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RINGS WITH ZERO INTERSECTION PROPERTY

Abstract

ON ANNIHILATORS: ZIP RINGS

CARL FaITH

Zelmanowitz [12] introduced the concept of ving, which we call right zip
rings, with the defimug properties below, which are equivalent:

(ZIP 1) If the nright annihilator X1 of a subsel X of R is zero,then
X]J“ = @ for a finite subset X3 C X.

{ZIP 2} If L is a left ideal and if L1 = 0, then L = 0 for =a finitely
generated left ideal Ly C L.

In [12], Zelmanowitz noted that any ring R satisfying the d.c.c. on
annthilator right ideals (= dcc L) is a right zip ring, and hence, so i3 any
subring of R. He aiso showed by example that there exast zip rings which
do not have dec L.

in §1 of this paper, we characterize a right zip by the property that
every injective right moduie E is divisible by every left ideal L such that
L1 = 0. Thus, E = EL. (It suffices for this to hold for the injective hull
of R)

In §2 we show that a left and right self-injective ring H is zip if £
18 pseudo-Frobenius (= PF). We then apply this result to show that a
semiprine commutative ring R is zip iff & 1s Goldie.

In §3 we continue the study of commutative zip rings.

Introduction

Zip rings appear In various guises:

1. Beachy and Blair [4] study rings that satisfy the condition that every
farthful right ideal 1 is co—faithful in the sense that I+ = 0 for a finite subset
I, C I, equivalently, R < I™ for n < co. Right zip rings have this property,
and conversely for commutative R.

Moreover,
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A. Theorem. {Beachy-Blair) If fatthful ideals of R are co-faithful then the

same 13 true of R[z], for any commulative ring R, and any sei © of variables.

B. Corollary. If R is ¢ commulalive 2ip ring then any polynemial ring over
R is a zip ring.

Proof: Obvious from the Beachy-Blair Theorem. B

2. Vimos [13] characterized a ring B with the property that for any collection
{Ii}ien of right ideals, there exists a finite subset A; € A such that

NL=0= n L=0
i€A €A

This happens iff R is right semi-Artinian {i.e. has finite essential right socle).
Trivially, such rings are right zip. Moreover:

C. Proposition. Any right essential subring of a right semi-Artintan ring
15 right zip.

Proof: This i1s an application of the following, &

D. Lemma. If R s a right essential subring of a right zip ring S, then R
18 right zip. :

Proof: Let X C R have zero right annihilator in B. Then X has zero right
annihilator in S since B € § as a right R-module. Then Xi* = 0in S for a

£33
finite subset X; of X, which is what was to be proved.

A ring R is left Kasch if every maximal left ideal has a non zero right an-
nihilator; equivalently, every simple left module embeds in R. Every left Kasch
ring is right zip, and conversely if finitely generated left ideals are annihilators
(Proposition 1.G). A right No—injective ring is thereby right zip iff left Kasch
(Corollary 1.7).

A right PF ring {see Theorem 1.3} 1s right semi-Artimar (and right Kasch)}
hence right zip, and by Lemma C, so is any right essential subring, we charac-

terize these rings via Propositions 1.10 and its Corollary. Furthermore, by 2
theorem of Kato [6], right PF — left Kasch.

We also study Utumi? 21p rings in §2, and prove inter alia that they are Goldie
rings.

A commutative ring R is zip iff its classical quotient ring ¢ = Q (R} is zip
(Corollary 3.2}. When () is Bezout then R is zip iff Q is Kasch (Corollary 3.6).

This holds in particular for any ring R, with € a chain ring. A similar theorem
holds for an FPF zip ring local @. {Theorem 3.7).
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1. PF, Kasch, and Zip Rings

A holomorphism f : I — E of a right ideal I into a module E is a Baer
homomorphism if there exists m € E such that f(z}) =mzV =z € L

Baer’s criterion for injectivity of E states that every homomorphism of any
right 1deal of R into E is a Baer homomorphism.

A module E is Rg-injective provided every homomorphism of a finitely gene-
rated right ideal into E is Baer. The ring R is right Ry —injective if the canonical
right module R is.

1.1 Theorem. (lkedo-Nakayama [5f). Consider the conditions:

(¢} Every homomorphism f: I — E of a right ideal into E is Baer.
(0) anng{I N J} = anngl + anngJ, where I and J are right ideals.
(c) anngK* = EK, where K is a left ideal.

Moreover, let {a*) denote the resiriction of (a) to finitely generated I, and
(@™} the restriction to principel I. Similarly for (*), (b"*), (c*), and (c**).
{Thus, in (c*), K is o finitely generaied lefi ideal). Then:

i {a**)y = (™).

Lo{a") < (B*),(c**).

. {a} = (8),(c*).

Thus: E is Rg—ingective iff (b*) and (c**) both hold.

g

Proof: This is proved in [5] for the case E = R, and it is easy to prove that
this holds for a general module E. (This is made explicit in [3¢, p. 189, 23.21]).
A module E is FP-injective iff for all short exact sequences

(1) oo d—B-—(C—10
of finitely generated modules A, B and C, it is true that the canonical sequence
(2) 0 — Homg(C, E} — Homp(B, E)} — Homg(4,E} — 0

is exact. Rg-injectivity is that statement thal (1} exact implies (2) exact for
B = R and A finitely, generated.

Any injective module is FP-injective. A coherent Rp-injective is FP—injective
(Stenstrom [8b]-Jain [14]) but in general Rp-injective does not imply FP-
injective.By Jain [14] R is right FP-injective iff every finitely presented left
R-module is torsioniess. W

1.2 Proposition. R is a right zip ring iff the injective hull E = E(R) of R
in mod-R is divisible by any left sdeal T having I'1 = 0. In this case I divides
any injective right R-module.

Proof: If R is right 2ip, and I a left ideal with It = 0, then I+ = 0 for
2 finitely generated left ideal I;* C I, then E = EI; by the Ikeda—Nakayama
theorem, so EI = E.
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Conversely, if £ = E(R), then EI = E, implies that there exists finitely
many y; € E,r; € I,i = 1,...,n such that 1 = Z?:l y,7,. But this implies
™7 =0, so R is right zip. W

Let mod—R be the category of all right R—modules, and let B—mod denote
the left-right symmetry.

In general, a module E is a cogenerator of mod-R iff the injective hull E(V)
of every simple right B—-module V embeds in F (see, e.g. (3], [9}]- A ring Ris
right Kasch if every simple right module < R, or equivalently, LT # 0 for any
right ideal I # R. Thus, a ring R is an injective cogenerator of mod-R iff R is
right self-injective and right Kasch, Other characterizations:

1.3 Theorem. (Azumaya f1], Osofsky [T/, Utumi 8]). A ring R is right

PF (pseudo-Frobenius) provided the following equivalent conditions hold:

(PFy) R is right self-injective and semiperfect with essential right socle.
{The socle is the largest semisimple submodule).

(PF;) R is right self-injective with finite essential right socle.

(PF3) R is o finite divect sum. R = ) |, ®e;R, where el = ¢; € R and
e; R 15 a prejechive wnjective right ideal with simple socle, i = 1,...,n.

(PF) R s an injective cogenerator in mod-R.

(PF5) R is right self-injective and right Kasch.

1.4 Theorem. {Kalo [6]). Any right PF ring R is left Kasch.

A ring R is left {finitely) annular if every (finitely generated) left ideal I is
an annihilator, that is, L => (L4).

1.5 Theorem. {I}). A right Rp-injective ring ts left finstely annular.
(2) A right cogenerator ring R is right annular,
{3) A right PF ring is vight annuler and left finitely annular.

Proof: (1}). In {ii) of Theorem 1.1, take £ = R, and then EK = K =
anngK ™t =1 (X+}is an annihilator, for any finitely generated K.
(2) A cogenerator E of mod-R has the property

I = annganngl

for any right ideal I {see, for instance [4, p.184, 23.13]). Then (2} follows when
E=R. '
(3} R is right annular by 2, and since injective, left finitely annular by 1.
|

1.6 Proposition. Anry left Kasch ring R is vight zip. If R is finitely left
annular, then conversely.

Proof: R left Kasch implies L1 # 0 for all left ideals # R, hence R is right
zip.
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Conversely, if R is left finitely annular, then right zip implies for any left
ideal L with LY = 0 the existence of a finitely genrated left ideal L, C L
with Li = 0. But then L{ =1 (L) = R, so L = R, and R is therefore left
Kasch. B '

1.7 Corollary. A right Rg-injective ring R 135 right 21p off left Kasch.
1.8 Corollary. A right PF ming R w2 right end left zip.

Proof: R is right annular and left ﬁnifely annular.by Theorem 1.5, and right
and left Kasch by Theorem 1.3 and 1.4, hence right and left zip by Proposition
1.6 1

1.9 Corollary. A left and right self-injective ring R is right 2ip off right
and left PF. (In this case R 13 left zp).

Proof: R i1s left Kasch by Corollary 1.7, hence left PF by Theorem 1.3.
However, then R 13 right Kasch by Theorem 1.4, so R is right PF. (Left zip
follows by Corollary 1.8).

Conversely, if R is right and left PF, Corollary 1.8 yields E is zip. B

1.10 Proposition. If R is righi zip, and if @ = Q7 , (R) is alse a leff quo-
tient ring of R {equivelently, @ C QL.(R)), then @ is right zip. Conversely,
if € is right zip, then so0 is R.

Proof: Let L be a left ideal of Q such that Lt = 0in Q. We shall show that
(LN R)! =0in R Suppose not and let a € R be such that (LN R)a = 0 and
a # 0. By the assumption @ C @F,, (R), R is dense in @ as a left R-module,
and this implies a contradiction, namely that La # 0. To prove this, suppose
that z € L, and za # 0 then there correspends r € Rwithrz € Rand rza # 0
((3b, p.79 Theorem 19.23]). But rz € L N R, contradicting {L N R)e = 0.
Therefore by right zip in R, there is a finitely generaied left ideal L, of R with
Ly C LN Rand L} = 0. Then QL, is the desired finitely generated left ideal
of @ contained in L with (QL;)t = 0.

The converse derives from Lemma D. B

1.11 Corollary, Let R be right zip. If G = Q5 (B) = Q% . (R) is injective
(bath sides), then ©Q i3 PF (both sides). Conversely.

Proof: By Proposition 1.10, @ is right zip hence right and left PF by Co-
roliary 1.9. Conversely, if @ 1s (right) PF, or 2ip, then R is {right} zip by 1.8
and 1.10. &
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2. Utumi zip rings are Goldie

A ring R is a might Utuma ring provided that R is right nonsingular and the
following three equivalent conditions hold: _
U;: Every complement { = essentially closed) right ideal is an annihilator.
Uy: Every nonzero left ideal L of @ = Q7 (R) meets R, thatis, LAR # 0
Us: 1T =0. In R for a right ideal J implies that I is essential in R.
Us is called cononsinguler, and implies that R is left nonsingular {proof
omitted}.

2.12 Theorem. {(Utumi f10]). A nonsingular ring R is right and lefi Utumi
{(equivalently right and left cononsingular) iff Qmax(R} = max(R)

Utumi rings were named by Stenstrom [8].

A ring R is right Goldie if R has ecc | and finite right Goldie dimension in
the sense that any direct sum ) ., ®@X, of right modules embeddable in R
has only finitely many X, # 0. The latter condition is denoted by ace®, and
is equivalent to the acc on complement right ideals.

If R is right nonsingular then Q = Q7,,, (R} is right self-injective and von
Neumann regular. Moreover any annihilator right ideal is a right complement,
and the right comlements have the form eQ N R, where ¢ = e? € Q. Moreover,
the contraction map 7 — IN R induces bijection between complement right
ideals of §} and those of R. Since @ is regular, then the fa.e.c.’s: "

{13.1} R has (acc)@®. :
(13.2) @ has (acc)®
{13.3) @ is semisimple Artin.

Inasmuch contraction induces a surjection between the annihilator right ideals
of any ring ) and those of a subring R, then any subring of an Artin (Noether}
ring has dcc L (resp. acel), hence for right nonsingular R, we see that (13.3)
imphies that

(13.4) R has acc L and dec L {equivalently L acc and L dec) and
{13.5) R is right Goldie.

2.14 A Theorem. An Utum:i right zip ring R 1s right Goldie, hence sattsﬁes
both | dee and dec L, s is both right and left zip.

Proof: Any right nonsingular ring R has injective (a.nd regular) QL. (R},
so by the Utumi assumption, @ = @7, (R) = Q% .. (R) is injective on both
sides, and the theorem follows from Corollary {1.11), since any PF ring @ is
semiperfect. Thus, regularity of @ implies that ) is semisimple Artin, so apply
(13.4-5).

If left 2ip is assumed, we can get the same conclusion assuming Utumi.
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2.14 B Theorem. Any Utumi left zip ring is right Goldie, hence has 1 dec
and dee L.
Proof: Let I = 3 @ X, be 2 maximal direct sum of right ideals contained
aEA

in R. Then [ is an essential right ideal, so *1 = 0, and left zip implies a finitely
generated right ideal I; C I with LI; = §. But then cononsingularity means
that I, is an essential right ideal. But a direct sum ®.e4X,, has a finitely
generated essential submodule iff X, # 0 for just finitely many a € 4. Thus R
has (acc)®, so ¢ has {acc)d, i.e. (13.1)-{13.5) hold, proving the thecrem. W

3.Commutative Zip Rings
We now apply earlier results to commutative rings.

3.1 Proposition. If B — 5 is an embedding of rings such thaf

ideals B — ideals S
I —1I5

15 surjective, then R zip implies that § is zip.
Proof: Let R be zip, and let [ be a faithful ideal of 8. Let I; be ideal of

R such that I;§ = I. Then I is faithful in R, so I+ = 0 in R for a finitely
generated ideal I) of R. Thus,

anng{S)=0

and I § is a finitely generated ideal of 5.
This proves that 5 is zip. W

3.2 Corollary. 4 commuiative ring R 1s 2ip iff #ts classical quotient ring

Q= Q@ R) 12 2p.

Proof: R zip implies ¢} zip by the proposition. Conversely, R right essential
in (¢, Lemma I} applies: if ¢} is right zip so is R.
3.2 aiso follows from Lemma I and Proposition 1.16. B

3.3 Corollary. If R is zip, so is RS™!, for any mulliplicative semigroup
5 C R*, and conversely.

Proof: Same as Corollary 3.2

By Proposition 1.6, any commutative Kasch ring is zip this yields:
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3.4 Corollary. If Q.(R) is Kasch, than R is zip.

Definition. A commutative ring R is Bezout provided that all finitely gene-
rated ideals are principal

Trivially principal ideal rings and chain rings {= rings with linearly ordered
ideal lattices) are Bezout, and so is any finite product of Bezout rings. Also
any factor ring of a Bezoui ring.

R is a (*}-Bezout ring if every finitely generated faithful {or dense) ideal is
principal. If R is reduced (= semiprime = non-singular) then an ideal I is
dense iff [ is essential. Since every ideal is a direct summand of an essential
ideal (in any ring), then R is (*}-Bezout iff Bezout when R is reduced.

3.5 Proposition. Let R be a {*)-Bezout ring.
(1} R is zip iff every faithful ideal contains a regular element.
(2} In this case, the classical quotient ring Q@ = Q. (R) is {*}-Bezout Kasch

ring.

Proof: (1) If I is a faithful ideal of a zip ring, and if I, is finitely generated
faithful ideal contained in I, then I, is principal, hence generated by a regular
element.

{2) @ is also (*}-Bezout, and by (1) every faithful ideal contains a unit, that
is, €} is the only faithful ideal. This implies that @ is Kasch. B

3.6 Corollary. For a (*)-Bezout ring R the fa.e.

(1) Q@ = Q{R}) is zip.
(2) @ s Kasch.

Proof: Apply Corollary 3.4 and Proposition 3.5. B

A ring R is FPF iff every finitely generated faithful module generates mod—
R. By [20], 2 commutative ring R is FPF iff there holds.

(FPF1) Every finitely generated farthful ideal is projective, and (FPF 2)
@ = QA R) is self-injective.

In this case () is FPF.

3.7 Theorem. If R has a local quoiient ring Q@ = Q.(R), and if R 45 an
FPF unp ring, then @} i3 PF.

Proof: If @ is PF, then ¢ is Kasch by Theorem 3.1, hence @@ and R are zip
by Corollary 3.4 (without assuming ¢ local).

Conversely, if R is zip, then so is ) by Proposition 3.2. Alsoc B FPF implies
Q FPF, hence if an ideal I, is finitely generated and faithful in @, then [ is
projective by FPF, and free by Kaplansky’s theorem on projective modules

over local rings. But in 2 commutative ring, every free ideal is principal, so @
is {*)-Bezout. By Theorem 3.6, @ is Kasch, hence PF by Theorem 1.3. &



RINGS WITH ZERO INTERSECTION PROPERTY 337

Added in Proof. See [3¢] for inter alia a study of zip rings, and of an example

of a zip ring F with @.(R) not Kasch.

The question of when a noncommutative right zip ring R has right zip poly-
nomial ring B[X] is presently open.

In (3c|, it is shown that a right 2ip ring R has the property right

£ min, Le., every annihilator right ideal # 0 contains a minimal annihilator

right ideal # 0.

1.

3a.
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