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SPLIT-NULL EXTENSIONS OF STRONGLY
RIGHT BOUNDED RINGS

GARY F. BIRKENMEIER

Abstract

A ring is said to be sfrongly right bounded if every nonzero right ideal
contains a nonzerc ideal. In this paper strongly right bounded rings are
characterized, conditions are determined which ensure that the split-null
{er trivial) extension of a ring is strengly right bounded, and we characte-
rize strongly vight bounded right quasi—continuous split-null extensions of
a left faithful ideal over a semiprime ring. This last result partially genera-
lizes a result of C. Faith concerning split-null extensions of commutative

PPF rings.

Examples of strongly right bounded rings are: right due rings (e.g., commu-
tative rings and strongly regular rings} [8], [18] and [26]; right subdirectly
irreducible rings [9] and [10]; right valuation rings which are not subdirectly
irreducible [24, p. 2186]; and bounded principal ideal domains [20, p. 41]. In
{13, p. 364] an example of a strongly left bounded right primitive ring is given.
In (16, p. 5.3] an example of a strongly right bounded right self—injective ring
which is not left selfinjective is presented. Strongly right bounded rings play
a fundamental role in the theory of FPF rings {e.g., a strongly right bounded
right selfinjective ring is right FPF and the basic ring of a semiperfect right
FPF ring is strongly right bounded [16]). In fact, according to {17, p. 310], C.
Faith has conjectured that a right FPF ring 1s Morita equivalent to a strongly
right bounded ring.

All rings are associative, R denotes a ring with unity and M will always be a
unital (R, R)-bimodule. The split-null (or trivial extension) S(R, M)} of M by
R is the ning formed from the Cartesian product R x M with component -wise
addition and with multiplication given by {a, m}(b, £} = («b, ak + mb) {cf., [12],
[15], and [22]). Annihilators will be symbolized as [4(X) = {¢ € AlaX = 0}
and tu{X) = {a € AlXa = 0}. A (ring)} direct summand of R will mean a
right 1deal generated by a (central) idempotent. From [16], R is righi FPF if
every finitely generated faithful right R-module generates the category mod-
R. From [3], R is right quasi- FPF if, whenever a faithful right R-module is a
direct sum of finitely many cyclic modules, then it is a generator for moed-£.
A ring R is {guasi-) Bacer (cf., [T] and [23]) if the right anmihilator of every
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(ideal) nonempty subset of R is a direct summand of R. Semiprime right FPF
rings are quasi-Baer [11, p. 168]. From [8] a ring is right €S if every right
ideal is essential in a direct summand. From [21], R is right quasi-coniinuous
(also known as m-injective [19]} if it is right CS and if P and @ are direct
summands of R such that PN = 0, then P & @ is a direct summand of
R. Note that if R is right C5 and every idempotent is central, then R is right
quasi— continuous. Thus in [14, p. 83] Feith has shown that every commutative
FPF ring is quasi-continuous. R satisfies the fintersection left annihilator sum
property, ILAS, if whenever X and Y are right ideals such that X NY = 0,
then {p(X )R + [x(Y)R = R (e.g., right uniform rings, right selfinjective rings
{25, p. 275], and right quasi-FPF rings [3, Lemma 1]).

Proposition 1. The following conditions are equivelent:
(i} R is a strongly right bounded ring. '
(ii} If zR 15 e faithful cyclic module, then rp(z) = 0.
(131} R s directly finite and every foithful cyclic module is isomorphic to R.

Proof: .
(1) — (ii). I vr(z) #£ 0, then there exists a nonzero ideal Y C tp(z). Hence

zRY = 0. Contradiction!

{i1) — (1), Assume R = X © S where X and § are right ideals and 5 is iso-
morphic to K. Hence R/X is faithful. Therefore, X = 0. Conseqguently,
R is directly finite. Clearly every faithful cyclic module is isomorphic to
A,

(1) — (1). Let X be a right ideal containing no nonzero ideals. Then R/ X
is isomorphic to B. Hence B = X @ 5 where S is a right ideal. Since R
1s directly finite, X = 0. Consequently, K is strongly right bounded. B

Lemma 2. Let R be a sirongly right bounded ring.

(1) Buery nonzero right tdeal is an essential extension of en idedl of R,

(31} R is right nonsingular if and only if R is semiprime if and only if R is
reduced {i.e., R has no nonzero nilpoient elements).

Proof: Part (i) is in [16, Note 1.3D]. Part (ii} is in {4, Proposition 1]. ®

Proposition 3. Let R be a strongly right bounded ring. Then the following
conditions are equivalent:
(1} R 13 quasi-Baer.
(it) R is semiprime right quasi-continuous.
(i) R iz semiprime right guasi-FPF.

Proof: This result follows from [2, Proposition 1.2], [3, Propositions 4 and
8], and Lemma 2, B

The following notation will be used: if V C §(R, M), then V; and V, are the
sets of first and second components of ¥, respectively.
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Lemma 4.

(i) If V is o right ideal of S{R, M), then V1 is o right ideal of R, V3 is a
right R—-submedule of M, and {0} x VI M is ¢ right S5( R, M)—submodule
of V.
(i1} If W is @ right idea! of R and K i3 o right R-submodule of M such that
WM C K, then W x K is a right ideal of S{R, M).
(i) Let V C S(R, M). Then [Ia(Vy) N a(Va)] x Lar(V3) € Lscroany(V).
(iv} The right ideal {0} x M is right esseniial in S(R, M) of and only of M
is left fasthful (re., [g(M)=10).
(v) If V and W are right ideals of S(R, M) such that VN W = 0, then
VWM NnWM=10.
(vi) Let S(R, M)) be strongly right bounded where M is an ideal of R. Then
R 135 strongly right bounded and if (g(M) £ 0, then [p{M N tp(M) #0.
(vii} Let M be o module such thal whenever ANB =0, then AMNBM =0
where A and B are right ideals of R ({e.g., M is an ideel). If S5(R, M)
selisfies the ILAS condition, then R satisfies the ILAS condstion.
(viii} Let M be aend idea! of R. Then S(R, M) is right uniform of and only of
R i3 right uniferm end M is left faithful

Proof:

(i) Clearly ¥} is a right ideal of R and V; is a right R-submodule of A.
Let w € V) and m € M. There exists & € V5 such that {w, k) € V.
Then (w, k)(0,m) = (0, wm) € V. Thus {0} x ;M is a right S(R, M)~
submodule of V.

(1} and (i) are straightforward.

(iv) Suppose {0} x M is right essential in S{R, M) and 0 £ ¢ € [z(M).
There exists (w,m) € S(H, M) such that 0 # {¢,0){w,m} € {0} x
M. Contradiction! Hence M is left faithful. Conversely, let {w,m) €
S(R,M). If w =10, we are finished. So assume w # 0. There exists
k € M such that 0 # {w, m)(0,k) = (0,wk) € {0} x M. Hence {0} x M
is right essential in S{R, M).

(v} Assume vm = wk € VIMNW M wherev € V), w € W, and m, k ¢ M.
There exists z € V3 and y € W, such that (v,z) € V and (w,y) € W.
Consider (v,z)(0,m) = (0,vm) = (0,wk) = (w,y)}0,E) e VN W = 0.
Therefore, VM N W M =0.

(vi} Let ¥ be a nonzero right ideal of R. There exists an ideal J of S(R, M)
such that J is essential in ¥ x Y. Since J, and J; cannot both be
zero, Y contains a nonzero ideal. Hence R is strongly right bounded.
If (g{M) # 0, then there exists 2 nonzerc ideal H C [p(M}) x {0}.
Hence H, is a nonzero ideal of R and ({0} x M)H = {0} x MH, C H.
Therefore, 0 £ H) C Ig(M)Ncg(M).

(vii} Let A and B be right ideals of R such that ANB = 0. Let A* = Ax AM
and B* = B x BM. Hence A* N B* = 0. Now lgg a)(A") = 1g(4) x
lym(A) and [S(R,M)(B*) = lp(B) x lpe(B). Cor_lsequently, Ig(A)R +
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In(B)R =R

(vill) Assume S{R,M) is right uniform and let ¥ be a nonzero right ideal
of R. By part (iv) M is left faithful. Let G0 # w € R. There exists
(t,m) € S(R, M) such that 0 # (w,0)({,m} = (wt,wm) € ¥ x ¥ M.
Therefore, A is right uniform. Conversely, let V' be a nonzero right ideal
of S(R,M)and 0 # (f,m) € S(R, M). By part (iv) 0 £ VN{{0}x M)} =
{0} x V, is essential in V. If t # §, there exists y € R such that
0 # ty € Vo. Since M is left faithful, there exists k¥ € M such that
0 £ tyk € Vp. Thus 0 # (¢t,m){0,yk} = (O, tyk) € {0} x V,. Ift =0,
then m # O and there exists ¢ € R such that 0 # mg € V,. Thus
0 # (¢, m){(g,0) = (8,mg) € {0} x V2. Consequently, in all cases {0} x ¥,
is right essential in S{R, A). Therefore, S(R, /) is right uniform. @

We note that if R is commutative and M is and ideal of R, then S(R, M) is
commutative. However, in Example § we shall provide a strongly right bounded
ring Ty and an ideal (T, 0) such that S{T}, (7, 0)) is not strongly right bounded.
Also in [9, Example 2.2] the ring R is a strongly right bounded ring; however,
from Lemma 4 {vi), S(R, R(z,.0)R) is not strongly right bounded. Thus it
is natural to investigate conditions on R and 3 which insure that S(R, M) is
strongly right bounded. We say M is a strongly right bounded module if every
nonzero right B —submodule contains a nonzero (R, R)-bisubmodule of M.

Theorem 5. Lei R be o strongly right bounded ring. If esther of the following
condifions s satisfied, then S(R, M) i3 a strongly right bounded ring.

(1) M is a strongly right bounded module such that Ia( M) contains ne non-
zero milpotent ideals of R and 1p(M) C tp(M).
(1) M 15 an ideal of R such that Ig(M)NM =0.

Proof: Let V' be a nonzero right ideal of S(R, M). If V) =0 or ¥V N ({0} x
M} £ 0, then there exists a nonzero (R, R)-bisubmodule K € V; such that
{0} x K C Visanideal of S(R,M). Soassume V; # 0 and VN{{0} x M} = 0.
Let D be a nonzerc ideal of R such that D C V. Note that with either condition
(B or (i), ViM = 0 = MV,. If condition (i} is satisfied, then ¥? = V?x {0} #£ 0.
Hence D? x {0} C V is a nonzero ideal of S(R, M). Now assume condition (ii)
is satisfied. Uf Vo = §, then I x {0} C V is a nonzero ideal of S(R, M). I
V2 # 0 then VoM 20 Bt VIM x {0 = {01 x VoM CVN({0} x M) =0.
Contradiction! Therefore, in all cases V contains a nonzero ideal of S{(R, M).
Consequently, S(R, M) is strongly right bounded. ®

We note that when A is an ideal of R, then 5(R, M) is isomorphic to a
subring of T5(R) (i.e., the 2 x 2 lower triangular matrix ring over E). However,
from |4, Proposition 10}, T,,(R) is never strongly right bounded for n > 1.

Coroﬂary 6. Lei M be an wdeal of R. Then S(R,M) s strongly right
bounded right uniform if and only if R is strongly right bounded right uniform
and M is left faithful
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Proof: This result follows from Theorem 5 and Lemma 4 {viii}). W

Thus, if R is a strongly right bounded domain and M is any ideal of R, then
S(R, M) is a strongly right bounded right uniform ring. The ring Hz] where
H denotes the real quaternions provides an example of a strongly bounded
domain which is neither left nor right duo.

Proposition 7. Let M be a left faithful ideal of B. Then the follownng
eguivalences are irue!

(i) Every ideal of R 13 right esseniial wn o (ring) direct summand of R +f
and only if every ideal of S(R, M) is right essential in o (ving) divect
summand of S(R, M}

(ii}) Buwery right ideal is right essential in a ring direci summand of R if and
only if the same is true for S(R, M).

Proof:

(i) Let S denote S(R, M) and assume every ideal of R is right essential in a
direct summand of R. Let Y be anidealof Sand V = Y N {0} x M. By
Lemma 4 (iv), V isright essential in Y, V = {0} xV;, and V3 is an ideal of
R. Hence there exists a (central) idempotent ¢ € R such that ¥ is right
essential in eR. Consider (e,0)5. Let (z,m) € S, then (¢,0)(z,m) =
{ez,em). Suppose 0 £ (ex,em). I ex # 0, then there exists t € R
such that 0 # exi € V,. Hence 0 # (ez,em}{(0,1) = {0, ext) € V. If
ez = 0, then there exists w € R such that 0 # emw € V,. Hence
0 # (ez,em)(w,0) = (0,emw) € V. Therefore, in all cases, V is right
essential in {(e,0)S. Hence Y is right essential in {¢,0)5. Consequently,
every ideal of S(R, M) is right essential in a (ring) direct summand of
S(R,M).

Conversely, suppose every ideal of § is right essential in a (ring) direct
summand of §. Let K be an ideal of R. Then there exists a {central)
idempotent {e,m) € S such that {0} x KA is right essential in (e, m}S.
Note that eme = (0. Hence (e,m) is central in S if and only if e is central
in Rand M = 0. Now {0} x KM C (e,m)}{{0} x M) C {e,m}S. Hence
KM is right essential in eM and eM is right essential in eR because M
is left faithful in R. Since K is an ideal and KM is right essential in K,
then K is right essential in eR.

(ii) This part 1s proved in a manner similar to that of part (i). ®

In [15] Faith characterizes when S{R, M) is FPF where R is commutative
and M is faithful. He poses this characterization as an open problem when R
is noncommutative. The following result partially generalizes Faith’s result.

Corollary 8. Let R be a semiprime or g right nonsingular ring and M be
a left faithful ideal of R. Then the following conditions are equivalent:

(i) R is strongly right bounded and right quasi-continuous.
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(11) S(R, M} is strongly right bounded and right quasi-coniinuous.
(ii1) S(R, M) is strongly right bounded and right qguasi-FPF.

Proof:

(i) — (ii) By Lemma 2, R is reduced. Hence every idempotent of R is
central. Thus every idempotent of S{R, M) is central. By Theorem 5
and Proposition 7, S{(R, M) is strongly right bounded and right quasi-
continuous.

(ity — (iii) By Lemma 4 (vi) and Lemma 2, R is reduced. Hence every
idempotent of S(R, M) is central. By [3, Proposition 8], S{R, M) is
right quasi-FFPF.

(ii1}y — (i) By Lemma 4 (vi) and Lemma 2, R is reduced strongly right
bounded ring. By Lemma 4 (vii}, R satisfles the ILAS condition. From
(1, Lemma 2.2] and Proposition 3, R is right quasi—continuous.

When R is quasi-Baer strongly right bounded and M is a left faithful
ideal of R, the sequence of embeddings

R— S{R,M}— TH(R)

is interesting in that S{R, M) is strongly right bounded (and right quasi—
continuous) but not quasi-Baer (cf., Proposition 3} and T3(R) is quasi-
Baer [23] but not strongly right bounded. R

The following example is a special case of a general procedure indicated in
5].

Example 9. Let I denote the ring of integers and T the semigroup ring
of A over I (i.e., integers modulo 2) where 4 is the semigroup on the set
{a, b} satisfying the relation zy = y for z,y € A. Thus T = {0,a,b,a + b}.
Let T; denote the Dorroh extension of I (i.e., the ring with unity forined
from T x I with componentwise addition and with multiplication given by
(z,kXy,n) = (zy + nz + ky, kn)). T} has the following properties:

(1) The set of nilpotent elements of T3, N(Ty) = {(0,0),(a + b,0)}, is the
Jacobson radical and equals the right socle of Ty.

(i1} Every nonzerc right ideal of T} contains either N{T}) or a nonzero ideal
of the form (0,241} = {(0,2ki} € Tk is 2 fixed integer and ¢ € I}.
Therefore, Ty is strongly right bounded.

(i} T) is not right duo since {e,1)7T) is not an ideal.

{iv) T\ is not strongly left bounded.

{v) T\ does not satisfy the JLAS condition since Ir (N{T))) + I, {{e +
b, 2YN )Ty # Ty. However if {X;} is a nonempty set of ideals of T} such
that NX; = 0 then B = Zir (X;). Thus T} satisfies the ILAS condition
defined in [1].

{vi1) T, is not right C'S, since {a+b,2)}T; is not essential in a direct summand,
However, every ideal is right essential in a direct summand of T).
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{vii) S(I,N(T1)) (i.e., split-null extension) is ring isomorphic o the subring
(G, 1)+ N(Th) of 1. S(I,N(Th)) provides an example for Theorem 5
(1).

(viii) S{T1,(0, k2I)) provides an example for Theorem 5 (3i}.

(ix) S(71,(7,0}) is an example of a split-null extension of a strongly right
bounded ring which is not strongly right bounded (cf. Theorem 5).
To see this observe ({a,1),{0,0NS{T1,(T,0)) = {{(ka, k},{(0,0))|k € I}
contains no nonzero ideals since ({4,0),(0,0))(ka, £),(0,0)) = ((k{a +
),0),(0,0)).
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