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POLYNOMIAL DIFFERENTIAL EQUATIONS WITH

MANY REAL OVALS IN THE SAME ALGEBRAIC

COMPLEX SOLUTION

A. Lins Neto

Abstract
Let FolR(2, d) be the space of real algebraic foliations of degree d

in RP(2). For fixed d, let IntR(2, d) = {F ∈ FolR(2, d) | F has a
non-constant rational first integral}. Given F ∈ IntR(2, d), with
primitive first integral G, set O(F) = number of real ovals of the
generic level (G = c). Let O(d) = sup{O(F) | F ∈ IntR(2, d)}.
The main purpose of this paper is to prove that O(d) = +∞ for
all d ≥ 5.
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1. Introduction

It is well known (Harnack’s theorem) that a real smooth algebraic

curve of degree d in RP(2) has at most (d−1)(d−2)
2 +1 connected compo-

nents (ovals). A similar question in the context of real algebraic foliations
can be posed. Let FolR(2, d) be the set of algebraic foliations in RP(2) of
degree d. A foliation F ∈ FolR(2, d) can be complexified to one in CP(2)
that we denote FC. We will study the following problem:
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Problem 1. Given d ≥ 2 does there exists N(d) ∈ N such that for
any complex algebraic leaf L of a foliation FC, F ∈ FolR(2, d), then the
number of ovals of L ∩ RP(2) is ≤ N(d)?

We would like to remark that for d = 1 there exists such a bound:
N(1) = 1.

The main purpose of this paper is to prove that there is no such a
bound for all d ≥ 5. In order to pose the main result, let us recall some
facts and fix some notations concerning the subject.

Let Fol(2, d) be the space of holomorphic foliations of degree d
in CP(2). Any foliation F ∈ Fol(2, d) can be represented in homoge-
neous coordinates by an integrable 1-form

(1) ΩF = P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz

where P , Q and R are homogeneous polynomials of degree d + 1 and
x.P + y.Q + z.R ≡ 0 (cf. [LN]). Geometrically the degree of F is the
number of tangencies of F with a generic straight line of CP(2). For
instance, in the affine coordinates system (z = 1) the foliation is defined
by the differential equation ω = 0, where

ω = P (x, y, 1) dx+Q(x, y, 1) dy,

and the number of tangencies of F in C2 = (z = 1) ⊂ CP(2) with
the line (y = a x + b) is the number of complex solutions of the equa-
tion f(x) = 0, where f(x) = P (x, a x + b) − aQ(x, a x + b). With the
condition x.P + y.Q + z.R = 0 and if a, b ∈ C are generic then the
polynomial f(x) has degree d.

We will denote by sing(F) the singular set of F . If ΩF is as in (1)
then in homogeneous coordinates we have sing(F) = (P = Q = R = 0).

The set of real algebraic foliations of degree d, in these coordinates,
is

FolR(2, d) = {F | ΩF = P dx+Qdy +Rdz,

x.P + y.Q+ z.R = 0, P,Q,R ∈ R[x, y, z]

and P , Q and R are homogeneous of degree d+ 1}.
From now on, we will suppose the homogeneous coordinates fixed.

Let Int(2, d) = {F ∈ Fol(2, d) | F has a non-constant rational first
integral} and IntR(2, d) = Int(2, d) ∩ FolR(2, d). It is well known that if
F ∈ FolR(2, d) has a non-constant rational first integral then it has one,
say F/G, where F,G ∈ R[x, y, z], that is with real coefficients. For a
fixed F ∈ IntR(2, d) we will denote by O(F) the number of ovals of the
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generic level (GF = c), c ∈ R, where GF is a real primitive rational first
integral of F .

The main goal of this paper is to prove the following result:

Theorem 1. For all d ≥ 5 there are families (Fα)α∈J , J = (a < t <
b) ⊂ R, in FolR(2, d) with the following properties:

(P.1) Fα ∈ IntR(2, d) if, and only if, α ∈ Q ∩ J .
(P.2) The set {O(Fα) | α ∈ Q ∩ J} is unbounded.

(P.3) If α /∈ Q ∩ J then for almost all complex leaves L of the complex-
ification of Fα such that L ∩ RP(2) 6= ∅ then L ∩ RP(2) has an
infinite number of connected components.

In particular, (P.2) implies that for all d ≥ 5 we have

sup{O(F) | F ∈ IntR(2, d)} = +∞.

The proof of Theorem 1 will be based in [LN] and in some results
of [LN-1]. In [LN], for any degree d ≥ 2, we give examples of 1-param-
eter families of foliations Fd = (Fd

α)α∈C
in Fol(2, d), with the following

properties:

(I) The set Ed = {α ∈ C | Fd
α has a non-constant rational first

integral} is countable and dense in C. Denote by Gd
α a primitive

rational first integral of Fd
α.

(II) The set {dg(Gd
α) | α ∈ Ed} is unbounded (dg = degree).

(III) The family is generically equisingular, in the following sense:
(a) There exists a finite subset F of C such that for any α ∈ C\F

the singularities of Fd
α are non-degenerate.

(b) For any fixed αo /∈ F and any singularity po of Fd
αo

there
exists a holomorphic function p(α) defined in a neighborhood
of αo such that p(αo) = po, p(α) ∈ sing(Fd

α) and the germs
of Fd

o and Fd
α at po and p(α), respectively, are holomorphically

equivalent.

The families of degrees d = 2, 3, 4 are exhibited explicitly in [LN]. For
instance, F4 is defined in affine coordinates by the family of polynomial
1-forms on C2 ⊂ CP(2), (ωα := ω − α.ω∞)α∈C

, where

(2)

{

ω = (x3 − 1)x dy − (y3 − 1)y dx

ω∞ = (x3 − 1)y2 dy − (y3 − 1)x2 dx
.
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It is shown in [LN] that for d ∈ {2, 3, 4} and α ∈ Ed the normal-
ization of a generic level (Gd

α = c) is an elliptic curve biholomorphic
to C/〈1, e2πi/3〉, where 〈1, a〉 denotes the lattice {m + n.a | m,n ∈ Z}.
In particular, these families cannot satisfy condition (P.2) of Theorem 1.
However, for d ≥ 5 the family Fd is obtained by pulling-back one of the
families F2, F3 or F4 by some fixed rational map Φ: CP(2) → CP(2),
that is Fd = Φ∗(Fj), for some j ∈ {2, 3, 4}. In this way, for d ≥ 5, it is
shown in [LN] that Fd satisfies:

(IV) For a fixed α ∈ Ed denote by g(α) the genus of the generic level
(Gd

α = c). If d ≥ 5 then the set {g(α) | α ∈ Ed} is unbounded.

As we will see in Section 3, when we pull-back the family F4 by an
appropriate rational map Φ with real coefficients then we get a real
family of degree d = 8 satisfying (P.1), (P.2), and (P.3) of Theorem 1.
In Section 4 we will sketch how to obtain families of any degree d ≥ 5
satisfying (P.1), (P.2) and (P.3).

We would like to observe that property (P.1) will be a consequence of
the following result of [LN-1]:

(V) For all d ≥ 2 we have

Ed = {a+ b.e2πi/3 | a, b ∈ Q} ∪ {∞}.
In particular, Ed ∩ R = Q.

Remark 1.1. In [LN-1] it is exhibited another family of degree three such
that the set of parameters for which the correspondent foliation has a
first integral is {a+ b.i | a, b ∈ Q} ∪ {∞}, i =

√
−1. Families satisfying

properties (P.1), (P.2) and (P.3) of Theorem 1 can be also constructed
by pulling-back this particular one.

Theorem 1 motivates the following problems:

Problem 2. Is the statement of Theorem 1 true for degrees d = 2, d = 3
or d = 4?

Problem 3. For an algebraic curve L ⊂ CP(2) denote by O(L) the
number of connected components of L∩RP(2). Given F ∈ FolR(2, d) set

O(F) = max{O(L) | L is an algebraic leaf of F}.
We would like to observe that an algebraic leaf is automatically irre-
ducible (by the definition of leaf).

A natural question is the following: does there exists d ≥ 2 such that

sup{O(F) | F ∈ FolR(2, d) \ IntR(2, d)} < +∞?
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Remark 1.2. Concerning Problem 3 the following result was proved in [C]
by M. M. Carnicer: let F be a foliation of degree d in CP(2) without
dicritical singularities. If L is an algebraic leaf of F then dg(L) ≤ d+2.

In particular, if F ∈ FolR(2, d) then L ∩ RP(2) has at most d(d+1)
2 + 1

ovals.

Remark 1.3. In this remark we consider families of logarithmic foliations
in FolR(2, d) from the point of view of Problem 1. Let f1, . . . , fr be real
irreducible polynomials in two variables, two by two relatively primes,
and consider the family of foliations in RP(2) defined in an affine coor-
dinates system by the (r − 1)-parametric differential equation ωλ = 0,
where

(3) ωλ = f1 . . . fr

r
∑

j=1

λj
dfj
fj
,

r
∑

j=1

λj . dg(fj) = 0.

Denote by Gλ the foliation in RP(2) defined by ωλ = 0. If λ 6=
(0, . . . , 0), it can be shown that Gλ has degree d, where d = dg(f1) +
· · · + dg(fr) − 2. Moreover, Gλ ∈ IntR(2, d) if, and only if λ = c.µ,
where µ ∈ Zr. If λ = (n1, . . . , nr) ∈ Zr and gcd(n1, . . . , nr) = 1 then a
primitive first integral of Gλ is Fλ = fn1

1 . . . fnr

r . In particular, the set

{dg(Fλ) | λ ∈ Zr}
is unbounded. On the other hand, this family does not satisfy prop-
erty (P.2) of Theorem 1. This is a consequence of the results of Kho-
vanskĭı in [Kh] wich assert that the maximal number of ovals of the
level (Fλ = c) has a bound N(f1, . . . , fr), which does not depends on λ,
but only on the number of non-zero monomials of f1, . . . , fr. This fact,
of course, implies that the maximal number of ovals that can be obtained
from a solution of an equation like in (3) inducing a foliation of degree d
has a bound which depends only of d.

I would like to thank Jean Jacques Risler who convinced me of the
importance of the subject and strongly stimulated me to write this paper.

2. Some properties of the family F4

We begin this section by describing some properties of the family F4

that will be needed (see [LN] and [LN-1]). We will use the notation j =
e2πi/3.

Let F4
α be the foliation defined in the affine coordinates (x, y) ∈ C2 ⊂

CP(2) by ωα = ω−α.ω∞, where ω and ω∞ are as in (2). We will consider
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alsoF4
α defined by the dual vector fieldXα of ωα: Xα = X−α.X∞, where

X = (x3 − 1)x∂x+(y3 − 1)y ∂y and X∞ = (x3 − 1)y2 ∂x+(y3 − 1)x2 ∂y.
The tangency divisor of F4

0 and F4
∞, denoted by L, is the union of

9 lines in CP(2), say ℓ1, . . . , ℓ9, defined in C2 by

(4) (x3 − 1)(y3 − 1)(y3 − x3) = 0.

These lines are invariant by all foliations in the family. They intersect
two by two in the 12 points of the set

R = {(a, b) ∈ C2 | a, b ∈ {1, j, j2}} ∪ {[0 : 1 : 0], [1 : 0 : 0]}.

The points [0 : 1 : 0] and [1 : 0 : 0] are contained in the line at infinity of
C2 ⊂ CP(2). For all α ∈ C we have R ⊂ sing(F4

α).
Let us describe F4

α for α /∈ {1, j, j2,∞}. In this case, the foliation F4
α

has 21 singularities, the 12 in the set R and 9 more in the set

Sα=(x3−1=y−αx2=0)∪(y3−1=x−αy2=0)∪(y3−x3=x−αy2=0).

In particular, each line of L contains 4 singularities of F4
α. For in-

stance, the line (y = x) contains the singularities (1, 1), (j, j), (j2, j2)
and (1/α, 1/α). The 12 points in R are of radial type for F4

α: if p ∈ R
then there exists a local chart (u, v) around p with u(p) = v(p) = 0 such
that Xα = a(u∂u+v∂v), a 6= 0. In particular, v/u is a local meromorphic
first integral of F4

α. The 9 points in Sα are of saddle type: if q ∈ Sα∩ ℓk,
k ∈ {1, . . . , 9}, then there exists a local chart (W, (u, v)) around q such
that u(q) = v(q) = 0, ℓk ∩W = (v = 0) and Xα = a(u∂u− 3 v∂v), a 6= 0.
In particular, u3.v is a local holomorphic first integral of F4

α.
The resolution of F4

α, in the sense of Seidenberg (cf. [Se] or [Br]), is
done by blowing-up in the 12 points ofR. Denote by π : M → CP(2) this

blowing-up procedure and set F̃α := π∗(F4
α). Let ℓ̃k denote the strict

transform of ℓk by π, k = 1, . . . , 9, and set L̃ = ∪9
k=1 ℓ̃k. The following

properties are proved in [LN]:

(I) If α 6= β then F̃α and F̃β are transverse outside L̃.
(II) If β ∈ {1, j, j2,∞} then the foliation F̃β has a holomorphic first

integral F̃β : M → CP(1). Moreover, F̃β is an elliptic fibration with
three singular fibers. For instance, G(x, y) := (y3 − 1)/(x3 − 1) is

a rational first integral of F4
∞ and F̃∞ = G ◦ π : M → CP(1).

The critical levels of F̃∞ are 0, 1,∞ ∈ CP(1). After blowing-
down the −1-component of one of the critical fibers, it becomes
of type IV in Kodaira’s classification of critical fibers of elliptic
fibrations (cf. [K]).
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Remark 2.1. Set Tc := F̃−1
∞ (c), where c 6= 0, 1,∞. We would like to

observe that Tc is an elliptic curve biholomorphic to C/Γ, where Γ =
〈1, j〉 := {m + n.j | m,n ∈ Z}. This is a consequence of the fact that
G−1(c) = (y3 − c.x3 + c − 1 = 0) admits the automorphism of period
three (x, y) 7→ (j.x, j.y).

We will denote by Πc : C → Tc a holomorphic universal covering of Tc.
Since Tc ≃ C/Γ, given z ∈ C we will denote by z mod(Γ) its equivalence
class in C/Γ.

Remark 2.2. Since F̃α is transverse to F̃∞ outside L̃, we can define a
global holonomy representation Φα : Π1(CP(1)\{0, 1,∞}, c) → Aut(Tc),
c /∈{0,1,∞}. If we consider appropriate generators γ1 and γ2 of Π1(CP(1)\
{0, 1,∞}, c), then we can write Φα(γk) := fk

α, k = 1, 2, as fk
α(z) =

(j.z + Ak(α)) mod(Γ), where Ak : C → C/Γ is holomorphic, k = 1, 2
(cf. [LN]). In particular, the global holonomy is the sub-group 〈f1

α, f
2
α〉

of Aut(Tc), generated by f1
α and f2

α.

Let a(α) := (1 − j)−1A1(α) mod(Γ) and h : C/Γ → C/Γ be defined
by h(z) = (z+a(α)) mod(Γ). Since f1

α has a fixed point at a(α) we have
h−1 ◦ f1

α ◦ h(z) = j.z mod(Γ) and h1 ◦ f2
α ◦ h(z) = (j.z +A(α)) mod(Γ),

where A(α) = A2(α)−A1(α). In particular, the global holonomy group

of F̃α is conjugated to the group Gα generated by f(z) := j.z mod(Γ)
and fα(z) = (j.z + A(α)) mod(Γ). In [LN] it is proved that α 7→ A(α)
is non-constant.

In [LN-1] it is proved that the functions Ak(α), k = 1, 2, are affine,
that is Ak(α) = Bk.α + Ck mod(Γ), where Bk, Ck ∈ C. Hence, A(α) is
also affine and we can write A(α) = (B.α + C) mod(Γ), where B ∈ C∗

and C ∈ C.

We are mainly interested in the real foliations F̃α, α ∈ R, and how
their real leaves cut the real levels of F̃∞. Let us denote by MR the
strict transform of RP(2) by π : M → CP(2). Remark that MR is RP(2)
blowed-up in four points: the four real points of R, q1 := (0, 0), q2 :=
(1, 1), q3 := [1 : 0 : 0] and q4 := [0 : 1 : 0]. In particular, MR is
diffeomorphic to the non-orientable surface of Euler characteristic −3.
Let us denote by Sc the real trace of Tc, Sc =MR∩F̃−1

∞ (c), c ∈ R\{0, 1}.

Lemma 2.1. If c ∈ R\{0, 1} then Sc is connected and homeomorphic to
the circle S1. Moreover, there exists an universal covering Πc : C → Tc
such that Πc(R) = Πc (0 ≤ t < 1) = Sc.
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Proof: If c ∈ R \ {0, 1} then Sc is the strict transform of G−1(c)∩RP(2)
by π. On the other hand, G−1(c) = (y3 − c.x3 + c − 1 = 0). For
each x ∈ R there is only one y ∈ R such that y = [c.x3 + 1 − c]1/3.
Therefore,G−1(c)∩R2 is a graph, and soG−1(c)∩RP(2) is connected and
homeomorphic to S1. Since Sc is the strict transform of G−1(c)∩RP(2),
the same is true for it.

Let

P(z) =
1

z2
+

∑

ω∈Γ∗

(

1

(z − ω)2
− 1

ω2

)

, Γ∗ = Γ \ {0},

be the Weierstrass P-function associated to the latice Γ. The cu-
bic G−1(c) in the Weierstrass normal form can be written as v2 =
4 (u3 − C), where C = 35

∑

ω∈Γ∗

1
ω6 ∈ R+. It is known that z ∈ C 7→

(P(z),P ′(z)) = (u, v) parametrizes G−1(c) in the normal form, that is
(P ′)2 = 4(P3 − C). On the other hand, the projective automorphism















x =
b.B.u

A.v − 1/2

y =
b (A.v + 1/2)

A.v − 1/2

,

where b = (1− c)1/3, A = 1/
√
48.C and B = 1/(4.c.C)1/3

sends G−1(c) to the normal form: v2 = 4(u3 − C). This implies that
G−1(c) in the original affine coordinates system is parametrized by

z ∈ C 7→
(

b.B.P(z)

A.P ′(z)− 1/2
,
b (A.P ′(z) + 1/2)

A.P ′(z)− 1/2

)

:= Φc(z)

and Φc : C → G−1(c) is an universal covering. If c ∈ R then we can take
b, A,B ∈ R, because C > 0. It follows that Φc(R) ⊂ G−1(c) ∩ RP(2),
because P(R),P ′(R) ⊂ R. Since G−1(c)∩RP(2) has just one irreducible
component, we get Φc(R) = G−1(c) ∩ RP(2). On the other hand, πc :=
π|Tc

: Tc → G−1(c) is a biholomorphism. Hence, Πc := π−1
c ◦Φc : C → Tc

is an universal covering and Πc(R) = Sc. Since 1 is a period of Πc, we
get Πc(0 ≤ t < 1) = Sc.

From now on we will fix the fiber Tc := T , c ∈ R \ {0, 1}, where the
global holonomy group is calculated. We will set S := Sc = T ∩MR.
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Corollary 2.1. For any α∈R there exists an universal covering Πα: C→
T with the following properties:

(a) The global holonomy group in the fiber T is Gα = 〈f, fα〉, where
f(z) = j.z mod(Γ) and fα(z) = (j.z + B.α + C) mod(Γ), with
B ∈ C∗ and C ∈ C.

(b) Πα(R − a(α)) = S, where R − a(α) = {t − a(α) | t ∈ R} and
a(α) = (1− j)−1A1(α) mod(Γ) is as before.

In particular, Π−1
α (S) =

⋃

n∈Z
(R− a(α) + n.j).

Proof: Consider the universal covering Πc : C → T as in Lemma 2.1, for
which Πc(R) = S. The global holonomy group in the fiber T is generated

by f1
α and f2

α, which are covered by the maps f̂k
α(z) := j.z+Ak(α), that is

Πc◦ f̂k
α(z) = fk

α(z)◦Πc, k = 1, 2. On the other hand, if ĥα(z) := z+a(α)

then f̂ := ĥ−1
α ◦ f̂1

α ◦ ĥα and f̂α := ĥ−1
α ◦ f̂2

α ◦ ĥα are of the form f̂(z) = j.z

and f̂α(z) = j.z + A(α), where A(α) = A2(α) − A1(α) = B.α + C.

Therefore, the universal covering Πα := Πc ◦ ĥα satisfies Πα(R−a(α)) =
S, Πα ◦ f̂ = f1

α ◦Πα and Πα ◦ f̂α = f2
α ◦Πα.

Recall that E = {α ∈ CP(1) | F̃α has a first integral}. In [LN] it is
proved that the following conditions are equivalent:

(I) α ∈ E.

(II) Gα is finite.

(III) A(α) ∈ Q.Γ := {a+ b.j | a, b ∈ Q}.
Notations.

(a) For α ∈ C fixed, set Γ(α) = {c.A(α) mod(Γ) | c ∈ Γ} and for
α ∈ R, set ΓR(α) = Γ(α) ∩ R mod(Γ).

(b) We have seen in Lemma 2.1 and Corollary 2.1 that Πc(R) = Πα(R−
a(α)) = S. We define a segment I on S as the image of an open
interval I := Πc((a, b)) ⊂ S, (a, b) ⊂ R, a < b.

(c) Given α ∈ C ∪ {∞} and q ∈ M \ sing(F̃α) denote by ℓ(α, q) the

complex leaf of F̃α through q. If α ∈ R∪{∞} and q ∈MR\sing(F̃α)
then set ℓR(α, q) := ℓ(α, q) ∩MR.

(d) Given α ∈ E ∩R, a point q ∈MR \ sing(F̃α) and a segment I of S
define

N(α, q, I) = # (ℓR(α, q) ∩ I).
Note that N(α, q, I) is always finite, because F̃α is transverse to S

and has rational first integral for any α ∈ E ∩ R.
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Lemma 2.2. For any fixed α ∈ R, qo ∈ S and zo ∈ C such that Πα(zo) =
qo we have:

(5) ℓR(α, qo) ∩ S = Πα(zo + ΓR(α)),

where zo + ΓR(α) = {zo + t | t ∈ ΓR(α)}. In particular,

(a) ℓR(α, qo) ∩ S is dense in S ⇐⇒ α ∈ R \Q.

(b) Let αo ∈ R\Q and (αn)n≥1 be a sequence in Q such that lim
n→∞

αn =

αo. Then for any segment I of S and any sequence (qn)n≥1 in S
we have

lim
n→∞

N(αn, qn, I) = +∞.

Proof: Since S = Πα(R− a(α)), we can assume that zo ∈ R− a(α).
The global holonomy group Gα is constructed in such a way that for

any q ∈ T we have ℓ(α, q) ∩ T = {g(q) | g ∈ Gα}. Let Ĝα = {ĝ ∈
Aut(C) | Πα ◦ ĝ = g ◦ Πα, g ∈ Gα}. If Ĝα(zo) denotes the orbit of zo
by Ĝα then

ℓ(α, qo) ∩ T = Πα(Ĝα(zo)).

Since S = T ∩MR = Πα(R− a(α)) we get

ℓR(α, qo) ∩ S = Πα(Ĝα(zo) ∩ [R− a(α)]).

The transformations ĝ ∈ Ĝα for which ĝ(R − a(α)) = R − a(α) are in

the group Ĥα = {ĝ ∈ Ĝα | ĝ(z) = z + t, t ∈ ΓR(α)}. Therefore,
ℓR(α, qo) ∩ S = Πα(zo + ΓR(α)).

It follows from (5) that ℓR(α, qo)∩S is dense in S if, and only if, ΓR(α)
is dense in R mod(Γ) = R mod(1). The next claim implies assertion (a)
of Lemma 2.2.

Claim 2.1. The set Γ(α) is an additive sub-group of C/Γ, whereas if
α ∈ R then ΓR(α) is an additive sub-group of R mod(1) ≃ S1. Moreover,
ΓR(α) is dense in R mod(1) if, and only if, α ∈ R \Q.

Proof: The first two assertions are consequence of the definitions. On
the other hand, we will prove at the end that

(6) ΓR(α) = {ℓ µ (α− 1) mod(1) | ℓ ∈ Z},
where µ ∈ Q \ {0}. Note that (6) implies the claim:

α ∈ R \Q ⇐⇒ µ.(α− 1) ∈ R \Q ⇐⇒ ΓR(α) is dense in R mod(1).
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Recall that A(α) = (B.α+C) mod(Γ) where B ∈ C∗ and C ∈ C. We
will use the following facts proved in [LN]:

(i) If α ∈ {1, j, j2} then #(Gα) = 3.

(ii) #(G0) = 9.

(iii) The group Gα can be explicitly written as:

Gα={g | g(z mod(Γ))=(λ.z+b.A(α)) mod(Γ), λ∈{1, j, j2} and b ∈ Γ}.
We can deduce from (i) and (iii) that A(1)=A(j)=A(j2)=0 mod(Γ).

Now,

A(1) = 0 mod(Γ) =⇒ B = −C mod(Γ) =⇒ A(α) = B(α− 1) mod(Γ)

and

A(j) = A(j2) = 0 mod(Γ) =⇒ B(j − 1), B(j2 − 1) ∈ Γ =⇒ B ∈ 1

3
Γ.

It follows from (ii) that A(0) /∈ Γ. Since A(0) = −B mod(Γ), we get
B /∈ Γ.

Therefore, we can write B = k
3 (m + n.j), where, k,m, n ∈ Z and,

either (m,n) = (1, 0), or (m,n) = (0, 1), or m,n 6= 0 and gcd(m,n) = 1.
Since B /∈ Γ we must have also 3 6 | k and 3 6 | k.m or 3 6 | k.n if m,n 6= 0.

Set µ := k
3 (m

2 + n2 − m.n) = (m + n.j2).B ∈ Q \ {0} and Xα :=
{ℓ.µ(α− 1) mod(1) | ℓ ∈ Z} and let us prove that ΓR(α) = Xα.

First of all recall that

ΓR(α) = {t mod(1) | t = c.B(α − 1), c ∈ Γ, c.B ∈ R}.
In particular, ΓR(1) = {0 mod(1)} = X1. If α ∈ R \ {1} then µ(α −
1) ∈ R. Since µ = (m + n.j2).B we get µ(α − 1) mod(1) ∈ ΓR(α).
Hence, Xα ⊂ ΓR(α), because Xα and ΓR(α) are additive sub-groups of
R mod(1). On the other hand, if c.B.(α − 1) ∈ R for some c ∈ Γ, then

c.B ∈ R =⇒ c.(m+ n.j) ∈ R ∩ Γ =⇒ c = ℓ.(m+ n.j2),

ℓ ∈ Z =⇒ c.B = ℓ.µ, ℓ ∈ Z =⇒ ΓR(α) ⊂ Xα,

which proves (6) and the claim.

Proof of (b) of Lemma 2.2: Let α ∈ Q \ {1}, so that µ.(α− 1) ∈ Q \ {0}.
Set µ.(α− 1) = r/s, where r, s ∈ Z, gcd(r, s) = 1 and s > 0. Then there
exist ℓ,m ∈ Z such that ℓ.r − s.m = 1, and so ℓ.r/s = 1/s mod(1). In
this case, we get

ΓR(α) =
{n

s
mod(1) | n ∈ Z

}

.
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Let (a, b) ⊂ R be an open interval with b − a > 1/s. Then there exist
m,n ∈ Z such that

m− 1

s
≤ a <

m

s
≤ n

s
< b ≤ n+ 1

s

=⇒ #

{

t

s
| t ∈ Z,

t

s
∈ (a, b)

}

= n−m+ 1 > (b − a)s− 1.

In particular, if qo ∈ S, Πα(zo) = qo and I = Πα(zo + (a, b)), then

(7) N(α, qo, I) = # [(zo + ΓR(α) mod(1)) ∩ (zo + (a, b) mod(1))]

> (b − a)s− 1.

Fix αo ∈ R \Q and sequences (αn)n≥1 in Q and (qn)n≥1 in S, where
lim
n→∞

αn = αo. Since αo /∈ Q, we can write µ(αn − 1) = rn/sn, where

rn, sn ∈ Z, gcd(rn, sn) = 1 and lim
n→∞

sn = +∞. It follows from (7) that

N(αn, qn, I) > (b− a)sn − 1 =⇒ lim
n→∞

N(αn, qn, I) = +∞.

3. Pulling-back the family F4

In the process of pulling-back the pencil F4 we will consider a polyno-
mial map, depending on α ∈ R, Φα : RP(2) → RP(2) with the following
properties:

(i) There are algebraic curves F, Fα ⊂ RP(2) and po ∈ F , qo ∈ Fα

such that Φα(F ) = Fα and Φα(po) = qo.

(ii) There are local coordinates (U, (u, v) ∈ R2) and (Uα, (x, y) ∈ R2)
such that u(po) = v(po) = 0, x(qo) = y(qo) = 0, F ∩ U = (v = 0),
Fα ∩Uα = (y = 0) and Φα(u, v) = (u, v2) = (x, y). In other words,
Φα folds around F in the sense of Whitney.

Let us suppose that the point qo is not contained in the set L. Since
F4

0 and F4
∞ are transverse outside L, there is an unique α ∈ R ∪ {∞}

such that the leaf of F4
α through qo is tangent to Fα at qo. This condition

implies that:

(iii) The foliation F4
α can be defined in (Uα, (x, y)) by a differential

equation of the form dy −Q(x, y) dx = 0, where Q(0, 0) = 0.

Let us assume further that Qx(0, 0) = −a < 0. The pull-back foliation
Fα := Φ∗(F4

α) is defined in the chart (U, (u, v)) by µ = 0, where µ =
2 v dv−Q(u, v2) du, or by the vector field X = 2 v ∂u +Q(u, v2) ∂v. The

eigenvalues of DX(0, 0) are ±i
√
2a and the singularity po = (0, 0) is a

center for Fα.
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(v = 0)
Φ

γ
H+

(y = 0)

Figure 1

In fact, with the condition Qx(0, 0) < 0, the real leaf of F4
α through qo

has a tangency of order one with the line (y = 0), as shown in Figure 1. A
nearby leaf of F4

α|U1
in the set H+ := (y ≥ 0), say γ, cuts the line (y = 0)

in two points and γ ∩H+ is a segment. In this case, Φ−1(γ ∩H+) is a
closed curve in the plane (u, v). Hence, po is a center for Fα.

Let us specify the map Φα. Choose the point qo ∈ RP(2) as qo = π(q1),
where q1 ∈ S. Note that qo /∈ L. Let (x, y) ∈ R2 ⊂ C2 be the affine
coordinates system fixed in the introduction and qo = (ao, bo) in this
coordinates system. Denote by Lα the straight line tangent to the leaf ℓα
of F4

α through qo. The slope of Lα at qo is

φ(α) :=
(b3o − 1)(bo − α.a2o)

(a3o − 1)(ao − α.b2o)
.

If we choose α 6= ao/b
2
o then Lα is not vertical and can be parametrized

as s 7→ (s+ ao, φ(α).s + bo).
Set

(8) Φa(s, t) = (s+ ao,±t2 + φ(α).s + bo) = (x, y).

Note that Φα(0, 0) = qo and Φα(t = 0) = Lα. From now on, we will
denote by R2

(s,t) the domain of Φα.

If the sign in the second component of (8) is + then

Φα(R
2
(s,t)) = {(x, y) | y ≥ φ(α).(x − ao) + bo} := H+(α),

whereas if the sign is − then

Φα(R
2
(s,t)) = {(x, y) | y ≤ φ(α).(x − ao) + bo} := H−(α).

In particular, Φα folds R2
(s,t) around the line (t = 0).
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We have to impose an additional condition on α to guarantee that the
tangency of ℓα with Lα at qo is of order one. The set of points p ∈ CP(2)
where the tangency of the leaf of some foliation G through p with its
tangent line at p is of order greater than one, called the inflection divisor
of G, was computed in [JP]. Applying this computation in the case of F4

α

we find the following equation for its inflection divisor:

P (x, y, α) = (y3 − 1)(x3 − 1)(x3 − y3)
(

[2 + α3]xy − αx3 − αy3 − α
)

.

Since qo = (ao, bo) /∈ L = ((x3 − 1)(y3 − 1)(y3 − x3) = 0) we have to
choose α in such a way that [2 + α3]ao bo − αa3o − αb3o − α 6= 0.

The sign of ±t2 in (8) is choosen to be + if the leaf ℓα (near qo) is
contained in the region H−(α) and − otherwise. Note that in the first
case Φα(R

2
(s,t)) ⊂ H+(α) and in the second Φa(R

2
(s,t)) ⊂ H−(α). With

these conditions, po = (0, 0) is a center for the real pull-back foliation

Fα := Φ∗
α(F4

α).

Fix αo ∈ R satisfying the above conditions and assume that ℓαo

near qo is contained in the region H−(αo), so that we choose the sign +
in (8) for Φαo

.
From continuity and the arguments already exposed there exist 0 <

ǫ ≤ ǫ1, δ, δ1 > 0 such that if α ∈ J := (αo − ǫ, αo + ǫ) then:

(iv) If po = (0, 0) then Φα(po) = qo and po is a center for Fα (see
Figure 1).

(v) If K := (−δ,+δ)× {0} then the segment Φα(K) ⊂ Lα contains a
segment Iα of euclidean lenght 2 δ1 of the line Lα, centered in qo.

(vi) F4
α is transverse to Lα in all points of Iα \ {qo}.

Let D ⊂ R2 be the disk of radius δ1 centered at qo. Denote Dα
+ :=

H+(α) ∩ D. Recall that π(S) is the real leaf of F4
∞ through qo. Since

F4
∞ and F4

α are transverse at qo we can choose a segment I contained
in S with the following properties:

(vii) qo is in one of the extremities of π(I) and π(I) ⊂ D+(α).

(viii) For all q ∈ π(I) and α ∈ J the leaf ℓq of F4
α|D cuts Iα in two

points, say q+ and q−, one in each side of qo in Iα.

The situation described above is sketched in Figure 2.
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+
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1q
−

q+

π(S)

α

Lα

Figure 2

Let I1(α) ⊂ R2
(s,t) be the connected component of Φ−1

α (π(I)) which

contains po = 0. Note that I1(α) is a segment of curve in R2, because
π(I) is transverse to Lα. Moreover, if hα := Φα|I1(α) : I1(α) → π(I) then

h−1
α (qo) = po and #(h−1

α (q)) = 2 if q ∈ I1(α) \ {qo}, because Φα folds at
the line (t = 0) and Φα(R

2
(s,t)) = H+(α).

(ix) Given p ∈ I1(α) \ {po} the real leaf of Fα through p is a closed
curve (diffeomorphic to S1).

In fact, hα(p) = q ∈ I and the leaf of F4
α through q cuts Iα in two

points q− and q+, determining in this way a segment l between these
points, as shown in Figure 2. Since Fα = Φ∗

α(F4
α) the leaf ofFα through p

is Φ−1
α (l) which is a closed curve (see Figure 1).

Let us prove that the family (Fα)α∈J satisifies properties (P.1), (P.2)
and (P.3) in the statement of Theorem 1. Property (P.1) follows from
the fact that E4 ∩ R = Q, where E4 = {α ∈ C | F4

α has a non-constant
rational first integral}.

In order to prove that it satisfies (P.2) and (P.3) we will consider a
slightly more general situation. Let M and N be two complex compact
surfaces and Ψ: M → N be a non-degenerate rational map of topological
degree dg(Ψ) = k ≥ 2. Let CP (Ψ) ⊂ M be the set of critical points
of Ψ and CV (Ψ) = Ψ(CP (Ψ)) be its set of critical values. The fact
that dg(Ψ) = k means that for any q /∈ CV (Ψ) we have #(Ψ−1(q)) = k.
Recall also that both sets CP (Ψ) and CV (Ψ) are holomorphic curves.
Let G be a holomorphic foliation on M and set G∗ := Ψ∗(G).
Lemma 3.1. In the above situation, given a leaf L of G not contained
in CV (Ψ), define L∗ as the satured set of Ψ−1(L \CV (Ψ)) by the folia-
tion G∗. Then L∗ is an union at most k leaves of G∗.
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Proof: In fact, since Ψ is non-degenerate, Ψ−1(CV (Ψ)) is a holomor-
phic curve in M . Let X := M \ Ψ−1(CV (Ψ)) and Y := N \ CV (Ψ).
It is known that X and Y are open and dense in M and N , respec-
tively. Moreover, ψ := Ψ|X : X → Y is a holomorphic covering map
with k-sheets. Let GY := G|Y and G∗

X := G∗|X . Since L is a leaf of G not
contained in CV (Ψ), which is a curve, L ∩ CV (Ψ) is a discrete subset
of L in its intrinsic topology (cf. [C-LN]). Therefore, LY := L ∩ Y is
connected, which implies that it is a leaf of GY . Set LX := ψ−1(LY )
and ψL := ψ|LX

: LX → LY . Note that LX is an union of leaves of G∗
X ,

because ψ is a local biholomorphism. If we consider these leaves with
the intrinsic topology, the map ψL is a covering map with k-sheets. This
implies that LX has at most k connected components, so that it is an
union of at most k leaves of G∗

X . This implies that L∗ is an union of at
most k leaves of G∗.

Denote by ΦC,α and FC,α the complexifications of Φα and Fα, respec-
tively. With these notations we have FC,α = Φ∗

C,α(F4
α). Note that ΦC,α

can be considered as a rational map CP(2) → CP(2) of topological de-
gree two. Moreover, CP (ΦC,α)∩C2 = (t = 0) and CV (ΦC,α)∩C2 = Lα.
Given q ∈ R2 \ sing(F4

α) denote the complex leaf of F4
α through q

by ℓ(q, α). Following the notation of Lemma 3.1, let ℓ∗(q, α) be the
satured set of Φ−1

C,α(ℓ(q, α) \ CV (ΦC,α) by the foliation FC,α. According

to Lemma 3.1, ℓ∗(q, α) contains at most two leaves of FC,α.

Remark 3.1. If ℓ(q, α) is transverse to Lα at some point of ℓ(q, α)∩Lα∩C2

then ℓ∗(q, α) is a leaf of FC,α.

Proof: Assume that ℓ∗(q, α) contains two different leaves of FC,α, say

ℓ1 and ℓ2. In this case, if m ∈ ℓ(q, α) \ Lα then Φ−1
C,α(m) contains two

points, one in ℓ1 and the other in ℓ2. Let mo ∈ Lα ∩ ℓ(q, α) ∩ C2 and
suppose by contradiction that ℓ(q, α) is transverse to Lα at mo. Note
that Φ−1

C,α(mo) = {m1}. It follows from (8) that there are germs of

coordinates systems (u, v) and (z, w) such that u(m1) = v(m1) = 0,
z(mo) = w(mo) = 0, Lα = (w = 0), ΦC,α(u, v) = (u, v2) = (z, w)
and ℓ(q, α) near mo can be parametrized by w 7→ (ψ(w), w), ψ(0) =
0. In this case, the curve C parametrized by v 7→ (ψ(v2), v) satisfies
ΦC,α(C) ⊂ ℓ(q, α), so that C ⊂ ℓ∗(q, α). On the other hand, if w 6= 0

andm = (ψ(w), w) then Φ−1
C,α(m) contains two points in C which implies

that ℓ1 = ℓ2. Hence, ℓ
∗(q, α) is a leaf of FC,α.

As a consequence of (ix) and of Remark 3.1 we obtain the following:
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(x) With the notations of Remark 3.1, assume that ℓ(q, α) is transverse
to Lα at some point of Lα ∩ ℓ(q, α). Then for each point q1 ∈
π(I) ∩ ℓ(q, α) the real foliation Fα has a closed leaf contained in
ℓ∗(q, α) ∩ RP(2).

For fixed λ ∈ J ∩Q and p ∈ I1(λ)\{po}, denote by Fλ a primitive real
rational first integral of Fλ and by O(λ, p) the number of real connected
components of F−1

λ (Fλ(p)). Let FC,λ be the complexification of Fλ. Note
that the leaf of FC,λ through p is

ℓ̃(p) := F−1
C,λ(Fλ(p)) \ sing(FC,α).

It follows from Remark 3.1 that ℓ̃(p) = ℓ∗(q, λ), where q = Φα(p), be-
cause ℓ(q, λ) cuts transversely Lα at q+ and q− (see Figure 2). Let
q̂ ∈ I ⊂ S be such that π(q̂) = q. If N(λ, q̃, I) is like in Lemma 2.2 then
we get from (x) that

O(λ, p) ≥ N(λ, q̂, I).

Therefore, (b) of Lemma 2.2 implies that the family (Fα)α∈J satisfies
property (P.2). With the same type of argument, it is possible to prove
that (a) of Lemma 2.2 implies that it satisfies property (P.3). We leave
the details for the reader.

Finally, the family (Fα)α∈J is in FolR(2, 8) because Φ∗
α(ω − α.ω∞) =

Pα(s, t) dt−Qα(s, t) ds, where Pα and Qα have degree 8 and the homo-
geneous term of degree eight of t.Pα(s, t) − s.Qα(s, t) is not identically
zero, as the reader can check.

4. Other families

In this section we will describe briefly how to obtain families of foli-
ations of any degree ≥ 5 satisfying properties (P.1), (P.2) and (P.3) of
Theorem 1. These families will be obtained by pulling-back the fam-
ily F2 := (F2

α)α∈R already mentioned in Section 1. The foliation F2
α is

defined by the differential equation ωα := ω − α.ω∞ = 0, where

{

ω = (4 x− 9 x2 + y2) dy − (6 y − 12 x y) dx

ω∞ = (2 y − 4 x y) dy − 3(x2 − y2) dx
.

We would like to remark that the set Tang(F2
0 ,F2

∞) consists of two
irreducible curves: the line at infinity of C2, L∞, and the quartic Q =
(P = 0), where P (x, y) = 4y2(1−3x)−4x3+(3x2+y2)2. These two curves
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are invariant for all foliations in the pencil. Moreover, sing(F2
α) ⊂ Q∪L∞

for any α ∈ C.

The connection between the familes F2 and F4 is that there exists
a rational map of topological degree two Ψ: CP(2) → CP(2) such that
Ψ∗(F2

α) = F4
α for all α ∈ C. This map satisfies Ψ(RP(2)) = RP(2)

(cf. [LN]). As a consequence, the set E2 = {α ∈ C | F2
α has a non-

constant rational first integral} coincides with E4 = Q.Γ ∪ {∞}. More-
over, a statement analogous to Lemma 2.2 is true.

Let us precise the last assertion, but before that, we will fix some
notations. In order to avoid confusion, when α ∈ R∪{∞} we will denote
by F2

R,α the real foliation induced by ωα in RP(2). Given q ∈ RP(2)

denote by ℓ(q, α) the (complex) leaf of F2
α through q. Set

ℓR(q, α) = RP(2) ∩ ℓ(q, α).
We would like to remark that ℓR(q, α) is an union of leaves of F2

R,α.

Each leaf of F2
R,α is homeomorphic to R and accumulates in at most

two points of sing(F2
R,α): the foliation has no closed leaf (homeomorphic

to S1). When α ∈ R \Q and q ∈ RP(2) \ (Q ∪ L∞) then ℓR(q, α) has an
infinite number of connected components, whereas if α ∈ Q ∪ {∞} then
it has a finite number.

In the case of F2
∞, we have the first integralG∞(x, y) := P (x, y)/(2x−

1)3 (cf. [LN-1]). In particular, given qo ∈ RP(2) \ (Q ∪ L∞) then the
closure of ℓR(qo,∞) is precisely G−1

∞ (G∞(qo)) ∩ RP(2). Moreover, if
q1 ∈ RP(2) is such that Ψ(q1) = qo then G−1

∞ (G∞(qo)) = Ψ(π(Sc)), for
some c ∈ R, where q1 ∈ Sc and Sc is like in Section 2. From now on, we
will fix qo ∈ RP(2) \ (Q ∪ L∞) and set S1 := ℓR(qo,∞).

An interval I ⊂ S1 will be by convention the image of some interval
I1 ⊂ Sc: I = Ψ(π(I1)). Given q ∈ S1 \ (Q ∩ L∞) set

N(α, q, I) = # [I ∩ ℓR(α, q)].
If Gα is a real primitive first integral of F2

R,α then

N(α, q, I) = # [I ∩G−1
α (Gα(q))].

We have the following consequence of Lemma 2.2:

Corollary 4.1. With the above notations, we have:

(a) If q ∈ S1 then ℓR(α, q) ∩ S1 is dense in S1 ⇐⇒ α ∈ R \Q.

(b) Let αo ∈ R\Q and (αn)n≥1 be a sequence in Q such that lim
n→∞

αn =

αo. Then for any non-trivial segment I of S1 and any sequence
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(qn)n≥1 in S1 we have

lim
n→∞

N(αn, qn, I) = +∞.

It follows that we can apply to the family F2 the same method of
Section 3 to obtain families satisfying properties (P.1), (P.2) and (P.3)
of Theorem 1. The inflexion divisor of F2

α is a curve of degree six in CP(2)
which contains the line L∞. Its intersection with R2 = RP(2) \ L∞ is
an irreducible curve Cα of degree five. Given q = (a, b) ∈ R2 denote
by Lα(q) the line tangent to Fα at q. The slope of Lα(q) is

φ(q, α) =
6 b− 12 a b− 3α(a2 − b2)

4 a− 9 a2 + b2 − α(2 b− 4 a b)
.

It is clear that we can choose qo = (ao, bo) ∈ R2 and αo in such a way that
φ(q,o , αo) 6= ∞ and qo /∈ Cαo

. Let ǫ > 0 be such that φ(α) := φ(qo, α) 6=
∞ and qo /∈ Cα for all α ∈ (αo − ǫ, αo + ǫ) := J . The line Lα is not
vertical and can be parametrized by s 7→ (s+ ao, φ(α).s+ bo). When we
pull-back (F2

α)α∈J by the family of maps (Φα)α∈J given in (8) we obtain
a family of foliations (Fα)α∈J of degree five. In fact, if we set ωα =
Pα(x, y) dy−Qα(x, y) dx, where Pα(x, y) = 4 x−9 x2+y2−α(2 y−4 x y)
and Qα(x, y) = 6 y − 12 x y − 3α(x2 − y2), then

Φ∗
α(ωα) = Pα ◦ Φα(s, t)(±t dt+ φ(α).ds) −Qα ◦ Φα(s, t) ds

:= P̂α(s, t) dt− Q̂α(s, t) ds.

Since P̂α ◦ Φa(s, t) has degree 5 and Q̂α ◦ Φα(s, t) degree ≤ 4, the foli-
ation Gα := Φ∗

α(F2
α) has degree five. We then choose the sign + or −,

as indicated in Section 3, in such a way that Gα has a real center at the
point po = (0, 0) (Φα(po) = qo). In this way, we get a family of degree 5
satisfying (P.1), (P.2) and (P.3) of Theorem 1.

Based in the same idea, we can obtain families of any degree k ≥ 5 as
follows. Consider Φα : RP(2) → RP(2) defined in R2 ⊂ RP(2) by

Φα(s, t) := (s+ ao, q(s).p(t) + φ(α).s + bo),

where p(t) =
∑d

j=2 t
j (dg(p) = d) and q ∈ R[s] is a polynomial of

degree k ≥ 0 such that q(0) 6= 0.
Let Gα = Φ∗

α(F2
α), α ∈ J = (αo − ǫ, αo + ǫ). The reader can check

that Φ∗
α(ωα) = P̂α(s, t) dt− Q̂α(s, t) ds, where

{

P̂α(s, t) = q(s).p′(t).Pα ◦ Φα(s, t)

Q̂α(s, t) = Qα ◦ Φα(s, t)− (q′(s).p(t) + φ(α)).Pα ◦ Φα(s, t)
.
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Note that dg(P̂α(s, t)) = 3d + k − 1 and dg(Q̂α(s, t)) ≤ 3d + k − 1.
The line at infinity L of the plane (s, t) is invariant for Gα. This can be
proved by observing that Φα(L) = [0 : 1 : 0] ∈ L∞, where L∞ is the line
at infinity of the plane (x, y), which is invariant for F2

α. This implies
that the degree of the foliation Gα is 3d+ k − 1. By letting k ∈ {0, 1, 2}
we obtain in this way families of foliations of degrees 3d− 1, 3d, 3d+ 1,
d ≥ 2, and so families of any degree ≥ 5.

Now, the critical set of Φα in R2 is given by CV (Φα) = (q(s).p′(t) = 0)
and so it contains the line (t = 0). Moreover, Φα(s, 0) = (s+ao, φ(α).s+
bo) and Φα(t = 0) = Lα, the line tangent to the leaf of F2

α through qo.
On the other hand, if we fix s = so ∈ R such that q(so) 6= 0, we get

Φα(so, t) = (so + ao, q(so).p(t) + φ(α).so + bo),

which implies that Φα sends the line (s = so) into the line (x = so + ao)
folding near t = 0 because p(t) = t2+h.o.t. Since q(0) 6= 0, it follows that
there exists a disk D around 0 ∈ R2, which does not depends on α ∈ J ,
if ǫ is small enough, such that Φα|D has a fold line at (t = 0) ∩ D and
Φα(D) ⊂ H+(α) if q(0) > 0, whereas Φα(D) ⊂ H−(α) if q(0) < 0. Let
ℓαo

be the germ at qo of the leaf of F2
αo

through qo. If ℓαo
⊂ H−(αo),

as in Figure 2, we choose q so that q(0) = 1, and if ℓαo
⊂ H+(αo) we

choose q(0) = −1. With this condition, the foliation Gα has a real center
at po = (0, 0), as in Figure 1. By applying Corollary 4.1 we obtain
families of foliations of any degree ≥ 5 satisfying properties (P.1), (P.2)
and (P.3) of Theorem 1.
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