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INEQUALITIES FOR POISSON INTEGRALS WITH

SLOWLY GROWING DIMENSIONAL CONSTANTS

Loukas Grafakos∗, Enrico Laeng∗∗, and Carlo Morpurgo∗∗∗

Abstract

Let Pt be the Poisson kernel. We study the following Lp inequality
for the Poisson integral Pf(x, t) = (Pt ∗ f)(x) with respect to a
Carleson measure µ:

||Pf ||
Lp(R

n+1
+ ,dµ)

≤ cp,nκ(µ)
1
p ||f ||Lp(Rn,dx),

where 1 < p < ∞ and κ(µ) is the Carleson norm of µ. It was
shown by Verbitsky [V] that for p > 2 the constant cp,n can
be taken to be independent of the dimension n. We show that

c2,n = O((log n)
1
2 ) and that cp,n = O(n

1
p
−

1
2 ) for 1 < p < 2

as n → ∞. We observe that standard proofs of this inequality
rely on doubling properties of cubes and lead to a value of cp,n

that grows exponentially with n.

1. Introduction

The object of study in this article is the following Carleson measure
inequality [C1], [C2], valid for 1 < p < ∞

(1.1) ||Pf ||Lp(Rn+1
+ ,dµ) ≤ cp,nκ(µ)

1
p ||f ||Lp(Rn),

where µ is a Carleson measure on R
n+1
+ with norm κ(µ) and P is the

Poisson integral of a function f on R
n.

We begin by recalling these notions and establishing notation. We
denote by B(x0, r) the closed ball in R

n with radius r centered at x0.
The Carleson tent T [B(x0, r)] over the ball B(x0, r) is defined as the
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set of all points (x, t) ∈ R
n × R

+ such that |x − x0|2 + t2 < r2. De-
note by |K| the Lebesgue measure of a set K in R

n. A Borel mea-
sure µ on R

n+1
+ is called a Carleson measure if its Carleson norm κ(µ) =

sup
{

µ(T [B(x0,r)])

|B(x0,r)|
: x0 ∈ R

n, r > 0
}

is a finite number.

We define the Poisson integral Pf , i.e., the harmonic extension of f
to R

n+1
+ , as the convolution

(1.2) Pf(x, a) = Pa ∗ f(x) =

∫

Rn

Pa(x − y)f(y) dy,

where the Poisson kernel is defined, for all a > 0, x ∈ R
n by

(1.3) Pa(x) =
γna

(a2 + |x|2)n+1
2

, with γn =
Γ
(

n+1
2

)

π
n+1

2

.

The Lebesgue measure of the closed unit ball B(0, 1) and the surface
measure of its boundary are denoted by

(1.4) Ωn = |B(0, 1)| =
π

n
2

Γ
(

n
2 + 1

) , ωn−1 = |∂B(0, 1)| =
2π

n
2

Γ
(

n
2

) = nΩn.

Verbitsky [V] gave an elegant proof of (1.1) that yields a constant cp,n

independent of n whenever p > 2. The starting point of Verbitsky’s
argument is the use of interpolation and duality to derive (1.1) from the
equivalent inequalities

||Pf ||L2,∞(Rn+1
+ ,dµ) ≤ c′κ(µ)

1
2 ||f ||L2(Rn),(1.5)

||P ∗(g, µ)||L2(Rn) ≤ c′κ(µ)
1
2 ||g||L2,1(Rn+1

+ ,dµ),(1.6)

for some absolute constant c′ independent of n, where P ∗ is the Balayage
operator defined for functions g on R

n+1
+ by

P ∗(g, µ)(x) =

∫

R
n+1
+

Pb(x − y)g(y, b) dµ(y, b).

Using the semigroup property for the Poisson kernel,

(1.7)

∫

Rn

Pa(τ − x)Pb(τ − y) dτ = Pa+b(x − y),

Verbitsky obtained (1.6) with c′ independent of n for characteristic func-
tions of subsets of R

n+1
+ and this is enough to establish (1.6) for general

µ-measurable functions g (see [SW]).

The following theorem is the main result of this article, which grew
out of our attempts to extend Verbitsky’s theorem to the case 1 < p ≤ 2:
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Theorem 1.1. For 1 < p < 2 the following Carleson measure inequality
holds:

(1.8) ||Pf ||Lp(Rn+1
+ ,dµ) ≤ Cpn

1
p
− 1

2 κ(µ)
1
p ||f ||Lp(Rn),

with Cp independent of n. For p = 2 the following holds:

(1.9) ||Pf ||L2(Rn+1
+ ,dµ) ≤ C(log n)

1
2 κ(µ)

1
2 ||f ||L2(Rn),

with C independent of n.

We observe that the estimate above is sharper than those obtained
from the other known proofs of the Carleson measure inequality (1.1)
(see, e.g., [A], [C2], [G], [H], [N], [S]); these proofs yield constants that
grow exponentially in n.

The authors would like to thank Igor Verbitsky for pointing out this
problem to them and for sharing some of his ideas with them.

2. An integral formula involving Poisson kernels

In order to extend the arguments in [V] we are lead to consider the
equivalent inequalities for k = 3, 4, 5, . . .

||Pf ||
L

k
k−1

,∞
(Rn+1

+ ,dµ)
≤ c̄(k, n)κ(µ)

k−1
k ||f ||

L
k

k−1 (Rn)
,

||P ∗(g, µ)||Lk(Rn) ≤ c̄(k, n)κ(µ)
k−1

k ||g||Lk,1(Rn+1
+ ,dµ),

‖P ∗(χE , µ)‖Lk(Rn) ≤ c(k, n)κ(µ)
k−1

k µ(E)
1
k , ∀ E ⊂ R

n+1
+ .

For k = 2 these inequalities hold with c(2, n) ≤ c2,n ≤ c2 independent
of n, due to [V], (see (1.5) above). Our goal is to obtain good esti-
mates for the constants c(k, n) for all k = 3, 4, . . . and then use the
Marcinkiewicz interpolation theorem to deduce (1.1).

Since

‖P ∗(χE , µ)‖k
Lk(Rn) =

∫

Ek

∫

Rn

k
∏

j=1

Paj
(xj − τ) dτ dµ(x1, a1) . . . dµ(xk, ak)

our first task is to derive a workable formula for
∫

Rn

k
∏

j=1

Paj
(xj − τ) dτ,

which, in the case k = 2, is computed explicitly via the semigroup prop-
erty. In this section we prove the following:
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Proposition 2.1. Let Pa(x) be the Poisson kernel, as in definition (1.3).
Then, for any a1, . . . , ak ∈ (0,∞) and for any x1, . . . , xk ∈ R

n, we have

∫

Rn

k
∏

j=1

Paj
(τ − xj) dτ

=
a1a2 . . . ak

π(k−1) n
2 + k

2

∫ ∞

0

· · ·
∫ ∞

0

(u1u2 . . . uk)
n−1

2

(u1 + u2 + · · · + uk)
n
2

× Exp






−

k
∑

j=1

a2
juj −

∑

1≤i<j≤k

uiuj |xi − xj |2

u1 + u2 + · · · + uk






du1 . . . duk.

(2.1)

In particular, when k = 3, the formula above can be written as
∫

Rn

Pa(τ − x)Pb(τ − y)Pc(τ − z) dτ

=
abc

πn+ 3
2

∫ ∞

0

∫ ∞

0

∫ ∞

0

(uvw)
n−1

2

(u + v + w)
n
2

×Exp

[

−
{

a2u + b2v + c2w

+
uv|x − y|2 + uw|x − z|2 + vw|y − z|2

u + v + w

}]

du dv dw,

(2.2)

and when k = 2, we have

(2.3)

∫

Rn

Pa(τ − x)Pb(τ − y) dτ

=
ab

π
n
2 +1

∫ +∞

0

∫ +∞

0

(uv)
n−1

2

(u + v)
n
2

e−{a2u+b2v+ uv
u+v

|x−y|2} du dv.

Proof: We start from the “subordination” formula

Pa(x) =

∫ +∞

0

βa(u)e−u|x|2 du

where

βa(u) =
a

π
n+1

2

e−a2uu
n−1

2

which can be easily deduced using the definition of the Gamma function.
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The integral on the left hand side in (2.1) can now be rewritten as

∫

Rn

k
∏

j=1

Paj
(τ − xj) dτ

=

∫

Rn

k
∏

j=1

(∫ +∞

0

βaj
(uj)e

−uj |τ−xj|
2

duk

)

dτ

=
a1 . . . ak

π
(n+1)k

2

∫

Rn

∫

[0,∞)k

(u1 . . . uk)
n−1

2 e−
Pk

j=1(a
2
j uj+uj |τ−xj|

2)du1 . . . duk dτ

=
a1 . . . ak

π
(n+1)k

2

∫

[0,∞)k

(u1 . . . uk)
n−1

2 e−
Pk

j=1 a2
juj

×
[∫

Rn

e−
Pk

j=1 uj |τ−xj|
2

dτ

]

du1 . . . duk.

(2.4)

Let us now rewrite the inner integral inside square brackets using Carte-
sian coordinates, namely τ = (τ1, . . . , τn) and xj = (xj1, . . . , xjn). We
obtain

∫

Rn

e−
Pk

j=1 uj |τ−xj|
2

dτ

∫

Rn

e−{u1(τ1−x11)
2+u2(τ1−x21)

2+···+uk(τ1−xk1)
2} . . .

. . . e−{u1(τn−x1n)2+u2(τn−x2n)2+···+uk(τn−xkn)2} dτ1dτ2 . . . dτn =

n
∏

r=1

Ir

where, for each index r = 1, 2, . . . , n, we have defined

(2.5) Ir =

∫ +∞

−∞

e−(Aτ2
r−2Bτr+C) dτr

with

A = u1 + u2 + · · · + uk

B = Br = u1x1r + u2x2r + · · · + ukxkr

C = Cr = u1x
2
1r + u2x

2
2r + · · · + ukx2

kr .
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We claim that, for each choice of the coordinate index r = 1, . . . , n
we have

B2 − AC = B2
r − ACr = −

∑

i<j

uiuj(xir − xjr)
2

where the sum is taken over all possible pairs of distinct indices i and j
both running from 1 to k (there are k(k − 1)/2 of such pairs). In fact
this claim is easily checked by observing that in B2 −AC all the square
terms of the kind u2

i x
2
ir cancel out, while the remaing mixed terms can be

collected in groups of three, each group giving −uiuj(x
2
ir−2xirxjr +x2

jr).
Now, completing the square in (2.5) we obtain

Ir =e
B2−AC

A

∫ +∞

−∞

e−A(τr−
B
A )

2

dτr =

√

π

u1 + · · · + uk
e
−

P

i<j uiuj(xir−xjr )2

u1+···+uk

which implies that

∫

Rn

e−
Pk

j=1 uj |τ−xj|
2

dτ =

(

π

u1 + · · · + uk

)
n
2

e
−

P

i<j uiuj |xi−xj |2

u1+···+uk .

Using this identity in the square brackets in (2.4) and simplifying, we
obtain (2.1).

Remark. The reader may wonder if it is possible to obtain a formula for
the left hand side in (2.1) that does not involve any integrals, something
analogous to (1.7) for k ≥ 3. When n = 1 using residues (plus some
involved algebraic manipulations) we were able to show that
∫

R

Pa(τ − x)Pb(τ − y)Pc(τ − z) dτ

=
ab

(a + c)(b + c)
Pa+c(x − z)Pb+c(y − z)

+
ac

(a + b)(c + b)
Pb+c(y − z)Pa+b(x − y)

+
bc

(b + a)(c + a)
Pa+c(x − z)Pa+b(x − y)

+ 4π
abc(a + b + c)

(a + b)(a + c)(b + c)
Pa+b(x − y)Pa+c(x − z)Pb+c(y − z).
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Unfortunately, for n > 1, an integral-free formula of this sort is dif-
ficult to obtain. It seems that the size and complexity of the formula
grows quickly with n, and furthermore, there is no obvious “leading
term” to be used in our estimates as n → ∞. On the other hand we will
show that (2.1), after some manipulations, suffices for the purposes of
the proof of Theorem 1.1.

3. Proof of Theorem 1.1: the case 3

2
< p < 2

For clarity of exposition we first give a detailed proof of Theorem 1.1
in the case 3/2 < p < 2. In the next section we indicate how the same

technique can be adapted to the case p ∈
(

k
k−1 , 2

)

, any k = 4, 5, . . . .

Let us start by showing that the Balayage operator P ∗ satisfies the
following estimate for all Carleson measures µ, for all µ-measurable sub-
sets E of R

n+1
+ , and for all n = 1, 2, . . . ,

(3.1) ||P ∗(χE , µ)||3L3(Rn) ≤ c′′n
1
2 κ(µ)2µ(E),

for some absolute constant c′′. Once (3.1) is established, using duality
and [SW] we obtain for some other absolute constant c′′′

(3.2) ||Pf ||
L

3
2

,∞(Rn+1
+ ,dµ)

≤ c′′′n
1
6 κ(µ)

2
3 ||f ||

L
3
2 (Rn)

and thus, by the Marcinkiewicz interpolation and (1.5), Theorem 1.1
follows in the case 3/2 < p < 2.

We have

(3.3) ||P ∗(χE , µ)||3L3(Rn)

=

∫

E3

∫

Rn

Pa(τ − x)Pb(τ − y)Pc(τ − z) dτ dµ(x, a) dµ(y, b) dµ(z, c).

We will use the following modification of formula (2.2):

Lemma 3.1. The integral in (2.2) can also be written as

∫

Rn

Pa(τ − x)Pb(τ − y)Pc(τ − z) dτ

=
Γ
(

n+3
2

)

πn+ 3
2

abc

∫ 1

0

∫ 1

0

(1 − t)nt
n−1

2 (s(1 − s))
n−1

2

{a2t + (1 − t)B2 + t(1 − t)|x − q|2}n+ 3
2

dt ds
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where

B2 = B2(s, y, z) = b2s + c2(1 − s) + s(1 − s)|y − z|2(3.4)

q = q(s, y, z) = sy + (1 − s)z.(3.5)

We will also need the following estimates:

Lemma 3.2. The following inequalities hold for α > 0, β > 0, γ > 0
such that β > α and γ < β + 2 and for any D ∈ R.

∫ 1

0

tα(1 − t)β
{

a2t + (1 − t)B2 + t(1 − t)D2
}−γ

dt

≤ 1

aB

∫ 1

0

tα(1 − t)β
{

a2t + (1 − t)B2 + t(1 − t)D2
}−γ+1

dt

≤ 1

aB

∫ 1

0

tα(1 − t)β−γ+1
{

B2 + t(a2 + D2)
}−γ+1

dt.

The proofs of these lemmas are postponed until the end of this section.

Returning to the proof of (3.1), we split (3.3) in the six regions a ≤
b ≤ c, a ≤ c ≤ b, b ≤ c ≤ a, b ≤ a ≤ c, c ≤ b ≤ a, and c ≤ a ≤ b;
by symmetry we need only consider the region over which a ≤ b ≤ c.
Following [V] we write

||P ∗(χE , µ)||3L3(Rn)

(

6µ(E)
)−1

≤ sup
(z,c)∈E

∫

Rn×(0,c]

[

∫

Rn×(0,b]

∫

Rn

Pa(τ − x)

× Pb(τ − y)Pc(τ − z) dτ dµ(x, a)

]

dµ(y, b).

(3.6)

Observe that a ≤ b ≤ c implies a ≤ B. Applying Lemma 3.2 for each
fixed s, (y, b), and (z, c), with B and q as in (3.4) and (3.5), D = |x− q|,
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α = (n − 1)/2, β = n and γ = n + 3/2, we have

∫

Rn×(0,b]

Γ
(

n+ 3
2

)

πn+ 3
2

abc

∫ 1

0

t
n−1

2 (1 − t)n

(

a2t+(1−t)B2+t(1−t)|x−q|2
)n+ 3

2

dt dµ(x, a)

≤
∫

Rn×(0,b]

bcΓ
(

n + 3
2

)

Bπn+ 3
2

∫ 1

0

t
n−1

2 (1 − t)−1/2

(

B2 + t(a2 + |x − q|2)
)n+ 1

2

dt dµ(x, a)

≤ bc
(

n+ 1
2

)

Γ
(

n+ 3
2

)

Bπn+ 3
2

∫ 1

0

∫

R
n+1
+

∫ ∞

B2+t(a2+|x−q|2)

t
n−1

2 (1−t)−
1
2

rn+ 3
2

dt dr dµ(x, a)

≤ bc
(

n + 1
2

)

Γ
(

n + 3
2

)

Bπn+ 3
2

∫ 1

0

∫ ∞

B2

µ

(

T

[

B

(

q,

(

r − B2

t

)
1
2

)])

× t
n−1

2 (1 − t)−
1
2

rn+ 3
2

dt dr dµ(x, a)

≤ Ωnκ(µ)
bc
(

n + 1
2

)

Γ
(

n + 3
2

)

Bπn+ 3
2

∫ 1

0

∫ ∞

B2

(r − B2)
n
2

× t−
1
2 (1 − t)−

1
2

rn+ 3
2

dt dr dµ(x, a)

= κ(µ)
bc
(

n + 1
2

)

Γ
(

n + 3
2

)

Bn+2π
n+3

2 Γ
(

n
2 + 1

)

∫ 1

0

∫ ∞

1

(r − 1)
n
2

rn+ 3
2

t−
1
2 (1 − t)−

1
2 dt dr dµ(x, a)

= κ(µ)
bc
(

n + 1
2

)

Γ
(

n+1
2

)

Bn+2π
n+1

2

= κ(µ)
bc
(

n + 1
2

)

Γ
(

n+1
2

)

π
n+1

2

(

b2s + c2(1 − s) + s(1 − s)|y − z|2
)

n
2 +1

.

(3.7)

Next, observe that the following identity holds:

(3.8)

∫ 1

0

bc(s(1 − s))
n−1

2

(b2s + c2(1 − s) + s(1 − s)|y − z|2)n
2 +1

ds

=
γnπ

n
2 +1

Γ
(

n
2 + 1

)

(b + c)

[(b + c)2 + |y − z|2]n+1
2

.
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In fact, by the semigroup formula for the Poisson kernel and (2.3) we
have

Pb+c(y − z) =
bc

π
n
2 +1

∫ +∞

0

∫ +∞

0

(uv)
n−1

2

(u + v)
n
2

e−(b2u+c2v+ uv
u+v

|y−z|2) du dv.

On the other hand, after the change of variables v = λu the above
quantity becomes

bc

π
n
2 +1

∫ +∞

0

λ
n−1

2

(1 + λ)
n
2

dλ

∫ +∞

0

u
n
2 e−Wu du

=
bcΓ

(

n
2 + 1

)

π
n
2 +1

∫ +∞

0

λ
n−1

2

(1 + λ)
n
2 W

n
2 +1

dλ

where W = b2 + c2λ + λ
1+λ |y − z|2, and the further change of variables

s = 1/(λ + 1) (and therefore λ = (1 − s)/s) gives

Pb+c(y − z) =
Γ
(

n
2 + 1

)

π
n
2 +1

∫ 1

0

bc(s(1 − s))
n−1

2

(b2s + c2(1 − s) + s(1 − s)|y − z|2)n
2 +1

ds.

We now apply Lemma 3.1 in the inner most integral in (3.6) and then

use estimate (3.7) integrated with respect to
(

s(1 − s)
)

n−1
2 ds dµ(y, b)

on [0, 1]× R
n × (0, c] and identity (3.8) to obtain

∫

Rn×(0,c]

[

∫

Rn×(0,b]

∫

Rn

Pa(τ − x)Pb(τ − y)Pc(τ − z) dτ dµ(x, a)

]

dµ(y, b)

≤ κ(µ)

(

n + 1
2

)

Γ
(

n+1
2

)

π
n+1

2

∫

R
n+1
+

γnπ
n
2 +1

Γ
(

n
2 +1

)

(b + c)

[(b + c)2+|y − z|2]n+1
2

dµ(y, b)

≤ κ(µ)
2π1/2

(

n + 1
2

)

Γ
(

n+1
2

)

Γ
(

n
2 + 1

)

∫

R
n+1
+

γn
c

[(b + c)2 + |y − z|2]n+1
2

dµ(y, b).

(3.9)

By (13) in [V]

sup
(z,c)∈R

n+1
+

∫

R
n+1
+

γn
c

[(b + c)2 + |y − z|2]n+1
2

dµ(y, b) ≤ Cκ(µ)

for some absolute constant C independent of n. Therefore (3.9) is
bounded above by some absolute constant independent of n times

κ(µ)2
(

n + 1
2

)

Γ
(

n+1
2

)

Γ
(

n
2 + 1

) ∼ κ(µ)2
√

n
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as n → ∞, by the well known expansion Γ(z)/Γ(z+α) ∼ z−α for z → ∞.
This last bound for (3.9), together with (3.6), proves (3.1) and hence
Theorem 1.1 in the case 3/2 < p < 2.

Proof of Lemma 3.1: We start with the following n-dimensional identity

(3.10)
|y − x|2

α
+

|z − x|2
β

=
|y − z|2
α + β

+
α + β

αβ

∣

∣

∣

∣

x − β

α + β
y − α

α + β
z

∣

∣

∣

∣

2

which is valid for all x, y and z in R
n and for all α, β > 0 and can be

verified by a straightforward calculation.

We now apply (3.10), with α =
u + v + w

uv
and β =

u + v + w

uw
, to the

first two terms of

(3.11)
uv|x − y|2 + uw|x − z|2 + vw|y − z|2

u + v + w

which appear in the exponential factor in (2.2). Adding up the third
term of (3.11), simplifying, and plugging back into (2.2) we obtain that
∫

Rn

Pa(τ − x)Pb(τ − y)Pc(τ − z) dτ

=
abc

πn+ 3
2

∫ +∞

0

∫ +∞

0

∫ +∞

0

(uvw)
n−1

2

(u + v + w)
n
2

× Exp

[

−
{

a2u + b2v + c2w +
vw

v + w
|y − z|2

+
u(v + w)

u + v + w

∣

∣

∣

∣

x − v

v + w
y +

w

v + w
z

∣

∣

∣

∣

2
}]

du dv dw.

The change of variables v = λu and w = µu transforms the above integral
into

(3.12)
abc

πn+ 3
2

∫ +∞

0

∫ +∞

0

(λµ)
n−1

2

(1 + λ + µ)
n
2

dλ dµ

∫ +∞

0

un+ 1
2 e−Wu du,

where

W = a2+b2λ+c2µ+
λµ

λ + µ
|y−z|2+

λ + µ

1 + λ + µ

∣

∣

∣

∣

x − λ

λ + µ
y +

µ

λ + µ
z

∣

∣

∣

∣

2

.

Expressing the inner integral in (3.12) as a Gamma function we obtain

abcΓ
(

n + 3
2

)

πn+ 3
2

∫ +∞

0

∫ +∞

0

(λµ)
n−1

2

(1 + λ + µ)
n
2 Wn+ 3

2

dλ dµ.
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Now let us set t =
1

1 + λ + µ
and s =

λ

λ + µ
. This is an invert-

ible transformation of the first quadrant of the (λ, µ) plane onto the

square (0, 1) × (0, 1) of the (t, s) plane. We have λ =
s(1 − t)

t
and

µ =
(1 − t)(1 − s)

t
, while the Jacobian of the transformation is

1 − t

t3
.

Collecting and simplifying the various powers of t, (1− t), s and (1− s)

that appear we deduce that

∫

Rn

Pa(τ − x)Pb(τ − y)Pc(τ − z) dτ is in fact

equal to the expression in the statement of Lemma 3.1.

Proof of Lemma 3.2: To prove the first inequality, we scale the param-
eters involved so that B = 1 and thus 0 < a ≤ 1. We need to show
that

0 ≤
∫ 1

0

tα(1 − t)β

{a2t+(1 − t)+t(1 − t)D2}γ−1

(

1

a
− 1

a2t+(1 − t)+t(1 − t)D2

)

dt

=
1

a

∫ 1

0

tα(1 − t)β

{a2t+(1 − t)+t(1 − t)D2}γ

(

a2t + 1 − t − a + t(1 − t)D2
)

dt.

But a2t + 1− t− a + t(1− t)D2 ≥ a2t + 1− t− a = (1− a)(1− t(1 + a))
and therefore we need to show that

∫ 1

0

tα(1 − t)β

{a2t + (1 − t) + t(1 − t)D2}γ (1 − (1 + a)t) dt ≥ 0.

As a2t + (1 − t) ≤ 1 and 1 − (1 + a)t ≥ 1 − 2t, it will be sufficient to
prove that

∫ 1

0

tα(1 − t)β

{1 + t(1 − t)D2}γ (1 − 2t) dt ≥ 0.

We split this integral in the parts from 0 to 1
2 and from 1

2 to 1. Switching
variables t → 1 − t in the second of these integrals we obtain

∫ 1
2

0

(t(1 − t))α

{1 + t(1 − t)D2}γ

(

(1 − t)β−α − tβ−α
)

(1 − 2t) dt ≥ 0

and the first inequality in the lemma is proved. Note that here we have
used the hypothesis β > α.
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To prove the second inequality in Lemma 3.2 we start with the ele-
mentary fact

a2t + (1 − t)B2 + t(1 − t)D2 = B2 − t(B2 − a2 − D2) − t2D2

≥ B2 − t(B2 − a2 − D2) − t2(a2 + D2) = (1 − t)[B2 + t(a2 + D2)]

which yields

{

a2t+(1 − t)B2+t(1 − t)D2
}−γ+1≤(1−t)−γ+1

{

B2+t(a2 + D2)
}−γ+1

.

Multiplying both sides by (1 − t)β and taking the integral from 0 to 1
with respect to the weight tα we obtain the second claimed inequality
in the lemma. Note that the exponent β − γ + 1 can be negative, but
β − γ + 1 > −1 by our assumptions, so that integrability in t = 1 is
guaranteed. Lemma 3.2 is proved.

4. Proof of Theorem 1.1: the general case

In this section we outline how to derive the estimate

(4.1) ‖P ∗(χE , µ)‖k
Lk(Rn) ≤ Ck(k!)

3
2 n

k−2
2 κ(µ)k−1µ(E), k = 4, 5, . . .

for some absolute constant C > 0, independent of n and k and for all
µ-measurable subsets E of R

n+1
+ .

As a consequence of (4.1) we obtain

(4.2) ‖Pf‖
L

k
k−1

,∞
(Rn+1

+ ,dµ)
≤ Ck

3
2 n

1
2−

1
k κ(µ)

k−1
k ‖f‖

L
k

k−1 (Rn)

for all k = 3, 4, . . . . These estimates extend (3.1) and (3.2), respectively.
Once (4.2) is known, we deduce (1.8) as follows: for a given p ∈ (1, 2)
we find a positive integer k0 ≥ 4 such that k0/(k0 − 1) < (p + 1)/2.
We use the Marcinkiewicz interpolation theorem to interpolate between
estimate (1.5) (i.e. p = 2) and estimate (4.2) with p = k0/(k0−1). Using
a good value for the interpolation constant (see for instance the value of

the constant in [G, p. 33]) we obtain (1.8) with Cp = (p−1)−
5
2 . We note

that the standard proofs of (1.1) yield the constant cp,n = C (p−1)−1nc n

(for some absolute C > 0 and c > 0), which grows much faster in n, but
blows up at a slightly slower rate when n is fixed and p → 1.
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In order to work with (4.1) as in the case k = 3, we need a suitable
generalization of Lemma 3.1 for arbitrary k. First, we have

∫

Rn

k
∏

j=1

Paj
(τ − xj) dτ

=
a1a2 . . . ak

π(k−1) n
2 +k

2

∫

[0,∞)k

(u1u2 . . . uk)
n−1

2

(u1 + u2 + · · · + uk)
n
2

× Exp







−
k
∑

j=1

a2
juj −

k−1
∑

ℓ=1

(u1 + · · · + uℓ)uℓ+1

u1 + · · · + uℓ+1

×
∣

∣

∣

∣

xℓ+1 −
x1u1 + · · · + xℓuℓ

u1 + · · · + uℓ

∣

∣

∣

∣







du1 . . . duk

which can be obtained from the n-dimensional identity (3.10) working
in a recursive fashion as in the proof of Lemma 3.1, until the k(k −
1)/2 distances appearing in the original formula (2.1) are “squeezed”
together into k − 1 distances. Note that in the case k = 3 we applied
(3.10) just once.

Next, if ∆k denotes the (k − 1)-dimensional simplex

∆k =







v = (v1, . . . , vk) : vj ≥ 0,

k
∑

j=1

vj = 1







then the change of variables u = ρv with v ∈ ∆k and ρ > 0 yields

∫

Rn

k
∏

j=1

Paj
(τ − xj) dτ

=
a1a2 . . . akΓ

(

k−1
2 n + k

2

)

π
k−1
2 n+ k

2

∫

∆k

(v1 . . . vk)
n−1

2

×





k
∑

j=1

a2
jvj +

k−1
∑

ℓ=1

(v1 + · · · + vℓ)vℓ+1

v1 + · · · + vℓ+1

× |xℓ+1 − x1v1+ · · · +xℓvℓv1+ · · · +vℓ+1|





− k−1
2 n− k

2

dv1 . . . dvk.
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The further change of variables vj = (1 − t)sj , j = 1, 2, . . . , k − 1,
vk = t, with s = (s1, . . . , sk−1) ∈ ∆k−1 and t ∈ [0, 1] gives

∫

Rn

k
∏

j=1

Paj
(τ − xj) dτ =

a1a2 . . . akΓ
(

k−1
2 n + k

2

)

π
k−1
2 n+ k

2

×
∫

∆k−1

∫ 1

0

(1 − t)
k−1
2 n+k−2t

n−1
2 (s1 . . . sk−1)

n−1
2 dt ds

(

a2
kt + (1 − t)B2

k + t(1 − t)|xk − qk|2
)

k−1
2 n+ k

2

with

qk = x1s1 + · · · + xk−1sk−1

B2
k =

k−1
∑

j=1

a2
jsj +

k−2
∑

ℓ=1

(s1 + · · · + sℓ)sℓ+1

s1 + · · · + sℓ+1

∣

∣

∣

∣

xℓ+1 −
x1s1 + · · · + xℓsℓ

s1 + · · · + sℓ+1

∣

∣

∣

∣

,

and this is a suitable generalization of Lemma 3.1, with the property
that Bk is independent of t, xk, ak.

We now apply Lemma 3.2 with α =
n − 1

2
, β =

k − 1

2
n + k − 2,

γ =
k − 1

2
n +

k

2
and proceed as we did in the previous case k = 3,

assuming ak ≤ ak−1 ≤ · · · ≤ a1. We obtain

∫

Rn×(0,ak−1)

ak

∫ 1

0

t
n−1

2 (1 − t)
k−1
2 n + k − 2

(

a2
kt+(1−t)B2

k+t(1−t)|xk−qk|2
)

k−1
2 n+ k

2

dt dµ(xk, ak)

≤
κ(µ)πn/2+1

(

k−1
2 n + k

2 − 1
)

Γ
(

(k−2)(n+1)
2

)

(B2
k)

k−2
2 n+ k+1

2 Γ
(

(k−1)n
2 + k

2

)

=
κ(µ)πn/2+1Γ

(

(k−2)(n+1)
2

)

(B2
k)

k−2
2 n+ k+1

2 Γ
(

(k−1)(n+1)
2 − 1

2

) .
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Iterating this estimate k − 3 more times, and doing one last estimate
as in [V, equation (13)] we get, for any k ≥ 4, that

1

k!

∫

Ek−1

∫

Rn

k
∏

j=1

Paj
(τ − xj) dτ dx2 . . . dxk

≤ Cκ(µ)k−1

(

k−1
2 n + k

2 − 1
)−1

Γ
(

(k−2)(n+1)
2

)

Γ
(

(k−2)(n+1)
2 − 1

2

)

Γ
(

(k−3)(n+1)
2

)

Γ
(

(k−3)(n+1)
2 − 1

2

) · · ·

· · · Γ
(

n + 1
)

Γ
(

n + 1
2

)

Γ
(

n+1
2

)

Γ
(

n
2 + 1

)

which is of the order of

κ(µ)k−1
√

(k − 1)!(n + 1)
k−3
2 + 1

2 ∼ Ckκ(µ)k−1Γ(k)
1
2 n

k−2
2 .

Since this estimate is uniform with respect to (x1, a1) we obtain (4.1).
To prove (1.9) we first note that applying the Marcinkiewicz interpo-

lation theorem between (1.5) (i.e. p = 2) and the trivial p = ∞ estimate
yields

(4.3) ||Pf ||Lp(Rn+1
+ ,dµ) ≤ c′p

1
p (p − 2)−

1
p κ(µ)

1
p ||f ||Lp(Rn),

for all p > 2. Finally, using the Riesz-Thorin interpolation theorem, we

interpolate between (1.8) with p = 3
2 and (4.3) with p =

(

1
2 − 1

log n

)−1

(n > 10) to obtain (1.9).
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