w} x Z3,7) over Qw)
as a topological dynamical system. Each homeomorphism 5 comrnuting with
¢ induces a homeomorphism § commuting with # and $ induces a rotation 7,
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of . The problem arises to describe the set of those ¢ € G which can be lifted
to an element of C(¢) and those § € C(o) which can be lifted to an element
of C(¥). In this paper we answer these questions assuming that w satisfies a
condition (Sh) (separated holes). Next we comstruct a class of special Toeplitz
flows with the topological centralizers as in the abstract,

1. Preliminaries

We summarize some basic definitions and results. We shall use Z, N to
denote the integers, the positive integers, respectively. By flow we will mean
a pair {X, T}, where X is a compact metric space and T is a homeomorphism
of X to itself. A flow {X,T) is minimal if X has no proper closed T-invariant
subset. A flow (Y, 5) is a factor of (X, T) if there is a continuous map Il of X
onto Y, with [ToT = Soll. If Il is a homeomorphism then {X,T) and (Y, 5) are
isomorphic as flows. Every minimal flow (X, T) has a maximal equicontinuous
factor (G,g), Il : (X, T) — (G, g), where G is a compact metric monothetic
group with generator g. T II' : (X, T) — (G’,¢") is any other such factor then
there is a factor map ¢ : (G, g) — (G, ¢') such that 3 o IT = IT'.

By the topological centralizer of (X, T) we will mean the set of all continuous
maps U : X —+ X which commute with . We use C(T} to denote the
centralizer of T. C(T) is automatically a semigroup and it becomes a group if
every U/ € C(T) is homeomorphism.

Given a finite abelian group P, let © be the space of all bisequences over
P with its natural compact metric topology ard let & be the left shift homeo-
morphism on Q. If w € § then win] will denote the value of w at n € Z, and
O(w) will denote the orbit of w. A finite sequence B = (B[0],...,Bln — 1)),
B[i] € P, n > 1, is called a block. The number n is called the length of
B and denoted by |[Bl. Ifw € Q and B is a block then w[i, k], B, k|,
0 < { € k € n—1, denote the blocks {w(z],...,w[k]) and (B[:],...,B[k])
respectively. Let C' = (C[0],...,C[m — 1]) be another block. We say that B
appears at the i—th place inw or C if w[t,2+|B|-1] = Bor C[i,i+|B|-1]} = B.
If |C| = | B| then the sum of B and C is the block B + ' such that

B4 C=(B[0]+C[0},...,B[rn—1] +Cln—1]),

where de symbol ” + 7 is the operation of P. Likewise we define a sequence
(w+w),w € as

wHw =(. w1+ [-1],w[0] +«'[0],w[l] + &' {1],... }.

A w € £ is called a Toeplitz sequence if there exists a collection of pairwise
disjoint arithmetic progressions {7;} whose union is Z and such that n,m € T}
implies w[r] = wfm]. A Toeplitz sequence w is regular if the T} can be choosen
so that 3, i =1, where T; = {ri+k-g;;k € Z}. Let O{w) be the orbit closure
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of w. The set _O(_w) is & closed, o-invariant subset of . By a Toeplitz flow we
will mean a pair (O(w), o) = 6(w), where w is a Toeplitz sequence.

Assume that w is a non-periodic, regular Toeplitz sequence. It is know {2}
that a Toeplitz flow ©(w) is minimal and uniquely ergodic. The maximal
equicontinuous factor of @(w) was constructed in [10]. We include a part of

this construction to introduce ideas we will use later. For p € N we set
Per,(w) = {n € N;w[n] = w[r], whenever n = n'(mod p)}.

By the p-skeleton of w we will mean a sequence w, obtained from w by replacing
w[n)] by a new symbol " _ " for all n ¢ Pery(w). Thus p is a period of w,. We
call p an essential period of w if p is the smallest period of w,. A period
structure for w is an increasing sequence {p;} of natural numbers satisfying

() pe is an essential period of w for all ¢,

(b) pelpi+1

(¢) Uizo Perp, (W) = Z.

Every non-periodic Toeplitz sequence has a period structure.

Let & be the group of all p;-adic integers i.e.

G={g=) g -p-1; 0<Sq<A -1},
>0

where Ay = pi_1 /pe, t 2 0and p_; = 1. A py-adic integer g may be represented
also as a class of sequences (n), ny € N, such that ny; = ny(mod pe}, t >
0. ¥ (n}) is another sequence satisfying the above condition then (r,) and
(n}) determine the same p;-adic number g iff n, = ny{mod p,}, # > 0. Let
T be the translation of G by the unit element 1 In [10] it is proved that
(G,T) is the maximal equicontinuous factor of Q(w). To define a corresponding
homomorphism II from {O(w), ) to (G, T) a special partition {Il;},¢ € G, of
m was constructed. For fixed{, 1 > 0,and n, 0 <n < p;, — 1, set

Q! = {z € O(w); « has the same p, — skeleton as o™(w)}.

Then %, n = 0,1,...,p; — 1, are pairwise disjoint closed and open subsets of
Olw). For g € G, g =(m), 0 < n <pr— 1, meq1 = ny(mod py) we set

The family of sets {Q,}, g € G is partition of O(w}. Each of them is a closed
and non-empty set and

()=

9+T'
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{Here the symbol ” + 7 means the operation in G. We will use this symbol
in different meanings and we will not remark if no confusion becomes}. The

factor map I : O(w) — G is defined as

(1) Q) =9

The following remark follows easily from the above construction.

Remark 1. If 2 sequence {¢™{w}} is convergent in Ofw) then (n,) deter-
mines a p,~adic integer, i.e., for any ¢ there exists ig such that »; = nj{mod p.}
whenever i,j > ig.

Let A; = wy, [0,p:r — 1]. A: is a block of the length p, with symbols from P
and ” _ " {we will call it a "hole"}. By a filled place in A we will mean each
place i such that A4fi] € P. A sequence of blocks (4;) satisfies the following
conditions:

{A) The block A;41 is obtained as a concatenation of A, A1 A; ... A;, where
some "holes” are filled by symbols of P,

(B) limy_ o re/pt = 1, where r, is the number of the filled places in 4,
{regularity},

(C) For every i € N there exists an index ¢ such that A:] € P and
Adp. — 1] € P.

Conversely, each sequence of blocks (4,)° satisfying (A), (B} and {C) deter-
mines a Toeplitz sequence w {may be periodic).

In the sequel we change a bit a definition of a Toeplitz sequence. Suppose
that a sequence {4;)$° satisfies the conditions (A} and (B). Then we can define
a two-sided sequence w in such a way that

(2) W[I 'pg,('i + l)pf — 1] = A;,

for all : € Z and ¢ > 0. We will call it a T°-sequence. The sequence w can
have the symbol ¥ _* at some places. Let ¢ = (1:), 0 € e S pe— 1, Repr =y
{mod p¢), be & p;-adic integer. We denote by Ai(g} the following block

Alg) = AjAdny, e+ ne— 11

The sequence {A4,(g))§° satisfies the conditions (A} and (B) and hence deter-
mines a two-sided sequence w{g) given by (2). It is easy to describe the set Go
of those g € G for which w(g) is a2 Toeplitz sequence. Let G, be the set of all
g = (n,)§° from G such that A,n;] =" _" for each ¢ > 0. It follows from (B)
that G; is of Haar measure zero. Then the set Gy = G + Z {Z is a subset of
(3 consisting of all elements of the form k1, where k is an integer) is of Haar
measure zero again. It is noi hard to observe that Go = & — 1. Now we can
define Ow} as the orbit closure of w in the sense that z = lim o™ {w), 2: — oo,

and z[i] € P for all ¢ = 0,+1,.... For all ¢ € G we have O{w) = Hw(g)). I
g € G then w(g) is a Toeplitz sequence what implies that O{w} = (O{w),0) is
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a Toeplitz flow. We define the sets ,(w), ¢ € G, in the same way as above.
The construction of the sequences w(h) implies

Q,(w(h)) = Qg a(w).

Remark 2. Ifw is a T°-sequence, then w satisfies the property from Remark
1. Therefore z € (p(w) implies that z coincides with w at each i-th place which
Qi) € P. Thus if g € G, then € is an one-point set and Qg = {w{g)}-

Remark 3. Forfixed{ > 0and 0 <n £ p; — 1 set
Cin) = {g € G,g = (nu)g"i e = n}.
The sets C({0), C{1),...,Ci(pe — 1) are closed and open subsets of G and
pe—1
U ¢y =6.
=0
Further we have

o -SomS . Sop-15 .

Denote by ¢; a partition of G determined by the family {C:(i}},0 <+ <p(— 1.
I w is a T°-sequence then w defines a function ¥, : G — P such that

blg) = Adldl,

if g € Cy(t) and A,[i} € P. The function %, is defined on G except of the set
G,. If w is non-pericdic then G is just the set of all g for which . is not
continuous. The function z;w is Voo, £-measurable. Further observe that if
I : {O{w),o) — (G, T) is the homomorphism defined by (1) then

P =p,oll on T "HG - Gy),

where $.(y) = ¥[0], ¥ € Ow).

2. Minimality of 6(w) .

Let w be the regular non-periodic T°-sequence over Z; = {0,1} with a
period structure {p:},t = 0. On the one hand w determines a Toeplitz flow
O(w) = (Ofw),s). On the other hand w determines a Z,-extension é_(:;) of
O(w) defined by

Ofw) = (Ow) x Z2,5),
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where

a(ya i) = (O{Q),i + '»bu(y))r

i € Zy,y € O(w). Put X = O{w) x Z; and denote by II* the natural projection
of X on O{w) 1.e.
My, iy =y.

We have the following commutative diagram

-2
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!
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Let C(¥) and C{o) be the topological centralizers of ¢ and o respectively.
If S € C{o) then S induces a continuous map S' on G commuting with T
because {G,T) is the maximal equicontinuous factor of (O{w),o). But §' is a
translation by an element go € G. In this case it is natural to say that go can
be lifted to 5. The question arises which elements go € & can be lifted to an
element of C(s). Notice that if go € G can be lifted to §, then § is unique
because the homomorphism I is one-to-ome on Gy which is of Haar measure
one and the flows (@, T) and {O{w), o) are minimal. We will show (proposition
1 below) that if (X,&) is a minimal flow and S € C(5) then S induces an
5 e C(o). '

The next problem is how to describe those § € C{o} which can be lifted
to elements of C{F). In §3 we answer these questions provided w satisfies
additional conditions.

Suppose that a T°-scquence w is determined by a sequence of blocks {A:},
|A:| = p. and each A, is partially filled by 0’s and 1’s. Denote by k. the
smallest distance between neighbouring holes in A, i.e. if A, has holes at I;-th,
I-th,. .., I,-th places and

L<h<--<l

then
ke =min{{l;1n - I;, 7=1,2,...,8=1], pe =L+ 11}

We say that w has the property {Sh) (separated holes) if

ky — o0,
t—oo
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Remark 4. If w has the property (Sh) then each ,, ¢ € G, contains at
most two points.

In fact, let ¢ = (I}) € G2 with 0 < I} < p; — 1, I}, = L,(mod p,) and
suppose y,y' € ;. Then y[-I,p, — I} — 1] = y'[-L},p — I} — 1] = A, what
implies that the blocks y[—k¢, k] and y'[—k4, k] coincide except at the O-th
place. The condition k; — oo implies that ¥ and y' can differ only at the 0-th
place. Simultaneously €, contains precisely two points because ¢ € Gz. If
¢ € (G2 + Z) then the same argument shows that {1, contains precisely two
points. Of course, if ¢ € Gy then (1, consist of the only one point w(g).

Proposition 1. Jf G’-(;) is ¢ minimal flow and Sec C{0) then there exist

S € C(o) and a continuous function o : O(w) — Zy such that
Sy, i) = (S(y),i +b(v)).
Moreover the function v satisfies o condition
(4} ¥(y) + (5y)[0] = y[0] + (o ()}
Proof; Fora € G, aset A, C G x G is defined by
Ay ={(9,9+a);g € G}

The sets Ay,a € G, are closed, T x T-invariant and minimal. Consider a family
of subsets A, of X x X, a € 5, where

A, = ()T 1(A,) ( see (3)).
The sets A, are closed in X x X, @ x g-invariant, pairwise disjeint and

Uﬂa:XxX.
a€G

Take S € C(d). The graph I" of $ is a minimal subset of (X x X,5 x &) and
hence is contained in one of the Al s ie.

(5) 5{(94,1)} = {(Qp+ar i)}

for all g € G and i = 0,1. Take ¢ € Go N (Go — a). Then (g + &) € Gy
what means that 2, = {w(g)} and Q4. = {w(g + e)}. Denote v = w(g) and
u = w(g + a). The condition (5) implies

® { 8(2,0) = (v, ¥(v))

S(v,1) = (u,1 +9(v))
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where ¢(v) =0or 1.

Now we show that {6) holds for any ¥ € O{w). The minimality of the flow
(X, %) implies that there exists r, — co such that

(v,0) = Em 3™ (3, 0).

We have

5(y,0) = lim 5§57 (v,0) = Hm ™ (u, ¥(v)) = (u0,)

and
Sy, 1) = lim S5 (v,1) = lm 5™ {u,1 + $(v)) = (ue, L +7),

because 7 (1n, 75} = (un, jp) implies 77 (u,145) = (ua, 14+50), 5,5, Jn € 22,
Un, ug € Ofw).
The last equalities imply (6) for y. We can rewrite {6) as

S(y,3) = (S@)i + (),

i € Zy and y € O{w). 1t is a standard argument that § € C{o)} and ¢ is a
continuous function. The equality (4) follows from the condition S& = 75. In
this way the proposition is proved. B

Proposition 2. If ¢ T°-sequence w satisfies (Sh) then éz;) s ¢ minimal

flow.

Proof: Suppose {X,) is not minimal. It follows from [9] that there exists a
continuous function f : Ow) — K (K = {z;|2] = 1} is the circle group) such
that

™ LW _ (yyo

for all y € O(w). Thus the functioh F? satisfies the condition
Fo(y)) = )

This means that f2 is o-invariant and hence constant { 2 = ¢) because (O(w), o)
is an ergodic system {it is uniquely ergodic). Then the function f = % - f satis-
fies (7} again and f admits only 1 and -1 as its value. So we can assume that f
has the above property. Define a function F : O{w) — Z; in the following way

0if flyg)=1"

FO={] & Jmo s
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Then (7} gives

(8) : Fo(y)) + Fly) = y(0]

for all y € O(w).
We will show that {8) implies w is a periodic sequence. Without loss of
generality we can assume that w is a Toeplitz sequence.

As previousiy let
h<h< <, s=s1)

be places in 4, such that A,[I;] =" _",j =1,2,...,s. First we show that (8)
implies F is constant on ¢ (see §1}if I # I, I,..., I, and ¢ is large enough.
There exist a positive integer L such that

Fly) = Fy')

whenever y[~L,L] = y'|-L,L]. Take I'such that I + L < I < I — L {it is
possible because Io(t) — [; (¢} = k& — 0). Then y,y" € i} implies

y[~L,L}= Al - L, T+ L] =y'[-L, L]

and hence F(y} = F(y').
Applying {8) we have
Fly) = Fy)

whenever y,y" € 04, I < I < I, because y[0] = A{I] = ¢'[0]. Now we
can repeat the above consideration for all I, 0 < I < p; — 1 such that I #
I, L,...,I,. As a consequence we obtain that F is constant on {1} for ¢ large
enough and [ # 51, I1,..., 1.

Denote, by & the one-sided sequence obtained from w by taking the partial
sums of its members in Z; i.e.

& = (0,w(0), w[0] +wi1],w (0] +wl1) +wf2], . .).
Set F(§2) =0 and
G=FQ ), i=12..,5 i€2Z
It follows from {8} that
9) F(Q ) =+l + 1+ el + I-1]
whenever 2 < I < I;4, — I;, because

vOl =wll; + 1] i ye Q4
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Moreover we have
{10) F(QH =06[1-1)

HI=1,2,...,5h -1
Now suppose that Ag41[l;] =0o0r 11 j =1,2,... s (it is possible because
w is a Toeplitz sequence and 71{) — co). We obtain from (9} and (10)

i; = PR, ) = FQLH,) = BIL1
Thus we can write (8) as
(11} Py = B[ - 1]

whenever 0 < I < piand I #1,,...,1,. Using (11) and the condition 1 (1) —
o0 it is not hard {0 check that & is periodic with period py if t is large enough.
Then w is a periodic sequence with the same period p, and moreover

(12) wl0) +w[1] + -+ wfpe — 1] = 0.

Thus we proved the proposition. W

Remark 5. If § € C{o) can be lifted to an S € C(%) then it can be lifted
totwo S, &' € C(a).
In fact, if N
S{y,1) = (S{y) 1 + (),

then the function

P'(y) =1+ $(y)
satisfies (4) what implies that 5" given by
§'(y,1) = (S@)i + ¥'(¥))
is an element of C(7). Suppose that 3; is such that

Si(y, 1) = (S(), i +9h1(¥))-
Then 3, satisfies
$1(y) + (Sy)[0] = y{0] + ¥1{o(y))-
Adding the above equality and (4) in Z; we obtain
$1{y) + ¥(y) = $1(a(y}) + Pla(y))-

Thus the function ¢ + ¥ is o-invarient and hence constant {=0 or 1) by
minimality of (O{w), ). So we have

P1(y) = ${y) or yafy) = 1 + ¥(y).

It follows from (4) that § is an automorphism iff S is an automorphism.
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3. The Topological Centralizers of ©(w) and 0(w)

Let w be a T°-sequence satisfying the condition (S%} and as preceding let
Gy bethesetof all ¢ = (1) € G, 0 < I < py — 1, fpyq = [y(mod p,) for every
t >0, and G1 =G + Z.

Proposition 3. The flow (O{w), o) is topologically coelescent i.e. each 5 €
C(e) i3 @ hemeomorphism.

Proof: Take § € C(c). By preceding considerations there exists A = (hy) €
G, 0 < by < p¢ — 1, such that

S5(82y) = Qgin

for all ¢ € G. If g € Gy then card (Q;) = 1 and then card (£2,45) = 1 so that
(Go + ) C Go. We will show that (Go + h) = Go.

The map S can be obtained by a code, i.e., there exist integers k, I with
k > 0 and & function f: {0,1}* — {0,1} such that

Syl = flyle +1,...,i+ T+ k-1)]),
forall i=0,£1,... andy € W Without loss of generality we can assume
that I = 0. Choose { large enough so that k; > (2k + 1) and consider w’ € §2.
Then Sw' € Q.
Suppose that Iy, I1,...,f,_; be places in Ay such that A4,f;] =" _", 5 =
0,1,...,5 — 1. Then A; is of the following form

Ag = BI(O)LBg(l)I_Q. v I,_l Bt(s).

The sequences wy,, and (Sw'),, (see §1} are concatenations of blocks A, and
(Sw'),, is the translation of w) on k. We can compare w), and {Sw’),, using

the following figure

B.(0) Bu(1) By(s)
w"-——————-——-— e — -t r e ] A — et e = e ————— - — - - -
By(r) Bi(s)B:(0} Bi(r)
Sw" B el T —— { Pt -y b e pm b e e m =
Figure 1.

Using a coding argument it is easy to see that each hole in (Sw'),, appears at
the place which is distant not more than k places from some hole in w,, . Thus
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there exists an one-to-one correspondence between the holes in w), and (Sw')y, .
This means the following: whenever the block B4{0) By(1) appears in w,,
then the block By{r)___ By{r + 1) (see Figure 1} appears in (Sw')y, and they
are placed as follows

JBdO) | Bd1)

— k'

Bir) | Bir+1)

Figure 2.

where k' < k. Both the blocks By{(0)0B,(1) and By{0)1B,(1) appear in w' and
the blocks By(r)0By(r + 1) and B,(r)1By(r + 1) appear in Sw'. Using a coding
argument again it is clear that whenever the block B;(0}0B{1} appears in w'
then By{r)boB:(r + 1} appears under it which some b = Q or 1. If B,{0)1B,(1)
appears in w' then By{r)byBi(r + 1) appears in Sw/(by = 1 + &). We can
repeat the same argument for each block B{I)0B(I+ 1} and By(I)1By(1+1),
I=01,...,s-1

Now, take ¢ € (2. According to Remark 4 there exist precisely two w;,ws €
Q, such that wyi] = weft] for i € Z, i # 0, and wi[0] = w2[0] + 1. The above
reasoning shows that Sw; and Swy differ at one place (see Figure 2) and they
coincide at the remaining places. This means that card (S3;45) = 2 so that
g + h € G;. The last condition implies (Gy + h) C G and then Gy + & = &,
because {Go + k) C Gg. It follows from Remark 4 that S is cne-to-one.

Corollary 1. We conrclude from the proof of the above proposition thet if
h € G can be lifted to an element of C{o), then
(13) (Gi1+h)=G,

{(equivalently Gy + k = Gg ), moreover there exists k > 0 such that

k
(Gr+ Ry | J(G2+ ).
=8

To answer the question which h € G satisfying {13) can be lifted to 2 S €
C{(o) we need two notions. By a i-symbol of w we mean every block 4 of length
py such that

A=wllp,Ips +p:—1), I=0%1,...

and all the members of wilp,, Ipi+p:—1] are Gor 1. Each t-symbol of w coincides
with 4, except at the Ip-th, ..., I,_;-th places. The sequence w'{w’ € flp) s a
concatenation of —symbols of

(14) W = AgGr)AGo)AdGr) -
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where A,{-} denote t-symbols and A,(je) = w’'[0,p, — 1]. Likewise, if y € (4,
h = (h4), then y is a concatenation of -symbols 4,(h){(-) of w(k)

(18) y = ... Ae(h)(J-1)AdR)Go) A(R)(1) - - -
0-th place

Each of the t-symbols of w(h) coincides with A;Ay[h:, e +pt — 1] except at the
places fy — hy, ..., 151 — Ay (taken mod py).

Define a two-sided sequence w'*? as follows

Wt = oy —p.. cw[lm1 — p,]w.[fol cow[lgjw[l +pi] - w[lomy +p4] -
0-th place

i.e,, w'*l is the sequence which we should put in the holes of w,, to obtain w.
Analogously we define w'1(h).

Theorem 1. An element h € G satlsifying (13) can be lifted to ¢ § € C{o)
if and only if there exista t such that

wt-{—l +wt+l(h)
i3 ¢ periodic sequence with period equal 1o the number of ofl holes of A,.

Proof: It is easy to prove the necesily repeating the same arguments as in
the proof of Proposition 3.
Sufficiency. Suppose that the condition

(16) Wit +w‘+l(h) =...BBB...
0-th place

holds for ¢ = t; with |B| = s, s—the number of all the holes in A,, and assume
(17) ky, > 4k + 1.

If (17) is not satisfied then we can take large enough ¢ > ¢y because (16) is
satisfied for each t > 4.

Using this condition we will construct an one-to-one correspondence f,(= ty)
between the sets Z; and Z; of all the #-symbols of w and w(h) respectively.
Let ¢ = tg again, write w and w(h) as in (14) and (15} (except at may be one
place). Each t-symbol of w has the form

(18) A5 = B(0).ag Bi(l) s a5t Be(s),

where ag,...,a5—1 are at the Ip-th, ..., I;_;-th places and they depend on
#. Thus each t-symbol is completely determined by its values at the places
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Io,In,..., Io-1. Likewise if ¢ = (), 0 < g¢ < p: — 1, then each t-symbol of
w{g) is determined by its values at the places Io—gs, 1 — gty - - -y Loe1 — g4 (taken
mod p,}. The condition (13) implies that each place I — heyoooylyy —hyIn
Ay(k) is distant not more than k places from a place from among fo,. - ., L3
in A,. That property and {17} define an one-to-one correspondence between
the holes in wp, and {w{k)),,. Moreover (16) implies that if a t-symbol A:(j)
appears in w then replacing each a;, ¢ = 0,...,s — 1, {see (18)) by a: + Bli],
respectively, we obtain a t-symbol A;(R)(j} of w(k}. 1t is easy to see that the
above operation determines an one-to-one correspondence fy, between the sets
Zy, and 2} . Now we can extend that correspondence between Zy and Z| for
t > to. Take a t-symbol A,{(g) of w. Then A4,(.) is a concatenation of {o-
symbols. Then a concatenation of their images by f;, forms a t-symbol of w(h)
(see {16)). In this manner f, is defined. To define S € C{o) take y € O(w)
with y € £, ¢ = (g} Then y is a concatenation of tg~symbols

y = An(ily ) A (o)A (31) - -
with y[_gto,p!o = Gto — 1] = Afo(ja)' Put
S(y) = - Aw(B)IL1) A (B)Uo)Au{h)1) - - -
where
A (R)(G) = filAu(i)), § = Forilnidt -
It is evident that S is 2 continuous map commuting with o and S{(y) € Qy4s.

This means that S is a lifting of A. Thus the theorem is proved. B

Theorem 2. If w satisfies the condition (Sh) then every § € Clo) can be
Ufted to a5 € C(7).

Proof: Assume that & = (h), 0 < hy < p¢ — 1 satisfies the condition of
Theorem 1 with ¢ = g and let B be the corresponding block. We will show
{Lemma 1) that we can admit

(19) B0)+ B[]+ -+ Bls—1]=0  (in Zy).

Now suppose that (19) holds. Take 2 to-symbol of the form (18} and construct
a tg-symbol A, (h){7} of w{h) as in the proof of Theorem 1. Put €' = Ay{7) +
A, (RY7) and denote by C a block obtained from C by taking partial sums of
the members of C 1.e.

Chil=Clo]+---+ Cli} in Zo, i=0,1,...,p — 1.

Now we can define a function ¢ : O{w) — Z;. For y € O(w) with y € {,
g ={g:), 0 < g1 < pr — 1, gess = ge(mod py) define :

-] i
‘I’(y) _ {C[g;e ] if Jto = 0,

20
( ) 0 if Gy = 0.
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We check that ¢ satisfies (4). It follows from considerations of the proof of
Theorem 1 that

{21) (S)I0] = y{0] + Clgu,]-

Now using {19}, (20) and (21) we can verify (4) in an easy way. To complete
the proof it suffices to show (19). W

Lemma 1. Let h = (hy) salisfy the conditions (13) and (15). Then we can
find ty satisfying (16) and the corresponding block B satisfying (19).

Proof: Tt suffices to restrict to the case h is not rational integer. Write again
the block A(t = t5) in the form

Ay = Ad0) Iy A1} 0y ... Ta_y Aus)
and let Iy, I1, ..., [,.1 be all places at which A, has holes. If we draw the block
Ad(R) = A¢Ay[he, by + pe — 1] under 4, then the condition(16) says that each
hele in it is distant not more than & places from a hole of 4;. Suppose that
the hole of A((h) with the number I, 0 <» < s—1 is lying not far from I
in A;. Then the I ;;-th hole is not far from I, and so on. Let A; | be the
concatenation of Ayyy blocks A4,

e = xA;(O)_Ail)_A:(s) L AOYAT) . '—A‘(sz'

Ae . A

The block A}, has sA,y; holes and to obtain a block Ay we use a block
attl,
att = o0 mg M (D) 2y L. gl &S

by putting the successive members of o in holes of A}, ,. We have [a™!| =
sAey1 and zg,xy,...,2,_, denote the positions in a'*? with holes. If we draw
the block Ay, A7y {hisr, hess + 9040 — 1] under A7, then there exists exactly
one hole in it that appears not far from the first hole in A7, ;. That hole
determines a place v’ in o't 0 < r' < ghyy4; — 1. Consider the translation to
the left of a'™! by r' places. The the block o' a'*![r', 7' + sAiy — 1] is the
begining of w't(k) as well as a**? is the begining of w'**. It is not hard to
deduce from {16) that the holes of a'*a'* ¢! r' 4+ sh,y — 1] appear precisely
under the holes of a*!. If we denote by H] the subgroup of Zis, A = Xy,
generated by ' then the last property means that the set {zg,2:,...,2,_,} is
a sum of cosets of Z), modulo H;. Without loss of generality we can assume
that r' is the smallest element of H). Then r'|sA;y;. Replacingt +1 byt +v
cventually we can assume that there exist successive members of o't equal 0
or 1 (because A, — o). Suppose that o*t{0], a**¥[1],...,a't s ~ 1] are O or
1.
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If we write ' = gs+u, 0 € u < s~1, then v : 7' — u defines a homomorphism
of Hj to Z,. Let Hy = v(H{) and let ¢ the order of r’ in Z)s. Then we have

1) = o 1(0] + B0,
&'t [2r) = '] + By,

(22)
a'ie — 1)l = o™ [(c — 2] + Bl(e — 2)u],
0] = o' ter'] = (e ~ 1)r'] + Bl{c — 1)u}.
The above equalities give
B[0}+ Blu]+ -+ Bl(c— Lju] = C.
oo
in &y
If 4 = card {ker(v)} then, of course,
B[O} + Blu)+ -+ + Bifc— )u] = - > Bi)-
iEH)
Taking in (22) the members o' t1[r' + 7}, &' [27" +4],.. ., & (e — 1} + ],
i=12,...,s—1, we obtain
Bj]+ Blu+j]+- -+ Bllc—1Nu+j}=0
Further we have
Bljl+Blu+j]+- +Blle~Du+jl=p- ) Bl
: €A

where A is a coset of Z, medulo H}. In this way we obtain

p-iB[i]:‘O.

If 1 is odd then we have 35—, Bfi] = 0. If g is even then we replace t + 1 by
t+2. If B'is a block satisfying _
o+t Ry=...B" B'B...
0-th place

and |B'| = s' {the number of all holes in A4} then it is not hard to deduce
that

s’ =1

S B = (3B,

A€C i€EA
where A is a coset of Z, modulo Hf and (' a set of cosets {some cosets in €
can be repeated). So we have

B0) + B[1}+---+ B'ls' —1] = 0.

In this way the lemma is proved W
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4, k—Toeplitz flows

In this section we examine a class of Toepliiz flows determined by special
T®-sequences. Given two sequences of positive integers po, p1,.-.; So,51,- .-
such that u;,8; = 2, (pi,p5) =1 for i # 5 and (pi,8;) =1,4,7=0,1,..., let
us denote

A = M5y, k¢ — ROt ey, T — S0t 8, P = kymny.
We will define a T°-sequence w determined by a sequence of blocks A4, with
|A¢] = pt in such a way that each A, has k, holes with equal distances between
them. To make this precise we define

Ag = A;(O] . At(kg - 1),

where A:(0},..., Ak — 1) are blocks of 0’s and 1’s with
A =my j=0,1,... k-1

In order to obtain a block A,;; we use a block a't! of a form

. (23) at+1 = at+1(0) aH—l(I) . c.:t+1(k!+1 _ 1)’
where | a'tU5Y = 8441, 7 =6,1,..., kes1 — 1. The block
AgAt LAy

Ag +1 times

has k4 A,y ;1 holes and we fill them by using the successive members of a'*?. As
a consequence we obtain a block A,y having k11 holes. If we put

0.'0=Ao

then we can say that the T°-sequence w is determined by a sequence {a'}§®
of blocks of the form {23}, We will call such & k,—sequence and corresponding
O(w) = (O{w), o) a k;—Toeplitz flow. A sequence w is regular because

k, 1

=— — 0
¥4 My t—oo

To assume w is not periodic we will assume that for all £ > 0 and 5; 0 <
k¢ — 1, there exist at least two places I, I’ in o'*! such that a**t'[I]
o I'l=1and I =I' = j{mod k,).

Now we describe the topological centralizer of ©(w). To do this we need to
know the set Gy of all points in which the corresponding function Jw is not

I oes

<
G,
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continuous {see Remark 3). Let Z, as usual denote the cyclic group of order
n. Define a sequence of group homomorphisms

Zy, 27, Lz S

such that
fg(t) = £33+;(m0d k, ), S Zk‘_'_l.

The condition {s,11, k) = 1 implies that f; is on Zi,. Let
C={{im)Ee€G; 0L Sk 1, ji= filfesr), >0}

It is easy to see that C' is isomorphic to the group A of k;—adic integers numbers
and that G = €. So Gy = G2 + Z is a subgroup of H {not closed} and G,
is the direct sum of C and Z because C N Z = {0}. Now we want to describe
those h € C that determine § € C(o). We have h + G2 = G2 so h can be lifted
toa S € Clo) ff w™* +w!*(h) is k,—periodic sequence for some ¢ > 0.

Proposition 4. If A € C and h satisfies (16), then the order of R in G s
fintte.

Proof: Let h = (jim); 0 £ je <ky— 15 fe(feg1) = Ji- Then the block A, (k)

has the form
Ahy=__ AGe)__Adge+1)__ .. A+ ke -1}

Therefore the holes in 4, and A,(h) appear mod k; precisely at the same places.
Assume that the condition (16) holds for £ = #p. The sequences w and w(hk)} are
concatenations of the blocks A; and A {(h} and the holes in them are filled by
the sequences w't?! and w!t(h) respectively. Thus (16) implies that

(24) wtw(hy=...B" B'B'...
0—th place

where |B’| = p,. Denote by no the sequence from the right side of {24). Then
we have

(25) Sy =y + % ne,

where y € O(w), y € @, ¢ = (g1)i20, 0 < g1 < pe— 1. Using (25} several times
we obtain

S'i'(‘y) =y+ adt 70 + ag:+h:ne 4ot 691+(g—1}h‘ To-
Let r be the order of b, in Z, . Then we have

Sir(y) =y + o 7o 4 0-9‘!‘1'(’_1)"!:7?0 + o.g:-i—rhgne 4t
+ 0-9:-1"(21"—1)&:7?0 =y +2o% g+ + ggr—i-(r—l)k,na) —y,
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because rhy = 0 {in Z,,) and 6%y = 5y whenever ¢ = 0 ( mod p,}: So we get
§% = id and the order of A in G is finite. This finishes the proof. B

It is very easy to describe the set of all k € C with a finite order. Fix u > 0
and put
Pizﬂu-i—l'---'#u-i-! fOI‘tzl

Let
= {Ovﬂfgv”a(ku - 1)#1}

Then H! is a subgroup of Zg,,, and the order of H{ is k. Moreover, the
homomorphisms fy, fut1,... in the followmg sequence

HY = 2, L ml v g2 fewr

u

are isomorphism. Define
Cu= {(jtmt)ﬁw§ 0<ir <k -1, ji = filfet1), Jutv € H:}

We have C, C Cy11, u = 0, and each €, is a subgroup of € with ord(C,) = &y
It is evident that C* = Uu)‘ﬁ Cy is a countable subgroup of € and it is the
set of all A € C of a finite order. Thus the topological centralizer of @{w) is a
subgroup of C* & Z. Now we describe a class of ki-sequences with topological
centralizer equal to C* @ Z.

Take 0 < j < k; — 1 and denote by a; the following block
al=__ &' oG+l ... oflke—147).

If A = (jum.) € C, then the condition {16) can be formulated as follows:
There exists {5 > 0 and a block B with |B| = k,, such that for all £ > ¢,

(26) et 4« .tr:l-:; BB, ... By,
Ayp1—times

where B,, = B and the next blocks By i, Byq2,... satisfy the recur-
rent formulas

B3} = Beffe(3Y, 7 =0,1,... k1 — 1, E> s

Now assume additionally that s¢qy) > 2ky + 1 for every t > 0. Take any block

a® of a form (23) such that po = komyg is the smallest period of the infinite

sequence a®a® . ... Choose blocks

(27) ato) &gy~ 1), 120,
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in such a way that for each 0 < j < ky_; there exist I £ I', I = I' = j{mod k)
with ' (0)[I] = 0, at*HO)[I') =1, and

{28} Hig15141

is the essential peried of (27). Define a’*? of the form (23} by taking the
concatenation of k; copies of the blocks {27). As a consequence we obtain
a regular k;-sequence w. Moreover the blocks {a'} satisfy {26} if j.4q is the
multiplicity of p,q; and By = 00...0. By easy considerations we can prove
that every k € C* can be lifted to a § € C{¢). Therefore C{c) =C* & Z.

It remains to prove that the numbers {p,}, ¢ > 0, form the period structure
of w, i.e., py is the essential period of w,, for every t > 0. I istrueif t =0
by our choice of «®. Suppose that p, is the smallest period of wy, . We will
show that pey is the essential period of wy, .,. Then the smallest period p’ of
Wp, 4 i the multiplicity of myy1 because wp, ., has the holes every m, ) places
starting from 0-th place. On the other hand p’ is the multiplicity of ps. In fact,
if

P=Ip+r, 0<r<p—1,
then p’ isa period of wy, sor is. The condition r < p, implies r = 0. We have
shown that p’ is the multiplicity of the smallest common multlphcmy of p; and
myy1. We have

[p;,mH.]] = mg[kg,st.;.]] = mgkg3g+1, because (k;,st.i.l) =1,

At the same time it is easy to deduce that the assumption (28} implies p’
is the multiplicity of poy15:51me. Now the condition {k¢, 41} = 1 implies
= sipimekeiteyr = meg1kiss = peyr. In this manner the sequence {p;}3° is
a period structure of w.

Let g be a fixed prime number and gq, 1, . . . 2ll the remaining prime numbers.
We can admit s, = ¢'*! and g, = ¢{* for ¢ > 0, where I, are positive integers.
* Here the group C* is isomorphic to ®§°Z,,, the direct sum of the cyclic groups
Z ., Thus the group @gz,, @ Z can be the topological centralizer of a Toeplitz
flow.
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