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AN ELEMENTARY PROOF OF A LIMA’S
THEOREM FOR SURFACES

F.J. TURIEL

Abstract

An elementary proof of the following theorem is given:

THEOREM. Let M be ¢ compact connected surface without boundary.
Consider & T action of B® on M. Then, if the Buler-Poincaré cha-
racierisiic of M is not zevo there exits a fized point.

The proof given here adapts for dimension two the ideas used by P. Molino
and the author in [2] and (3]. Moreover we show that the theorem remains true
if R® is replaced by a connected nilpotent Lie group G.

In the slightly more general case, dealt with by E.L. Lima, of a surface with
boundary, i is sufficient gluing together two copies of this surface in order to
obtain a surface without boundary.

1. Actions of R»

Let V' be the Lie algebra of R®. The action of R” induces a Lie algebra
homomorphism v € V — X, € X(M) calied infinitesimal action. We recall
that the infinitesimeal isotropy of a point p is the set I{p) = {v € V/ X, (p} = 0}.
As V 15 abehian [(p) depends only on the orbit.

Denote by X the set of pomts p of M whose orbit is k—dimensional, i.e.
codiml{p) = k.

Suppose L5 empty. We will gradusily arrive teo a contradiction,

1) Set Oz = {w € V/X,(p) = 0 for some p € Ty}.

As there are at most countably many 2-orbits because they are open sets,
5 is at most countable union of (1 — 2j-planes of V.

2} The map on the grassmannian of (n — 1}-planes h: pe &, — I{p) €
gn-1{V} is differentiable, 1.e. it can be locally extended to a differentiable map.

Indeed, consider p € £; and v € V such that X,(p) £ 0. We can find a
coordinate system (A4, ), p € 4, such thet X, = 5‘}; and that the mmage of A
on R? is a rectangle.
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Let {v),...vn_1} a basis of I(p). Set X, = f, 5> 527 T 9932, ar . We define the
map

}; A — gn—l(V).

z— R{v; — fiz, .. vacy — faciul

whose differentiability is clear.
Note that w € h{z} if and only if X ,(z) is proportional to %. Ifz e
ANZ, this means that X,(z) = 0 because it is also proportional to a%l. Then

h is a local extension of A.
3) Let Fr(Z,) be the boundary on M of £, Then &) = {v € V/ X, (p) =0

for some p € Fr(%;}} = ePU(E )I(p) 18 of the first category (i.e. it is contained
poirilg

in the union of a countable family of closed nowhere dense subsets of M),
Since Fr{Z;)} can be covered by a finite farnily of coordinate systems {4, z)

as inn 2), it will be sufficient to prove that I{p) is of the first category.
eAnFﬂzg

Let T be a slice of 4 obtained by doing 7, constant. As the isotropy is constant
on the orbits:

U Iip) = U I
PEANFI{T,) {p) pETNFF(T,} (r)

Consider the vector bundle w: E — T, subbundle of T x V, given by the

condition 7 Hz) = {x} x h(z) Setp:(2,v)€EE->veEY. :

The set x 4T N Fr{X;)} is of the first category in F because TN Fr(El)
is of the first category in T. As ¢ is differentiable and E and V are manifolds
of the same dimension, 1t follows that

HTNFr(Z))) =
(r (TN EAZ) pETﬁgr(E,)I{p)

is of the first category in V.
4} Take now v € {V — €3 U ;). The set Z(X,)} of the zeros of X, is

0
contained in &;. On the other hand the 1-foliations given by:
{a) Xy on M — Z(X,)

9
{b) the action of R* on I;

a
agree on (M — Z(X,})) N Z;. Then M admits an 1-foliation and X(M) = 0,
contradiction.

2. Case of a connected nilpotent Lie group G

It will be sufficient to adapt the proof of the abelian case. Let V' be the Lie
algebra of G. Since V is nilpotent every subalgebra of codimension one is an
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ideal. Therefore the i1sotropy is constant over each 1-orbit and €y will still be
of the first category.

Let B be a 2-orbit. Given p € B there always exists an ideal [ of codimension
one which contains I(p}. As B is an orbit and I an ideal then I{g) C I for
all ¢ € B. Consequently C; is contained in =a finite or countable union of
{n — 1}-planes of V. In particular Cy U Ca # V. The rest is similer.

Example 1. See P(2,R) as the plane R* plus the infinite points. The
vector flelds on R?: 61:.‘ 3—?—" and 6%3 can be extended, in a natural way,
to P(2,R) because they are affine. These vector fields generate an action of
a 3-dimensional nilpotent group on P(2,R), whose orbits are R?; the set of
all points of infinity except the vertical one (i.e. the point associated to the

vertical direction); and the infinite vertical point, which is the only fixed point.

Example 2. Tare now 5‘ir.|‘ aiz? and —xa 6%. 4+ %. One obtains an aciion
of a 3-dimensional solvable group with no fixed point. Their orbits are R? and
the set of the infinite pomts.

See [1] for a 2-dimensional example with no fixed point.
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