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THE PERIODIC SOLUTIONS
OF THE SECOND ORDER NONLINEAR
DIFFERENCE EQUATION

RvsZARD MUSIELAK AND JERZY POPENDA

Abstract

Periodic and asymptotically periodic solutions of the nonlinear equation
A%z, +anf(zn) =0, n € N, are studied.

In several recent papers (|2],[3]) the periodicity of solutions of linear differ-
ence equations have been investigated. In this paper we examine the periodic
solutions of the nonlinear equation

(E) OB’z +a,flz,) =0, neN,

where N = {0,1,2,...}, R is the set of real numbers, f : R — R and a,z :
N — R are seguences of real numbers.

Throughout the paper we use the following notations. By 0,¢ we denote the
set of integers {0,1,2,...,t}. For the function : N — R the forward difference
operator A¥ is defined

Ayn = Yni1 — Yn, Akyn = A(Akhlyn) for k > 1.

Definition 1. The function y will be celled t-periodic if ynas = yn for all
n € N. (Furthermore we suppose that no ty ezists, 0 < &; < t such that
Yntt, = Yn for alln € N and thatt > 1).

Definition 2. The funciion y will be called asymptotically t-periodic
(t >1)f
y=u+u,

where u 13 ¢ t—periodic function end lim,_, oo v, = 0.

Definition 3. We say that the equation {E) has a p,—constant if there ezists
e constani p € R, such that the equation

(El) Azxn +anf(zn) =7
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has a t-periodic solution.

We say that the eguation {E} possesses a p{° —constant if there ezists a con-
stant p € R such that (E,) has en asymptotically t-periodic solution.

Definition 4. The equation (E)} is said to have a p; —function (p° —function}
if there exists a t-periodic function p: N — R such that the equation

(Ez) ASIH + an f{zh} = Pn

has a t-periodic [asymptotically t-periodic) solution.

Remark 1. Note that if {E) has a p,—constant {function) then {E} has a
p®—constant (function) and if (£} has not a p{°-constant (function} then it
has no p;—constant {function}. .

Theorem X. Let f: R — R be continuous on B and lim, . o, ¢, = 0. Then
the equation (E)} has not a p{® -constant for anyt > 1.

Proof: We show the proof for simplicity in the case { = 2. Similar reasoning
can he made for ¢ > 2.

Suppose that there exists a p{® —constant ¢ such that the equaticn
(ES) Azxn+anf(zn)zq

has one asymptotically 2-periodic solution z.
Let Toy — 01,332“.}.1 E— Cz as n —+ 00,01 # Cg. Hence

Az, — 20 — 20,
A%z, — 2C; — 2C;.
As result of the assumption we obtain '
| 20, - 205 = ¢

202 - 201 = 4q.

The above system has a solution if and only if ¢ =0, but in this case we obtain
C1 = C», which is a contradiction. M

Theorem 2. Let f # 0 on R. If the equation (E) possesses a py—constant
then a 1s a t-periodiec funciion.

Proof: Let z be a t-periodic solution of (Es). Then A’z is t-periodic. By
virtue of the assumption § # 0 and we get

Nz, —q
flea)

—dy,.



PERIODIC SCLUTIONS OF DIFFERENCE EQUATIONS 51

The left hand side of the above equality is a t—periodic function so the right
hand side must also be t—periodic. M

Remark 2. We can prove analogously that if f # 0 on R, then ¢- periodicity
of a is the necessary condition for the existence of a p;— function ¢ for the
equation (E). However in this case we do not require for ¢ to be the basic
period. Eventually & can be a constant function. It is easy to see that if
f{C1) = O then the equation {E} has p;-constant ¢ = 0. Then a t—periodic
solution takes the form z = €.

By iz we denote the identy function on R.

Theorem 3. Let a: N — R, let [ be a continuous function on R, f Z0
such that the funcifons

{1} tR+a,f:R—R

are surjections for every n €N. If
[~ +]

(2) D dlajl < oo
i=1

then the equation (E) has a p{® -function for arbitrary t > 1.

Proof: Choose t > 1. By assumption there exist constants C,,r = 1,2,-++ ,1,
C; # Cj,1 # 1, such that
f(C.) #0.

The case
(3) HCYy»0,r=1,2,--- ¢

will be considered. The proof for the other cases f{C;) > 0,f(C;) < 0 is
similar.

By virtue of the continuity of the function f there exist intervals

(4) Ir"—_[Cr+1_‘5,cp+1+5],f=0,1,---,t—1
such that
(5} flue) > Cforuecl, r=0,1,--- ,t — 1.

From (2) it follows that

(6) dim 3 7 jlas| = 0.

i=r
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Let us denote

{7} _ D = maxog, g1 {maxuer, f(u))

and -
ny =min{nEN:n=tk+¢—1, DZj]aﬂ < 8}.
. i=n
In the space I° of bounded sequences with the norm
zll = supixolz:|
we define the set T in the following way:
z={x}2, €T
if

Ty = Tggr — T4y — " = Tny—t4ryl — CritsTarss € Isk+r =

=[Crs1 — D Z JlaiCopr + D z Fles |l

j=tk+r F=tk+r
1
r=0,1,---,t—-1:keEN; k> ;{m +1-1t).
The set T is closed, convex and bounded. Furthermore, by diam S we mean
diam § = sup{|jz — ¢|;z € S;y € S}.
So
{8} ' diam L., — 0 as k — oo.

It is easy to find a finite e-net for every € > 0. Therefore by Hausdorff’s
Theorem the set T is compact. Let us define an operator A for x € T as
follows:

Az =y ={y12,

where
Yr = Widr =" = UYn4ry1—t — Cr+1;f 20’1$"' b — i,
[v.4]
Yirr = Crsr — Z (J+1-tk—r)a; f(z;)
j=tker

for keN, k> 3{(ng+1-t),r=0,1,--,t -1
Let us observe that

1
Lyer CL,r=0,1,--- 4t -1, k> z(nl +1—t}.
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Hence
{9) | Y G+1-th—rla; f(z;) <
F=tk+r
< Y el <D Y dlesl.
F=tk+r =tk+r

Therefore yix4, € Ly r=0,1,-- -1, kEN, k> (nl +1 _t)/t and
this means that A : T — T. Let us take an arbitrary sequence {z™}2°_, of
elements of T convergent to some z° € T ie.

2™ - 2°|| — o.
Hence we have
{16) - SUPnyolzl — 22| — O

as m — oo, Let ¢ be an arbitrarily taken positive real number. By the
uniform continuity of f on the sets I, we have

[y — ue] < & implies |f{u1) — fluz)| < €.
From (10} it follows that
(11} SuPrzolzy — z,| < 6
for m > M(6). Let y™ = Az™, m € N; then

{12) | Az™ — Az®| =

[+ +]

= SUPpsn, | Y (7 + 1 —n)a; f(z]) — D (5 + 1 - nja, f(x2)).

j=n j=n

By (9) the series

Y i+ 1-n)e, f(zl), meN
i=n

are absolutely convergent. Hence, by {11} and {12)

o0

42" ~ Az°l < & D slayl

FE

so that the operator A is continuous on T. By Shauder’s Theorem there exists
z € T such that z = Az, By definition of A this element 2 = {2}, satifies

(13) B = &3 T T Enygrdl-t = Crg1
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Ztkyr = Lrp1 — E {7+ 1~—tk—r)a; f(z)
f=tk+r
1
k> -t-(n1+1—t), r=0,1,--- ,t—1.

Applying the operator A to z we obtain

D2iksr = Ztkgrsr — Lteyr =

= G2~ Crpr — Z F+tk—r)a; flz;) + Z (J+1—thk—ria; f{z;) =
s=tk+r+1 i=tk+r

=Crs2 —Chpr + z ajf(zi):

i=tk+r

and consequently
2
Dzippy = Dppgrrr — Dzgpy, =

[+ o] [=~]
=Cr43 =204 +Cryr + Z a; f(z) - E a; f{z) =
F=thk+r+1 i=tk+r

=Cr43 =202+ Cry1 — Giayr f(Ziryr)s

1
r=01,---,t—1, k> ?(n1+1w:}

where
Ciy1 =Cy, Crya = Cy.
Denoting
(14) qtk+r:_ r+3_2Cr+2+Cr+l$ TZO,I,"',t—l,

we obtain the equation
(15) &235 + anf(zn] = gn

which has an asymptotically t—periodic solution defined for = > n;. This follows
from {8) and z44, € Likssr, i 20as, — Cry1 as £ — oo,

It suffices to show that there exist a solution of {15) which coincides with
{L3} for n > n,.

For this we observe that the equation (15) can be rewritter in equivalent
form

(16) Tn +anf(xn)=Qn_In+2+2Iﬁ+1-
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Taking » = ny, Tns1 = Zn,41, Bns2 = 2,42 we find z,,, which by the
assumptions exists (probably more than one). Repeating this reasoning we
find z; for { = 0,1,--+ ,ny — 1. This function z is of course a solution of {15)
which coincides with 2 for n > n; and therefore has the desired asymptotic
behaviour. B

Remark 3. If the functions {g + a, f are one-to—one mappings of R onto
R then the solution obtained in the Theorem 3 is unique. The case { = 1, i.e.
the solutions having the asymptotic property lim, .o 2, = C, was considered
in the paper [1].

Let us observe that by Theorem 3 if we want to have some solutions which
have a given asymptotically ¢{-periodic solution, then it suffices to add to equa-
tion (E) the periodic perturbation ¢ which can be easily found by (14).

Ezample. As an example we consider the difference equation of the form

(_1)n+ 1
4(2" + (-1)"]

It is evident by 4’Alembert criterion that the series

«° j(_l);‘a—l
23T 1]

=1

APz, + T, =0, n=12--

is absolutely convergent. Furthermore the functions
(-1
Pt et en)”
are surjections from R onto R for all n. Therefore the assumptions of the

Theorem 3 hold. We show that this equation has a p® -function and find a
2—periodic solution of the form

Za = {~1}" + ya.

Applying the proof of the Theorem 3 we see that the p{® —function ¢ takes the
form

gn = 4{—-1}".
Considering the equation -
(-1t

az n ﬂ:
T S

4(-1)"

we can observe that this equation has the solution

1
In = (_I)“ + n

which is of the desired form.
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