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AN ACCURACY IMPROVEMENT IN EGOROV’S
THEOREM

JORGE DRUMOND SILVA

Abstract

We prove that the theorem of Egorov, on the canonical transfor-
mation of symbols of pseudodifferential operators conjugated by
Fourier integral operators, can be sharpened. The main result is
that the statement of Egorov’s theorem remains true if, instead
of just considering the principal symbols in S™/S™~1 for the
pseudodifferential operators, one uses refined principal symbols
in §™/S™~2, which for classical operators correspond simply to
the principal plus the subprincipal symbol, and can generally be
regarded as the first two terms of its Weyl symbol expansion: we
call it the principal Weyl symbol of the pseudodifferential oper-
ator. Particular unitary Fourier integral operators, associated to
the graph of the canonical transformation, have to be used in the
conjugation for the higher accuracy to hold, leading to microlocal
representations by oscillatory integrals with specific symbols that
are given explicitly in terms of the generating function that locally
describes the graph of the transformation. The motivation for the
result is based on the optimal symplectic invariance properties of
the Weyl correspondence in R™ and its symmetry for real symbols.

1. Introduction

1.1. General description of Egorov’s theorem and of the im-
provement. From the perspective of microlocal analysis, and for now
still not being very precise in the technical details of our description
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(see the next section for that), the classical theorem of Egorov [Ego]
establishes that the principal symbol

o(P) e S™(T*X)/S™ HT*X)
of a pseudodifferential operator P € ¥ (X)) is microlocally transformed
into
o(Q) =0o(P)o @,
under a local homogeneous canonical transformation
P: F(yo-,no) cT*Y \ 0— F(onéo) cT*X \ 0,

when @Q € U™(Y) is obtained from the conjugation of P by any el-
liptic Fourier integral operator A € I*(X x Y,Cg), associated to the
graph Cp C (T*X \ 0) x (T*Y \ 0) of @,

Q=A"'PA,

where A=! € I7#(Y x X,Cg-1) is a microlocal parametrix for A. The
theorem can also be stated in a global form, with a full symplectomor-
phism from the whole of 7*Y \ 0 onto T*X \ 0 and using global elliptic
Fourier integral operators associated to it. But the most general case
is just microlocal, with transformations occurring between small open
conic neighborhoods Iy, ,,0) and T4, ¢,y of points (yo,n0) € T*Y '\ 0 and
(0,&0) = P(y0,m0) € T*X \ 0, respectively.

The central result in this article is an accuracy improvement of this
classical version. The setting of the theorem remains the same and by im-
proved accuracy we mean that the microlocal canonical transformation
of the pseudodifferential operator holds, not just for the usual principal
symbol in §™/S8™~1 but for a more refined symbol in S™/S™~2, thus
extending the result to lower order terms. We show that this higher
accuracy can be achieved if P € U™ (X) is conjugated by a specific mi-
crolocally unitary Fourier integral operator, associated to the canonical
transformation, instead of a general elliptic one as described above for
the usual version of the theorem. An elliptic Fourier integral opera-
tor A € I°(X x Y, Cyp) is said to be microlocally unitary if its adjoint is
a microlocal parametrix, i.e., if

A*A—Ty € U= and AA* — [y € U,

in conic neighborhoods of corresponding points (mapped to each other
by ®) of the cotangent bundles 7Y \ 0 and T* X \ 0, respectively. Actu-
ally, the degree of accuracy in the statement of our main theorem only
requires this unitary property to hold modulo operators in ¥~2,

To make this first description of the result clearer, let us fix coordi-
nates on X and Y, and assume that the complete symbol of P € ¥ (X)
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(in any coordinates) is classical, i.e., given by an asymptotic expansion
of positively homogeneous symbols of decreasing integer degree

p(@,8) ~ pm(2,€) + pm-1(2,§) +
with
pi(@, A&) = Npj(z,8), for A>0, j=mm-—1m-2,...
The improved result then asserts that there exists an appropriate uni-

tary operator A such that the pseudodifferential operator @ € ¥™(Y)
obtained from the conjugation of P by it,

Q = A"PA,
is also given by a classical symbol

q(y,n) ~ @y, n) + dm-1(y,n) + - -

that satisfies not only

(1) am(y;n) = pm(@(y,m)),

microlocally, at the level of the principal symbol —the homogeneous
term of highest degree in the expansion— like in the usual theorem, but
also down to the subprincipal symbol, at the next level of homogeneity
and accuracy. This means that one also gets

(2) Sub(Q)(y,n) = Sub(P)(®(y,n)),

where the subprincipal symbol of a classical operator

Sub(P)(z,&) = pm—-1(x,§) + Zalﬂkagkpm(‘r &),

is homogeneous of degree m — 1. Therefore, the sum of the principal and
the subprincipal symbols of P,

(3) pm (2, EHSub(P)(z, &) = pm (2, EHpm—1(z, §)+ Zamkaskpm 6),

is the refined symbol in S™/S™~2  all of which gets microlocally trans-
formed by the canonical transformation according to (1) and (2), as a
consequence of the conjugation.

We will exhibit the explicit formula of an oscillatory integral that
represents, in local coordinates, the unitary Fourier integral operator
adequate to achieve the higher accuracy. As a matter of fact, the proof of
the main result relies on computations using that explicit formula. This
oscillatory integral will be written in terms of the generating function
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of the canonical transformation, which is always well defined locally, as
long as appropriate coordinates are chosen on Y.

It is clear that to be able to state the theorem in coordinate invariant
terms, the subprincipal symbol of a pseudodifferential operator should
also be invariantly defined as a function on the cotangent bundle, just
as the principal symbol is. But the invariance of (3) is ensured pre-
cisely by a particular case of this more accurate version of Egorov’s
theorem which has actually been well known for a long time. That is
when the unitary Fourier integral operator A is the pull-back x* of half-
densities u € C*(Y, Q%,m) under a diffeomorphism x: X — Y. Then

A: C*=(Y, Q;,ﬂ) — O (X, Q¥2) is given in local coordinates by
(4) uly) = Au(z) = (v*u)(z) = |det &' ()| *u(k(z)),
so that its adjoint A*: C*(X, Q%z) — C>(Y, Q%,/z)

v(x) = A*u(y) = |det (x71) ()] 2o(k7 (1)),
is simply the inverse pull-back A* = (k~1)* = (k*)~! = AL, thus show-
ing that A is unitary. When u € C(Y, Q%,/ 2) is compactly supported,
with the support contained in a coordinate neighborhood of Y, (4) is

obviously given by the more familiar local representation of a Fourier
integral operator, as an oscillatory integral,

1 . . N
g | € et s @) i) dn,

to which corresponds the Schwartz kernel

(5) Au(z) =

(6) Ky(z,y) = /ei("(x)*y)'ﬂdet m’(:v)|1/2 dn,

(2m)"
where n is the dimension both of Y and X, and 4 is the Fourier trans-
form of u. Observe that, from a coordinate invariant point of view, the
kernel (6) is a distribution half-density on X x Y, i.e. K4 € D'(X x
Y, Qﬁ(/iy), just like they are normally considered to be in the global
theory of Fourier integral operators. The conjugation

(7) u— A*PAu = (k" 1)*P(k*u),

therefore can be interpreted as the rule for a change of coordinates of a
pseudodifferential operator acting on half-densities and it is in this con-
text that the result is normally presented ([Dui], [GrSj], [H6r3]). The
usually stated conclusion, that can be proved easily by explicit compu-
tations using the local representations of the operators, is that both the
principal as well as the subprincipal symbols, of such pseudodifferential
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operators acting on half-densities (when given by classical symbols), are
invariantly defined as functions on the cotangent bundle. This is a con-
sequence of properties (1) and (2) being satisfied where, in this case, the
(global) canonical transformation

®,.: T*Y \0— T*X\0,

is the canonical change of coordinates of the covectors for a diffeomor-
phism of the base manifold

(Ia f) = (I)K(ya 77) = (K’il(y)v t"f/(f)??)-
It is homogeneous of degree one, in the fibers, and its generating function,
also global and homogeneous in 7, is the phase in (5),

S(z,n) = k(@) - 1.

These pieces put together mean that (5), or (6), represents a unitary
Fourier integral operator A € I%(X x Y, C¢N;Q§(/iy), of order 0,
from half-densities on Y to half-densities on X, associated to the graph
of ®,. And that conjugating by A any pseudodifferential operator P €
(X, Qﬁ(/z), acting on half-densities on X, according to (7), produces
the equivalent pseudodifferential operator acting on half-densities on Y,
with a more accurate coordinate transformation law for their symbols
than the usual one, which can be regarded as a particular case of accu-
racy improvement in Egorov’s theorem. It is important to point out that
the symbol of order 0, in (5) or (6), is related to the generating function
of the canonical transformation, by

2 1/2
det 0’5 (z,m)
dxdn
So, in exactly the same way as the principal symbol of a general pseu-
dodifferential operator acting on functions is defined invariantly as an
equivalence class in S™(T*X)/S™~1(T*X), this result now allows the
definition of a more accurate invariant principal symbol for general pseu-
dodifferential operators acting on half-densities (L. Hormander calls it
simply a refined principal symbol, in [H6r3]), as an equivalence class
in S™(T*X)/S™ 3(T*X). If p(x,€) € S™ is the complete symbol of
the pseudodifferential operator P € U™ (X, Q¥2), in any local system of
coordinates, then this more accurate invariant symbol is given in these
coordinates by

(8) |det &' (2)|'/? =

) D€+ 5D OrDep(e€) (mod 8772,
k=1
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In the particular case of operators with classical symbols this is the sum
of the principal and subprincipal symbols, seen above in (3). This also
yields the sharper isomorphism

U, Q) U (X, Q) = ST(TX) /S THTX),

analogous to the one for the usual principal symbol. The geometric
framework of having the operators acting on half-densities is crucial for
the result to hold here, for only then is the change of coordinates a uni-
tary operator. That is something which does not happen in the more
common rule for a change of coordinates for operators acting on func-
tions, where the invariance can only be established for the principal
symbol. This particular example, including the geometric setting, the
oscillatory integral (5) and its symbol’s dependence on the generating
function of the canonical transformation (8), already contains all the
ingredients of the general improvement of Egorov’s theorem, that we
present in this paper.

It is a well known fact that, from the point of view of the Weyl quanti-
zation, this refined principal symbol of a pseudodifferential operator can
be very naturally identified with the first two terms of the asymptotic
expansion of its Weyl symbol. This interpretation is quite important
because the properties of the Weyl calculus in R™ provide the essential
motivation for the setting in which one should expect the improved accu-
racy in Egorov’s theorem to hold. Section 2, of this article, is precisely
devoted to bringing up the parallelism between the properties of the
Weyl calculus, particularly those that concern symplectic invariance and
symmetry, and this improvement of Egorov’s theorem in a microlocal
analysis setting. Because of the fundamental role of the Weyl quantiza-
tion, underlying this result, we will call (9) the principal Weyl symbol
of a pseudodifferential operator.

A relevant final observation is that, in order to state the theorem
within a geometric framework that is coordinate invariant, we will con-
sider all the operators to be acting on half-densities, just like in the
particular case of the change of coordinates mentioned above. On the
one hand, this should really be the natural setting, for when one deals
with the coordinate invariant global theory of Fourier integral operators
([Dui], [Hor4], [Tre]), their Schwartz kernels are normally considered
to be Fourier integral distribution half-densities on the product space,
therefore leading to operators acting on half-densities from one base
manifold to the other. So, if a pseudodifferential operator is going to
be conjugated by these Fourier integral operators, it really has to act
on half-densities too for the composition of operators to be well defined.
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Which, as we have just recalled, is precisely the requirement for their
principal Weyl symbols to be invariantly defined on the cotangent bun-
dle, making their composition with canonical transformations between
such bundles completely coherent. On the other hand, as pointed out in
the previous paragraph, our main motivation comes from the properties
of the Weyl quantization on R", with the L?(R™) inner product struc-
ture. So if we want to have coordinate invariant analogues of self-adjoint
and unitary operators, for example, but now on general manifolds with-
out a distinguished positive density which allows the identification of
functions and densities, we need to think of the natural L? space struc-
ture on manifolds: again the same half-densities and their coordinate
invariant inner product.

Everything thus fits together to state the result, independently of co-
ordinates: given a local homogeneous symplectomorphism @, from an
open conic neighborhood in 7*Y \ 0 onto one in T*X \ 0, there is an ap-
propriate unitary Fourier integral operator of order zero associated to it
AeI%(X xY,Cgp; Q;(/iy) such that, conjugating any pseudodifferential
operator P € U™(X| (2;(/2), acting on half-densities, by A yields another
pseudodifferential operator Q@ = A*PA € U™ (Y, Qi,ﬂ) whose principal
Weyl symbol, invariantly defined on T*Y, is microlocally equal to P’s
composed with ®.

It is interesting to point out that analogous results, both on the invari-
ance of (9) under changes of coordinates, as well as the corresponding
improved form of Egorov’s theorem (the former being really a particular
case of the latter), were already well known for classical pseudodifferen-
tial operators acting on functions, when restricted to points where the
principal symbol vanishes of second order (see, for example, Chapter XV,
§2 in [Tay]). This subset of the cotangent bundle

E2 = {(!T,g) eT"X \ 0: pm(xag) =0 and 5z,£]9m($=§) = 0}7

is the set of double characteristics of P € U™ (X)), with symbol p(z, ) ~
P (2, &)+ Dm—1(x,&)+---. At these points, of course, (9) reduces to the
subprincipal symbol. And in fact, besides the Weyl calculus, the study
of multiple characteristics of operators is the other instance where the
subprincipal symbol naturally occurs and plays a very important role.
These theorems then state that the subprincipal symbol of a classical
operator (acting on functions) is invariantly defined on X2 and that its
restriction to this set is canonically transformed if P is conjugated by
any elliptic Fourier integral operator associated to the canonical trans-
formation. Of course the result that we present in this article shows that
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the appropriate geometrical framework that allows for the full canonical
transformation of both the principal as well as the subprincipal symbols,
without any restrictions, is really to consider all the operators acting on
half-densities and to conjugate by appropriate unitary Fourier integral
operators. These theorems then show that, for operators acting on func-
tions, the setting that somehow reproduces the more accurate form of
Egorov’s theorem, but still within the general framework of the classi-
cal version, is to restrict to those points where the principal symbol of
the operator has zeros of second order and for which the principal Weyl
symbol (9) becomes just the subprincipal one.

Much closer to our result in this paper, and to the author’s unaware-
ness while working on this subject for his PhD thesis, B. Helffer and
J. Sjostrand in [HeSj], and M. Hitrik and J. Sjostrand in [HiSj] proved
the same type of result, in the framework of semi-classical analysis and
with Weyl operators. In [HeSj] the authors prove the existence of uni-
tary Fourier integral operators that yield the improved accuracy version
of Egorov’s theorem, when used in the conjugation of Weyl operators.
Pursuing a question that was left open in the previous paper, in [HiSj] a
necessary and sufficient condition is then presented that characterizes the
symbols of such Fourier integral operators. Even though the motivation
for our result also had its origin in the properties of the Weyl quanti-
zation, it differs from the one in these articles in that our statement is
made exclusively within the framework of classical microlocal analysis,
in coordinate invariant terms. Therefore, we emphasize the particu-
lar geometrical context that enables the reproduction of the analogous
properties of the Weyl operator in R™, but in our case for pseudodiffer-
ential operators defined on general manifolds. Despite being longer, our
method of proof is also different and simply consists, nevertheless, in a
straightforward computation using the well known asymptotic expansion
formulas derived from the method of stationary phase.

1.2. Precise statement of the result. We now proceed to state the
main result in this article, in rigorous terms. We firstly recall the classical
version of Egorov’s theorem in order to carefully review its hypotheses
and see how they come together to produce the known result. Based
on that analysis, we then point out exactly the specific conditions that,
comparatively, have to be imposed to achieve the improved accuracy.
Considering what was described in the previous section, it is clear that a
special focus has to be placed on the particular unitary Fourier integral
operator used in the conjugation, its local representation as an oscillatory
integral and the corresponding symbol.
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Starting with the geometrical framework, let X and Y be two
C*° manifolds of the same dimension n and let
(10) O: T CTY\NO—T(ge) CT*X\O

Y0,M0)

be a homogeneous symplectomorphism, from an open conic neighbor-
hood T'(y, ) of (y0,m0) € T*Y \ 0 onto an open conic neighborhood
L(z0.60) Of (20,&0) = ®(yo,m0) € T*X \ 0. As usual, this means that
®: Tiyomo) — L(zo,60) 18 @ bijective canonical transformation with re-
spect to the canonical symplectic forms on the cotangent bundles, i.e.,

(I)*O'X =0y,

(in local coordinates ox = Z?:l d&; N dx; and oy = Z?:l dn; N dy;)
which is homogeneous of degree one in the fibers. Equivalently, the
graph of ®,

Co={(2,&,9,1) €Lag,60) X Lyo.no) : (2, §) =P (y,n) } C (T X\0) x (T*Y\0),

is a conic Lagrangian submanifold of T*(X x Y') \ 0 with respect to the
symplectic form i ox — 750y L.

In the classical version of the theorem, the Fourier integral operator
used in the conjugation can be any elliptic one at (xo, &0, %0,70) € Co,
associated to the graph of the symplectomorphism. So let A be a prop-
erly supported Fourier integral operator from half-densities on Y to half-
densities on X,

A: C2(Y, Q%) = 02(X,9Y?)  (also for C, &', D),

with Schwartz kernel K4 € I*(X x Y,Céb;Q;/iY), a Fourier integral

distribution half-density on X x Y, of order u € R, associated to the
graph Cp C (T*X\0) X (T*Y '\ 0) of ®: the wavefront set of K 4 satisfies

WE(Ka) C Co = {(2,&y,m) €TH(X xY)\0: (2,§,y,-1) € Ca}.

We are using the usual notation of microlocal analysis where the prime
on C’; means the twisted canonical relation (actually, in this case, the
twisted graph of a canonical transformation) in 7*(X x Y)\ 0. Therefore
Cj% is a Lagrangian submanifold of T*(X x Y) \ 0 with respect to the
canonical symplectic form on this bundle, oxxy = 7% ox + 7y0y.
Based on the existence of parametrices for elliptic pseudodifferen-
tial operators, if A is elliptic at (xo,&o,¥0,7m0) € Co it is easy to con-
struct ([Dui], [GrSj], [Tre]) a microlocal parametrix for it: a properly

1rx and my are the canonical projections from the product bundle T*(X x Y) =
T*X x T*Y onto the components T*X and T*Y, respectively.
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supported Fourier integral operator B € I7#(Y x X, C@—I;Qi//ix) 2,
such that

BA - Iy € \IJ_OO(Vy) and AB-—Ix € \I/_OO(V)(),

in open conic neighborhoods Vy- C T*Y'\0, of (yo,10), and Vx C T*X\0,
of (xo, fo)

With all this setup, Egorov’s theorem then states ([BFG], [GrSj],
[Hord4], [Tre]) that, given any properly supported pseudodifferential op-
erator of order m € R, acting on half-densities on X,

Peum™(X,0Y%),

when conjugating it by the Fourier integral operator A, with its microlo-
cal parametrix B,

(11) Q = BPA,

one obtains a pseudodifferential operator @ € ¥™(Y, Q;,/ 2) of the same
order m, acting on half-densities on Y. The principal symbols, o(P) €
S™(T*X)/S™ HT*X) and o(Q) € S™(T*Y)/S™ L(T*Y), satisfy

(12) o(Q) =o(P)o®,
in a conic neighborhood of (yg,n0) € T*Y \ 0.

Remarks.

i) As mentioned in the previous section, a global version of the theorem
is equally possible. To begin with, the canonical transformation has
to be a global symplectomorphism, from the whole of T*Y \ 0
onto T*X \ 0, whose graph Cp C (T*X \ 0) x (T*Y \ 0) is a closed
homogeneous Lagrangian submanifold of 7*(X x Y) \ 0. For the
conjugation, one then considers a global elliptic Fourier integral op-
erator associated to Cg, i.e., such that the (twisted) wavefront set
of its Schwartz kernel coincides with the whole graph and is elliptic
at every one of its points. Global, properly supported, parametrices
are as easy to construct as for the microlocal case, starting with an

2There is usually no standard difference in notation to distinguish a class of Fourier
integral operators from the class of Fourier integral distributions that forms the set
of their corresponding Schwartz kernels. Exactly the same notation is used indistin-
guishably for both, for example in [Hor4]|. Here, for the kernels of Fourier integral
operators we follow the usual notation that is used for classes of Fourier integral dis-
tributions, indicating the twisted canonical graph Cj as the Lagrangian submanifold
of T*(X x Y)\ O (with respect to the canonical symplectic form oxxy = ox + oy)
in which the wavefront set of the kernels is contained. Whereas, for the classes of
operators themselves the only difference is that we write the actual graph Cg, and
not its twisted form C},, as the relevant object.
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elliptic Fourier integral operator associated to the inverse graph (the
adjoint operator, for example) and then using the parametrix of the
elliptic pseudodifferential operator resulting from the composition of
the two, to complete the operator inversion: this procedure is quite
standard. The final statement is exactly the same as above, except
that (12) becomes valid for the whole cotangent bundle 7*Y\ 0. The
argument can, nevertheless, be reduced to the microlocal case by us-
ing locally finite partitions of unity on the cosphere bundle of X xY
to break or patch up those global operators from microlocal repre-
sentations in conic neighborhoods of the points of the graph Cy. So,
in this sense, the microlocal version of Egorov’s theorem is the most
general.

ii) The proof of Egorov’s theorem becomes very simple and computa-
tions involving the microlocal representations by oscillatory integrals
can be avoided, if one falls back on the theorem about composition
of Fourier integral operators ([Dui], [GrSj], [H6r4], [Tre]) (which,
in that case, is where the computations with oscillatory integrals
take place). When the (properly supported) Fourier integral opera-
tors are associated, not to general homogeneous canonical relations,
but to graphs of homogeneous symplectomorphisms, this theorem
ensures that their composition yields another Fourier integral oper-
ator associated to the graph of the composed symplectomorphisms
and, just like it happens in the particular case of the composition
of pseudodifferential operators, here too the final principal symbol
of the composition is simply the product of the intervening princi-
pal symbols ([H6r4, Section 25.3]; [Tre, Chapter VIII, Section 6]).
For this to hold, one needs to consider the invariant definition of
the principal symbol of a Fourier integral operator associated to the
graph of a canonical transformation, with the natural symplectic
half-density factored out.

When A € I"(X xY, Cg; Q}X/iy) its principal symbol is an equiv-

alence class of sections of Qlc/f ® L¢, over Cg, in the quotient
(13)  S"E(Ca, Q) @ Loy) /S5 (Ca, Q7 © Loy,

where ng is the half-density and L¢,, the Keller-Maslov-Hormander
line bundle, both on Cy. On graphs of canonical transformations
there is a preferred positive density, obtained by the projection pull-
back 7% of the canonical (symplectic) density from 7*X (in local
coordinates |dz||d€]). And because Cs is a Lagrangian submanifold
of T*(X xY)\ 0 with respect to the symplectic form 7% ox —7}-0y,
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(15)

iii)

(16)

J. DRUMOND SILVA

then 7%o0x = 7y oy on Cg, so that the preferred density can
also be obtained by the pull-back 73 from T*Y (in local coordi-
nates |dy||dn|). It is very convenient, and common, to factor out
the half-densities from the principal symbol in (13) by using this
preferred density. So, a more natural invariant principal symbol
is obtained for Fourier integral operators associated to graphs of
canonical transformations, by dividing the one in (13) by the half-
density |dz|'/?|dg|'/* = |dy|'/?|dn|'/* on Ca,

O'(A) € S#(O¢,£c¢)/8“71(0¢,£0¢).

This is the principal symbol that should be used in the product
rule, mentioned above, when composing Fourier integral operators
associated to canonical transformations. And it coincides with the
principal symbol of a pseudodifferential operator, when the symplec-
tomorphism @ is just the identity and the Keller-Maslov-Hormander
line bundle is trivialized by the usual non-degenerate phase.

Now, the statement of the classical version of Egorov’s theorem,
as above, only concerns principal symbols and all the Fourier in-
tegral operators involved, including the pseudodifferential operator,
are associated to graphs of canonical transformations. The conjuga-
tion (11) then yields a Fourier integral operator, of order —u +m +
1 = m, associated to the identity symplectomorphism on T*Y \ 0.
Therefore, @ is a pseudodifferential operator on Y of the same order
as P. And the resulting principal symbol is simply the product of
the principal symbols of B, P and A:

U(Q)}(ym) - U(B)}(ymﬁi’( o o

P)"I’(y,n) A)}(‘I’(y,n),y,n)'

y,m))

When B is a microlocal parametrix of A, its principal symbols are
the inverse of each other in a conic neighborhood of (zg, &0, Yo, M0),
o (12) follows from (15).

In view of the previous remark, particularly from (15), it is clear
that it is not even required that the operator B, in (11), be a full
parametrix of A for (12) to hold. In fact, the only thing that is
needed is for its principal symbol

U(B) S 57#(04)—1,Ec(bfl)/si‘uil(Cq)—l,Ecq)fl),

to be an inverse of (14) in a conic neighborhood of (yo, 70, Zo,&0) €
Cgp-1, i.e., the transformation (12) will still be obtained if only

_ -1
U(B)’(y7n7<1’(y,n))a(A)‘(‘I’(y,n),ym) =1 (mod 570,
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is satisfied in a conic neighborhood of (yg,n0) € T*Y \ 0. The
existence of such an inverse for o(A4) is exactly the definition of
ellipticity of A at (o, &0, Yo, 70). Hence, any Fourier integral oper-
ator B e I7*(Y x X, C(pfl;Qi//iX), of order —pu, associated to the
graph of @71, whose principal symbol satisfies (16) will do the job.
iv) In applications, the goal is often just to transform the symbols of
pseudodifferential operators microlocally. And in that case, conjuga-
tion by any chosen Fourier integral operator associated to the graph
of the canonical transformation, which is elliptic at the point un-
der consideration, will suffice to achieve the desired transformation.
What is usually considered is an operator of order 0, given explicitly
in local coordinates by an oscillatory integral representation, with a
non-degenerate phase based on the generating function of the canon-
ical transformation ® in a neighborhood of the point (o, &0, 0, 70),
and with a symbol supported only sufficiently close.
Local coordinates can always be chosen on the manifold Y, around
the point gy, inducing the canonical coordinates on the cotangent
bundle T*Y \ 0, such that the x,n projection of the graph

Co 2 (2,&y,n) = (x,1) € R} x (R} \ 0)

is a local diffeomorphism, from an open conic neighborhood of
(z0,&0,Y0,m0) on Ce onto one of (xg,70) (see Proposition 25.3.3
in [H6r3], or Chapter 8, in [GrSj]). The choice of local coordi-
nates on X can be any one, here. Because Cs is a conic Lagrangian
submanifold of T*(X x Y) \ 0 with respect to the symplectic form
ox —oy = )_;d{jNdxj—3 ] dnjNdy;, there exists then a generating
function S, defined in a (possibly smaller) open conic neighborhood
of (zg,no), homogeneous of degree one in the 7 variable, such that
the corresponding points of the graph are parametrized by S(z,7)
according to

oS oS
(17) ($7§7ya77) € C‘P — 5 = %(%77) and Yy = 6—77(55,77)
The phase
(18) e(@,y,n) = S(@,n) —y-n,

is non-degenerate and defines Cf in the conic neighborhood of
(z0,&0,Y0, —Mo), corresponding to the same points of the graph
parametrized by S(z, 7). So if a symbol a € S*(R2" xR}") is chosen,
with support in a small enough compactly generated conic neigh-
borhood of (zo,y0,7m0) = (0,3, S(x0,m0),m0) € R, x (R \ 0) so

Z,Y
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that it is contained in the domain of definition of the phase (18),
then the oscillatory integral

1 7 z,mn)—y-
(19) Ka(z,y) = @) /e (Stem =y gz, y,m) dn,

defines the Schwartz kernel of a properly supported (in fact, com-
pactly supported) Fourier integral operator A€ I X xY, Cs; Qﬁ(/i v)s
of order 0, associated to the graph of ®. Its wavefront set satisfies
WF'(K,) C Ce and more precisely is contained in the conic neigh-
borhood of (x0, &y, Yo, 7o) parametrized by the generating function.
The invariant principal symbol o(4) € S*(Cs, L, )/S™H(Co, L)
of (19), with the natural half-density factored out as mentioned
in Remark ii) and with the trivialization of the Keller-Maslov-
Hormander line bundle associated to the phase (18), is given by

(20) ()| oy ). =(2,0. 5@ m) 0050,

= a(IaanS(%??)aﬁ) (InOd S—l)7

5 1/2
det aaxasn (x,m)

using (x,7) as parameters on Cgp ([HOr4], [Tre]). Recall that
the generating function of a canonical transformation satisfies
det 8‘9%;](:1:,77) # 0 in its conic domain of definition and that this
determinant is a homogeneous function of degree zero, in the n vari-
able. Finally, one just has to be able to invert (20) in a conic
neighborhood of (zg, &o, Yo, M0), for large . This ellipticity of A is
ensured by picking a symbol a € S°(R2" x R}) that also satisfies,

EIC>0 |a(Iay7n)| > 1/05 for |77| > Ca

in an open conic neighborhood of (o, %o, 70) € R2", x (R\0). A nat-
ural way to construct such a symbol is to start with a bump function,
on the surface of the unit sphere S"~' = {n € R} : || = 1}, with
small enough support and with unit value around the point 79 /|7o|-
Then, by making the obvious homogeneous extension of degree 0, for
any 7, cutting off to 0 around the origin to avoid smoothness prob-
lems, and finally multiplying by a bump function around (zo, yo),
one obtains a symbol a € S°(R2"% x R') that satisfies all of the
above requirements.

Based on the analysis made in these remarks, we now move towards
setting up the appropriate conditions for the improved theorem. Ac-
tually, the only essential difference has to do with the Fourier integral
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operator used in the conjugation. Unlike the relative freedom of choice
allowed in the classical version of Egorov’s theorem, as observed in Re-
mark iii), the higher accuracy now requires a very particular operator
with unitary properties.

To begin with, we only need to be concerned with the canonical trans-
formation of pseudodifferential operators at a microlocal level. As ob-
served in Remark i), if one starts from a global symplectomorphism
between cotangent bundles, a global version of the theorem can then be
obtained from the microlocal one by using a locally finite partition of
unity on the cosphere bundle of the product manifold. Therefore, fol-
lowing Remark iv), it will be enough to consider for the conjugation a
local Fourier integral operator given by an oscillatory integral as in (19),
but now with a more careful choice of symbol a € S?(R2" x R}) in order
to make it microlocally unitary.

Given A€ IH(X XY, Ca; QY2 ,), its adjoint A*€ IM(Y x X, Cop-1; /7 ¢)
is a Fourier integral operator of the same order as that of A, acting from
half-densities on X back to half-densities on Y, and associated to the
graph of the inverse ®~!. From the description in Remark ii) above,
concerning the composition of Fourier integral operators associated to
graphs of canonical transformations, if we want

A*A— Iy € U=,

to be satisfied microlocally close to (yo,n0) € T*Y \ 0, then necessarily
1 = 0 and the principal symbols should satisfy

(21) O'(A*)‘ =1 (mod S™1),

(y,n,q’(y,n))a(A)’(‘I’(y,n),y,n)

in a conic neighborhood of (yo,n0) € T*Y \ 0. When A is given by (19),
the kernel of its adjoint is

1 .
Kae(y:0) = o / i n=S@M) (5, 4. ) i,
and its principal symbol o(4*) € S°(Co-1,Lc,_,)/S™ (Co-1, Lo, )
is

= o)

o(4 )‘(y,n,‘I’(ym)):(anS(wm)m@ﬁzs(wm)) (@(y.m).y.m)

_a(x,0,S(x,m),n)
- 2 1/2°
[det 225 (2, )

ox0on
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in the trivialization of the Keller-Maslov-Hormander line bundle associ-
ated to the phase y - n — S(z,n) above. So (21) reads

2
|0’(A)|2 1= la(z,y,m)| _163717
‘(4’(7;,77

- et 225 ()

with 2 now considered as a function of (y,n), according to the canonical
transformation @, in order to regard this as a symbol for a pseudodiffer-
ential operator on Y. A natural choice for the symbol a € SY(R2", x R}!)
is then to make it

2 1/2
det L5 (2. )

(22) afa.y.n) = |det -

)

in a conic neighborhood of (xg, &, yo, M) € Cs, thus making the invari-
ant principal symbol o(A) € S°(Cs, Lc,)/S™ (Co, Loy ) equal to one,
when L¢,, is trivialized by (18).

Technically, we still need to tailor this symbol a little bit, with an
appropriate cut-off function. But it can be noticed, already, that this is
precisely the same symbol as (8), in the example of the previous section,
of the change of coordinates for pseudodifferential operators acting on
half-densities.

Another instance of the appearance of this symbol, based on the gen-
erating function of the canonical transformation, comes from writing
the metaplectic representation of the symplectic group, in integral form.
The unitary invariance of the Weyl operator, under linear symplectic
transformations of its symbol, can then be interpreted as an exact form
of Egorov’s theorem, while the metaplectic unitary operators used in
the conjugation can be regarded as Fourier integral operators associated
to linear symplectic transformations, with symbols again given by (22).
This is precisely the motivation that we will recall and develop a little
bit more in detail in the next section.

Actually, there is nothing very original about (22), which in the lit-
erature is a frequently found choice for the symbol, in the classical ver-
sion of Egorov’s theorem, if one wants to perform the conjugation of
pseudodifferential operators by unitary (modulo S™~!) Fourier integral
operators. The novelty here is that we will show that this exact same
symbol provides the higher accuracy (modulo S™~2) of both the unitary
property of A as well as of Egorov’s theorem. Moreover, from a coor-
dinate invariant point of view the usage of (22) in the formula for the
oscillatory integral (19) naturally makes this kernel a distribution half-
density on X x Y, just like we have already observed for the particular



AN AccurRACcY IMPROVEMENT IN EGOROV’S THEOREM 93

case of (6). Therefore, this again hints that the appropriate geomet-
rical framework for using these unitary Fourier integral operators is to
consider all the operators as acting on half-densities, like we do in the
statement of our theorem.

For the final step of the construction of the particular Fourier integral
operator to be used in the conjugation, one just needs to consider a
suitable cut-off function x in the (z,y,7) € R2" x R} variables, with
value one in a small conic neighborhood of (xg,yo,n0), for large 7, and
value zero around 7 = 0, to avoid singularities. The construction of such
a cut-off function is exactly the same as the one presented at the end
of Remark iv). So that, when multiplying (22) by it we get a smooth
symbol of order 0, elliptic at (2o, yo0,70) € R2", x (R} \ 0), with support
in a sufficiently small compactly generated cone around this point and
totally contained in the (x,y,n) domain of (18). The relevant fact, that
should be kept in mind when performing computations, is that in a small
open conic neighborhood of (z¢, y0,n0) and for large  —which is really
the region of concern— the symbol is exactly (22). The cutoff function
only guarantees that everything is well defined, that the final symbol
is smooth everywhere on T*Y and that its (z,y) support is compact
therefore ensuring the proper support of A.

In the same coordinate systems around xg and yo as in Remark iv),
for which the existence of the generating function S(z,n) that describes
the canonical transformation is guaranteed, we then have the local form
of the Schwartz kernel of the Fourier integral operator A that we are
going to use

1/2

det x(x,y,n) dn.

23) Ka(w)= gz [ 50000 et 25 (0.
’ (2m)m dzdn ™’

Obviously, we consider K 4 to be zero at the remaining points of X x Y.
Its wavefront set is contained only in a small conic neighborhood of
(0, &0, Yo0,M0), on the graph Co.

At this point, based on the motivation presented in the following
section of this article, we define the principal Weyl symbol of a pseudo-
differential operator acting on half-densities as the more refined princi-
pal symbol for this type of operators, whose invariant definition on the
cotangent bundle of the manifold was recalled in the last section. The
canonical transformation of these symbols is precisely what represents
the sharper statement of Egorov’s theorem, to be proved ahead.

Definition 1. Let P € ™ (X, Q¥2) be a pseudodifferential operator
of order m € R, acting on half-densities on the manifold X. Then, the
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symbol 0% (P) € S™(T*X)/S™ 2(T*X) which, for any local coordinate
system on X, satisfies (according to the known invariance, mentioned in
the previous section)

(24) 0" (P)(w.&) = plr,€) + 5 D0, ep(r,€) (mod 572,
k=1

where p(z,£) € S™ is the complete symbol of P in these coordinates,
will be called the principal Weyl symbol of P.

We have now established the framework for stating the theorem as
follows.

Theorem 1. Let ® be a local homogeneous symplectomorphism as
in (10) and A € I°(X x Y, C¢;Q§(/iy) the Fourier integral operator
associated to it constructed above, represented in appropriate coordinate
systems around yo € Y and xg € X by the oscillatory integral (23), with
its invariant principal symbol o(A) € S°(Co,Lcy)/S™HCo, Loy ) sat-
isfying o(A) = 1 in a conic neighborhood of (xo,%0,Y0,M0) € Ca, when
L, 18 trivialized by the phase (18). Then,

(25) A*A—Ty € 92
(26) AA* —Ix € U2

in a conic neighborhood of (yo,n0) € T*Y'\0, for (25); in one of (zo,&) =
D(yo,mo) € T*X \ 0, for (26). And given any properly supported pseu-
dodifferential operator P € U™ (X, Q;(m), of order m € R, acting on

half-densities in X, the conjugation
Q = A"PA,

yields a pseudodifferential operator Q € V™(Y, Q%,/z) whose principal
Weyl symbol is microlocally related to P’s by

"(Q) = 5" (P) 0 @,

in the same conic neighborhood of (yo,n0) as (25). If P is given by a
classical symbol p(x,&) ~ pm(x,&) + pm—1(x,&) + - - -, this shows that its
subprincipal symbol Sub(P)(z, ) = pm—1(2,£) + % > p_; 02,0, P (2, €)
s also microlocally transformed under the local homogeneous symplec-
tomorphism @, besides the usual transformation of the principal sym-
bol pm(x,&) which is already given by the classical version of Egorov’s
theorem.

We finish this section with one last observation. The unitary Fourier
integral operator A used in the conjugation, as constructed above,
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requires a certain freedom of choice of the local coordinates on Y,
around ¢, in order to be written as (23) to ensure that the canoni-
cal transformation ® can be described by a generating function S(z, 7).
However, in some applications of Egorov’s theorem one might have to
work with specific canonical transformations in certain fixed coordinates,
which might not be adequate for writing the generating function with
variables (z,n). In that case, it is not possible to define the unitary
Fourier integral operator by the oscillatory integral (23) in those coordi-
nates. Nevertheless, Theorem 1 is stated in coordinate invariant terms
and it is only this explicit local formula for the operator A that depends
on suitable y coordinates. So the existence itself of such A is never in
question, only its representation in the given fixed coordinates. Still, if
one wants fully explicit formulas, then the only thing that has to be done
is to consider a suitable change of coordinates on Y just for that purpose.
The procedure to be followed is exactly the one also used in the classical
version of Egorov’s theorem in the same circumstances, and that is to
perform the conjugation in two steps: the first one is to apply Theorem 1
and do a conjugation of the original pseudodifferential operator on X by
a unitary operator defined by (23), considering new convenient coordi-
nates on Y for which the required generating function is guaranteed to
exist; the second step is simply a change of coordinates on Y, conjugat-
ing this time by a unitary Fourier integral operator appropriate for that
purpose, as in (6) (again a particular case of Theorem 1) in order to
bring the canonically transformed pseudodifferential operator acting on
half-densities on Y, produced in the previous step, from the new y co-
ordinates back to the original ones. Of course, the composition of the
two unitary Fourier integral operators used in these two stages provides
a single operator by which the initial pseudodifferential operator can be
conjugated, to get at once to the final canonically transformed one.

2. Motivation: Weyl correspondence, symplectic
invariance and metaplectic representation

The Weyl quantization is normally considered only for symbols glob-
ally defined on the whole of R™, thus providing an alternative symbol-
operator correspondence for pseudodifferential operators in R™. The
Weyl operator associated to a symbol @ = a(z,£) € S(R™ x R"), for
example, acting on a function u € S(R™), is given by the formula

1) oo Dute) = o [ (T ) aya
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whereas the standard pseudodifferential operator for the same symbol is
given by

a(z, Dyu(z) = / e Car, €)i(€) d

1
(2m)"
_ 1 ei(m_y)fa T w
~ (2n)n // (@, &)uly) dy dE.

By writing the kernels of these operators as oscillatory integrals

K (2,y) = (2710" / Sie-)E, (%”5) de

_ T+
_'7:21(a)< 2y7$—y),

for (27), and

1

I O / @D Ea(z, €)dE = Fy(a) (o, x — y),

for (28) (where Fy ! means the inverse Fourier transform in the sec-
ond variable only), these operators are naturally extended to symbols
in §'(R™ x R™). The two different maps, (29) and (30), from the sym-
bols a(z,£) to these two types of kernels, K,(z,y) and Kqw(z,y), are
obviously isomorphisms in §’(R™ x R™). Due to Schwartz’s kernel the-
orem one then obtains two different bijections between these very gen-
eral symbols in §'(R™ x R™) and the continuous operators from S(R™)
to S’'(R™): they are called, respectively, the Weyl and the standard
pseudodifferential operator correspondences (or quantizations). When
restricted to L2(R™ x R™), these two correspondences are unitary iso-
morphisms between the set of symbols and the space of Hilbert-Schmidt
operators on L2(R"™).

Given a fixed continuous operator from S(R™) to S’(R™), the unique
symbol in §'(R™ x R™) that yields it, according to the Weyl correspon-
dence, is called the Weyl symbol of the operator. Analogously, one
obtains the so called standard pseudodifferential symbol, for the same
operator, by using the standard correspondence.
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Restricting from S’ (R™ x R™) to the usual classes of symbols of pseu-
dodifferential calculus a € S™(R™ x R™) C §'(R™ x R™), m € R, which
satisfy the global estimates (in the x variable),

|DgD{a(x,€)| < Cap(1+ [€)™ 17,

for all multi-indices «, 8 € N™ and (z,£) € R™ x R”, the iterated inte-
grals (27) and (28), or equivalently the oscillatory integral kernels (29)
and (30), also define bijections between these symbol classes S™ and a
common set of pseudodifferential operators, continuous on S(R™) and
extendable to §'(R™). These are the global analogues to the local pseu-
dodifferential operators, continuous on C2° and extendable to D', except
that in the local theory, unlike here, there generally does not exist an
exact bijection between symbols and operators (only modulo S~°°).

The conversion from one type of symbol to the other, for the same
operator, is naturally called the rule for change of quantization. If a,p €
S'(R™ x R™) are such that a™(z, D) = p(z, D), as operators S(R") —
S’'(R™), according to the two previous quantization procedures, then one
merely has to equate the corresponding kernels to obtain

r+y
2

which yields the transformation rule, from the standard to the Weyl
symbol,

Koo (2,9) = Kylz.5) = Fy \(a) ( ,x—y) = F ) — ),

i

(31) a(a:,f) :eiiDz.Dgp(Iaf)'

Here e~ 2D+ D¢ represents the Fourier multiplier operator S’ (R xR"™) —

S'(R™ x R™) given by
i 1 R S Pa s R R
e 3P Pep(a, ) = —— /e“””'z+€f>e*§“ﬁ(£,§) di: dé.
(2ﬂ-)2n
The inverse change of quantization, from the Weyl to the standard sym-
bol, also follows immediately,

p(a,€) = e3P Peq(z, ).

When restricted to S™, the transformation (31), for change of quan-
tization, is still very well behaved: it is a Fréchet space isomorphism.
And, in this case, its image can actually be given by the convenient
asymptotic expansion (see [Fol], [H6r3])

1 (10 - Og )’

(32) a(z,£) = e*%DI-Dﬁp(xag) ~ 2 71 p(z,§),

Jj=0
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which is what one would formally get by expanding the exponential
in (31) in power series. Obviously, a totally analogous asymptotic ex-
pansion can also be obtained for the inverse transformation, from the
Weyl to the standard symbol. In particular, at the leading order, both
symbols are equal, i.e.

a(z,€) = p(x,§) (mod S™(R" x R")),

whereas at the next order of accuracy (32) yields

a(r,€) = p(2,) ~ £ D - Depl, )

(33) . n
p(@,8) + 5 ; Oy, O, p(2,€)  (mod S™2(R™ x R™)).

Of course, if p € S™(R™xR™) is a classical symbol p(z, &) ~ pp(z, &)+
Pm—1(x,&) + -+, with py,—;(z,£) € S™7J positively homogeneous of
degree m — j in the ¢ variable, for large ¢ and j € N, then a € S™
will also be a classical symbol, whose homogeneous terms of degree m
and m — 1, in its asymptotic expansion, will respectively be the principal
and subprincipal symbols of p,

am (2, €) = pm(z,€) and
am_1($,€) = pm_1($,€) + % Zaﬂﬂkaﬁkpm(‘rvg)'
k=1

The subprincipal symbol of an operator therefore appears naturally un-
der the Weyl correspondence.

The reason for our choice of terminology, in Definition 1, is now clear.
We call (24) the principal Weyl symbol of a pseudodifferential operator
with complete (standard) symbol p(z, &) € S™ precisely because it is the
same as (33), i.e., its Weyl symbol modulo S™~2, obtained by the rule of
change of quantization. Moreover, the properties of the Weyl calculus,
that we will recall in the sequence, constitute the essential motivation for
Theorem 1 and we will see that the role of (33) there can be interpreted
as parallel to the role of the (standard) principal symbol in the classical
version of Egorov’s theorem. Including, as a particular case, the fact that
they both are invariantly defined as functions on the cotangent bundle,
within the right geometric framework.

In spite of the equivalence between the two types of symbol-operator
correspondences discussed above, it is well known that the Weyl calculus
presents several advantages over the standard calculus. In other words,
the usage of the Weyl symbol for the pseudodifferential operators leads
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to well known benefits in the corresponding symbolic calculus ([DiSj],
[Fol], [Ho6rl], [H6r3]). In a way, what we intend to do now is to provide
some arguments that portray Theorem 1 as being yet another example
of that fact.

The source of the advantages for the Weyl calculus lies in the sym-
metric approach taken in the integration of the symbol, where the aver-
age (x 4+ y)/2 is used in (27) instead of just x in (28). This seemingly
simple detail is deeply and crucially rooted in the underlying mathe-
matical structure of the quantization problem, in connection with which
Hermann Weyl first introduced the operator, in the late 1920’s ([Wey]).
The general goal of quantization is to establish a correspondence be-
tween the observables in classical mechanics —real functions defined on
the symplectic phase space— and the observables in quantum mechanics
—self-adjoint operators on the Hilbert phase space— that somehow best
reflect the properties of their classical counterparts. There are several
requirements, from the points of view both of mathematics and physics,
that such a correspondence should fulfill and it is known that an ideal,
sort of “isomorphic”, type of association is impossible (see [Fol]). In fact,
physically, according to Bohr’s general principle, one should only expect
to fully recover the classical description from the quantum system, in
the semi-classical limit i — 0. Nevertheless, even away from this limit
(at h = 1), the Weyl quantization is, in many aspects, a very satisfactory
way of assigning operators to symbols, within this context. Because of
this, (27) encodes a genetic suitability to the symplectic properties of
phase space and is particularly well adjusted to being used in situations
where those properties are relevant.

On the other hand, the standard pseudodifferential calculus had its
origin in the mathematics of partial differential equations, and the in-
tegral formula (28) is simply a consequence of the common convention
of writing the differential operators as a sum of derivatives on the right
multiplied by coefficients on the left. Therefore, the underlying structure
of phase space is not transposed into definition (28).

Intuitively, one should generally expect then the Weyl calculus to pro-
duce better results than the standard pseudodifferential calculus, when-
ever the intrinsic symplectic structure of phase space and its connection
with the mathematical setting of quantum mechanics play a significant
role in the situation being studied.
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From a mathematical-physics point of view, one can interpret Egorov’s
theorem as relating transformations of classical observables under au-
tomorphisms of phase space —symplectomorphisms— to the transfor-
mations of their quantized versions, under the corresponding automor-
phisms of the quantum system —conjugation by unitary operators. If
the quantization were ideal, the quantum observables resulting from two
symplecticaly equivalent symbols should then be unitarily equivalent,
producing an exact form of Egorov’s theorem, without any errors. But
that is too much to hope for and in general, according to Bohr’s princi-
ple, such an exact rule should only be true in the limit when 2 — 0. This
is the point of view used when studying this theorem in semi-classical
analysis (see [Rob]), where the goal mostly has to do with accurately
estimating the difference between the conjugated and the canonically
transformed operators, as a function of A. In fact, the symplectic trans-
formations there are normally considered to be classical Hamiltonian
flows, whereas the unitary transformations are the unitary evolutions of
the quantum system for the corresponding quantum Hamiltonian. And
a great part of the study then (as in [BoRo]) concerns evaluating the
accuracy of Egorov’s theorem as a function, not only of A, but also of
time. Nevertheless, based on the advantages of the Weyl quantization in
these circumstances, even without doing semi-classical limits and stay-
ing exclusively within the framework of classical microlocal analysis, one
should still expect the Weyl correspondence to produce a better outcome
in Egorov’s theorem, than the standard pseudodifferential one, as used
in the classical version of the theorem.

We now focus on two specific cases of the benefits that the differ-
ence in the integral formulas (27) and (28) subtly leads to, which are
at the root of the mathematical reasoning that leads to expecting why
the improvement of Egorov’s theorem should hold, and in which circum-
stances. They are among the most important properties of the Weyl
correspondence, that distinguish it from the standard pseudodifferential
one.

We start by pointing out that the adjoint of a Weyl operator (with
respect to the L? inner product) defined on S(R™), is another pseudodif-
ferential operator whose Weyl symbol is simply the complex conjugate
of the original one. This is in contrasting difference with the standard
pseudodifferential operators, where the symbol of the adjoint is given
generally by a much more complicated asymptotic expansion. As a di-
rect result of this fact, the Weyl operator with symbols in S™(R™ x R™)
is symmetric if and only if its symbol is real valued. (See [Fol] for ex-
tra conditions on the symbols which guarantee, actually, that the Weyl
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operator is essentially self-adjoint on S(R™).) Naturally, this is exactly
the reason that makes (27) such a good model for the quantization of
an observable in classical mechanics given by a real valued function in
phase space.

The other fundamental property of the Weyl calculus, that we want
to make a reference to, is its unitary invariance under linear symplec-
tic transformations (or slightly more generally, under affine symplectic
transformations). Let us suppose that we have T' € Sp(n,R), the sym-
plectic group, and that we want to transform a Weyl operator by compos-
ing its symbol a(x, ) with this linear symplectic transformation. Then,
there exists an isomorphism Ur on &'(R™), whose restriction to L*(R™)
is a unitary transformation, depending only on 7" and unique up to multi-
plication by a constant factor of modulus 1, such that the Weyl operator
resulting from the composed symbol can simply be obtained conjugating
the initial one by Ur,

(34) Up'a"(z, D)Ur = (a0 T)"(z, D).

A convenient choice of the multiplicative constant of modulo 1, for
Ur yields a homomorphism T +— Urp, of the symplectic group into the
unitary operators on L?(R™), which is called the metaplectic represen-
tation. For standard pseudodifferential operators, (34) would only hold
true if the symbol a(x, ) were a linear function of (z,£) € R?" (a partic-
ular case for which both of these two symbol-operator correspondences
coincide, anyway). On the other hand, this unitary equivalence for the
symplectic group is universally true for the Weyl operator a* (z, D), us-
ing any symbol a(z,¢) defined on R?", including the very general case
of tempered distributions. Clearly, this outstanding example of perfect
behaviour with respect to symplectic transformations is one of those con-
sequences of the fact that the mathematical framework of classical and
quantum mechanics underlies the origin of the definition of the Weyl
quantization. But what is more striking is that (34) really character-
izes the Weyl operator. In other words, the Weyl correspondence is
necessarily the only way to associate a pseudodifferential operator to a
symbol, which fulfills the basic restrictions of mapping the coordinate
functions z and &, in phase space, to the operators X (multiplication
by z) and D (= —i0), and is unitarily invariant under linear symplectic
transformations of that symbol, according to (34) (see [Fol], [Ste]).
Property (34) can obviously be interpreted as an exact form of
Egorov’s theorem, where the rule for the symbol transformation is
achieved with absolutely no errors. And it shows that the usage of
Weyl quantization instead of the standard pseudodifferential one, for



102 J. DRUMOND SILVA

the same operators, improves the accuracy of Egorov’s theorem here,
from just being true at the leading order of the symbols, to being fully
exact.

A closer resemblance still, between (34) and Egorov’s theorem in the
setting of classical microlocal analysis, is obtained finally by writing the
metaplectic representation of the symplectic group Ur in integral form
(in the Appendix to Chapter 7, in [DiSj], the metaplectic operators are
precisely used as a linear model introduction to the general theory of
Fourier integral operators). Let T € Sp(n,R) be a linear symplectic
transformation in R” x R™ = T*R", say (x,&) = T(y,n). Because the
transformation is linear, the condition for the existence of a generating
function in the variables (z,7n) is global and is equivalent to being able
to parametrize the graph Cr = {(x,&,y,n) € R*" : (z,¢) = T(y,n)} of
the transformation 7" in these variables. And that happens if

(35) det <g—z> = det <8;;) #0.

Supposing such a condition is satisfied, we can then write the generating
function S, whose differential dS = y-dn+£-dx is a closed 1-form on Cr,
as a function of (z,n) for the whole R?". And we have, on the points of
the graph

a8 08 )
Y = 8—77] and & = 8—%, j=1...,n.
Notice how S(z,n), in this particular case of linear symplectic transfor-
mations, is just a quadratic polynomial in = and 7. The condition (35)
can be phrased, in terms of the generating function, by the fact that the
(constant) matrix

%S

~ 0z0n

is nonsingular.
If we now define an operator Ur on S(R™) as

36)  Urf(x) =

o [l 2 . e SEY,

(2m)"

we get an object very similar to a Fourier integral operator of order zero
except that, unlike in the definitions of the classical microlocal analysis,
the generating function S(x,7) is quadratic in 7 and therefore does not
necessarily produce a homogeneous phase of degree one. It can easily be
shown that Urp preserves the L? norm of f, i.e., [|Ur f||L2®n) = || L2@n)
and so can be extended as a unitary operator on L?(R"™). With a little
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further work, it can also be shown that (see [Fol, Chapter 4], also for
another derivation of (36))

Uy'a"(z, D)Ur = (aoT)"(z, D),

i.e., that (36) represents the metaplectic operator associated to the linear
symplectic transformation 7. So we have written the unitary invariance
of the Weyl operator (34) under the symplectic group Sp(n,R) in a form
which is very similar to Egorov’s theorem in the framework of microlocal
analysis, when the linear canonical transformations have a correspond-
ing generating function. The unitary operator Ur is essentially a Fourier
integral operator of order zero associated to the canonical transforma-
tion, with symbol equal to |det 92S/0zdn|'/?, essentially the same as in
Theorem 1.

Putting all these pieces together, the heuristic argument for the va-
lidity of Theorem 1 now follows from these two properties. On the one
hand, real Weyl symbols produce self-adjoint operators, and conjuga-
tion by unitary operators preserves that self-adjointness. Therefore, if
the starting Weyl symbol is real, then the Weyl symbol of the conjugated
operator should still be real valued too. On the other hand, from basic
pseudodifferential symbol calculus, it is well known that the asymptotic
expansions that relate the final symbol to the original one produce a
second order term that comes multiplied by ¢ which, in the case of real
symbols, should therefore vanish. Intuitively, then, the Weyl symbol
for the conjugated operator should generally equal the original one com-
posed with the symplectomorphism, with a vanishing second order term.
L.e., by using the Weyl correspondence instead of the standard pseudodif-
ferential one, Egorov’s theorem should be improved to an accuracy S™ 2
instead of the classical S™~!. And this can be interpreted as an advan-
tage of the Weyl quantization similar to the one obtained in (34), except
that we are now considering general canonical transformations besides
linear ones.

Finally, for Theorem 1, it is now simply a matter of translating these
properties of the Weyl calculus in R", to the setting of pseudodifferential
operators on manifolds. The global integral formula (27) can no longer
be used for the locally defined operators, so we keep the symbol cor-
respondence (32) and drop the integral representation (27). Moreover,
because we are only expecting a general accuracy improvement down
to S™~2, we really only need symbols with the same level of accuracy.
That is why we end up defining the principal Weyl symbol that way,
in Definition 1, disregarding lower orders. Because our heuristic argu-
ment is strongly based on the self-adjointness of the pseudodifferential



104 J. DRUMOND SILVA

operators with real Weyl symbols, the final geometric framework needs
to reproduce this fact, which is done in coordinate invariant terms (on
general manifolds without a distinguished positive density) by consider-
ing pseudodifferential operators acting on half-densities. That way, their
adjoint operator is also of the same type (unlike for operators acting on
functions, whose adjoints act on densities) and their principal Weyl sym-
bols, well known to be invariantly defined on the cotangent bundle of
the manifold, as explained in Section 1.1, are the complex conjugate of
the original ones (see Theorems 18.1.33 and 18.1.34 in [H6r3]) exactly
as it happens for the Weyl calculus in R".

We have thus been able to keep the essential features of the Weyl
quantization, that yield Theorem 1, in a full framework of classical mi-
crolocal analysis.

3. Proof of Theorem 1

This section is exclusively devoted to the proof of Theorem 1.

Proof: We will work in those fixed coordinate systems, around ¥ and x,
where the Fourier integral operator A is written locally as (23), with
the aid of the generating function of Cs. Consequently, in the same
coordinates, A* is given by the kernel

1/2
x(z,y,n) dn.

1 .
K * = Z(y'ﬁ—s(ﬂﬂﬂl))
(37) A (yv'r) (271')” /6

028
det 9201 (z,m)

We denote by
p(x,€) € S™(X xR™)/S~®(X x R")

the complete symbol of P € ¥™(X, Q}X/2), in those coordinates around

zo. X here is the open set in R™ diffeomorphic to the coordinate neigh-
borhood on X. Modulo a smoothing operator, P can be represented
locally by the oscillatory integral, with a properly supported kernel,

1)n // =€ (2, O)u(F) dE dE

Pu(zx) = on
1

- gy [ e i de

3To simplify the notation, and because the coordinate systems around zo and yo are
fixed in the whole proof, we will use the same letters to denote both the points on
the manifolds X and Y as well as their coordinates in R™.
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for u € C*(X, Q¥2), with support contained in the coordinate neigh-
borhood of xg.

We know, from the theorem on composition of Fourier integral opera-
tors associated to graphs of canonical transformations, that PA yields a
Fourier integral operator B € I"™(X x Y, Cg; Qﬁ(/iy), of order m, associ-
ated to C's. The asymptotic expansion formulas for this particular type
of composition, of a pseudodifferential operator and a Fourier integral
operator, are widely available in the literature ([GrSj], [H6r4], [Shu],
[Tre]). They are usually derived from the application of the stationary
phase method, as in Theorem 7.7.7 of [H6r2]. From these, we immedi-
ately obtain the result that B = PA can be locally represented by an
oscillatory integral, with the same phase as A,

PAu(xz) = Bu(z 2 // S@mM=Imy(x, §,n)u(y) dj dn,

for u € C*(Y, Q;,/ 2), with support contained in the coordinate neigh-
borhood around yo. The symbol b € S™ is given by an asymptotic
expansion which, to order m — 2, is written as

(38)
b(w, §,m) = p(x, S, (w,m)a(x,§,m) =i »_ dep(x, S (2, 1)) ey alw, §,7)
k=1
i . / 825 ~ m—2
5 ; agk (z, Sx(w,n))iaxjaxk (z,ma(z,g,m) (mod S™™%),
where
9 1/2
_ 0
(39) a(x,y,n) = |det axan(x’m x(z,y,n) € 57,
from (23).

The conjugation A*PA = A*B then produces a Fourier integral op-
erator @, of the same order as P, associated to the canonical transfor-

mation ®~! o ® = Ip.y. So that Q € U™ (Y, Qi,ﬂ) In local coordinates
we have

Qu(y) = A*PAu(y) = A*Bu(y)

W=D Ne(y, g, m)u(y) di dn,
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where ¢(y,,n) is given by the oscillatory integral in the x, ¢ variables

1

(40) c(y,9,m)= G

//ei[y,(<_n)_s(m,c)+5(1;n)]a(;[;7 Y, C)b(‘r’ ﬂa 77) dx d<’

with a(z,y,n) € SO still given by formula (39), now as a consequence
of (37), and b(x,y,n) € S™ given by (38). The integration in the x vari-
able is a perfectly normal one because due to the construction of the
symbol a, in particular of the cut-off function x, the x support of the
integrand in (40) is compact and contained in the corresponding coordi-
nate neighborhood at zy. The integration in the { variable, on the other
hand, has to be regarded as an oscillatory integral. As such, it should
be taken as a limit of a sequence of similar integrals with symbols a;
in S7°°, with a; — a in S°T, that can simply be done by using, for
example, a cut-off function of increasing support in ¢. This is an abso-
lutely standard procedure, so we will not dwell further on these technical
details here.

The crucial step of this proof is obviously the computation of the
asymptotic expansion for this symbol ¢(y,9,n), in terms of the sym-
bols a, b and the generating function S. For the classical version of
Egorov’s theorem only the leading order term would be needed, which
is quite straightforward to determine. But the accuracy of our result
requires explicit formulas for the lower order terms in the expansion,
whose computation demands a lot more effort. We provide this result in
the following lemma.

Lemma 2. Let a € S° and b € S™ as above. Then, the oscillatory
integral (40) defines a symbol c € S™ which, modulo symbols in S™ 2,
can be written as

(41)

1
‘det aa;asn (z,m) ‘

- 1 -
X (Co,o(y, 7,m) + 5 [Cr0(y.5,m)

+C1a(y,9,m) + C12(y, 9, n)}) (mod S™~2),
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where Cy 9 € S™ and C19,C11,C12 € S™1 are given by

OO,O(ya ga 77) :a(:z:, Y, n)b(xv ga 77)7

010 (v, 9,m) = Z Vz‘ijlU]lla o ( (%y,n)b(x,ﬂ,n))
i,7,k, =1

—2 Z Ui 0u, (On,alz,y,m) bz, 3,m)),

1,5=1

0°S
Ci1(y,9,n) = Z U; Ut (m(a a)b
i3,k 1=1 v

938 9ts
2 0z ;01;0n, On (ab)+ O ;0 0n; O, @ b)

n 3
- > VUL'UL'UL (2Laml(ab)

i,5,k,l,p,q=1 Oz Ozq0ny
0%S 94S
— 0, (ab)+=————F———ab
+ 0z, 0x,0n), (@ )+8xk8x18xq3npa )
= 038 838
Ci2(y. 9,m) = ViU UL U U <
ivjakqupzﬂﬂ”,s—l sk &Ckaxqanp 6$laxsanr
n 93S 038
0x,0x4,0n, 0x;0xs0n,
938 938
+ b
0x,0x10n, 0402 ,0n);
- 938 938
_ UleflU—l (
i,j,k%;,q:l G TR\ O OargOn; O OO

938 938 >
+ 2 b
O0xj0x40n; Ox10M,0np

U and V denote the matrices (%(m,n)) and
TiOn; 1<i,5<n

2 . .
%(m,n) -, respectively, and every occurrence of x, in the
o 1<ij<n
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formulas above, is to be evaluated as the x = x(y,n) component of the
canonical transformation (x,£) = ®(y,n), implicitly given by the equa-
tion y = 0,5 (x,n).

Proof: We will follow the usual approach for computing asymptotic ex-
pansions of symbols defined by oscillatory integrals, based on the method
of stationary phase. Because we are interested in obtaining explicit for-
mulas beyond the first term of the expansion, we will not pursue the more
common technique of applying the Morse lemma to transform the phase
into a quadratic form, for it deals with implicitly defined coordinate
transformations that are not convenient for our lower order computa-
tions. Instead, we will use Theorems 7.7.5 and 7.7.6 in [HOr2], where
an alternative proof is provided with which asymptotic expansions of a
totally explicit nature can be obtained.

We will consider || > 1. Rewriting (40), by doing a change of vari-

ables 8 = (¢ —n)/|n| and 7 = n/|n|, one gets

(42)  c(y,9,m)

n " 7 0—S(x,n x,n ~ ~ ~
- % // (il 8-S @A O +S@ oz, y. |l (0+7))b(ax, 5, |nli) de db,

where we have used the homogeneity of the generating function S, with
respect to the second variable, in the exponential.
The phase

[l 0y,0) =y -0 —S(@,9+0)+ S, 7)

has critical points (z,8) given, as functions of the parameters (y, ), by
fo=0= =5 (z, 7+ 0)+ 5, (z,7) =0,
fy= 0=y — Sz, +6) =0.

And using the properties of the generating function, these two equations
in turn yield

(43) {9 =0
y = S,(x, 1) = S (z,n) = = 2z(y,7) = 2(y,7m),

where we write z(y, 1) to denote the & component of the canonical trans-
formation ®.
The Hessian matrix of the phase, at these points, is now given by

0 —8" (z,7) 0 —U
(44) f;/ = |: ~ T, = ,
0 _S;;,m(xvn) _87/7/(33777) - -V
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where we have used for the blocks the same notation as in the statement
of the lemma,

028
U = S;/ xaﬁ = <— 1'777] ) ’
.,n( ) 8$i877j( ) 1<i,j<n

928
tU—S”mx,N_(—x,N) ,
2 (T, 7) on, axj( ) i

%S
veston- (o)

and the point z is to be evaluated at z = z(y,7) = x(y,n). The deter-
minant of (44) is therefore

9 2
(45) det f, 5 = <det 820577) #0,
proving that the critical points are non-degenerate.

Before we can finally use the asymptotic expansion formulas, resulting
from the application of the method of stationary phase, to estimate (42),
we still need to make the integrand compactly supported in the 6 variable
(the support in z is already compact, from the start). For that, one
follows the usual approach of splitting up the integral into two terms,
with a cut-off function «(#) which is one, for |f] < 1, and zero, for
|#] > 2, for example. The part of the integral with the (1 — «) term is
then equal to zero in a neighborhood of the critical points (43), so that
integrating by parts in the x variable one easily shows that this term
is rapidly decreasing in |n|. We are left, therefore, with the other term
where the original integrand is multiplied by a and in whose support lie
the critical points, thus leading to the relevant part of the asymptotic
expansion. In a neighborhood of these points we have a = 1, so for all
practical purposes it is as if the integral remained exactly the same as
in (42). Because of that, and to simplify the notation, we will not write
the cut-off function a explicitly in the formulas, just keeping in mind
that the integrand is now compactly supported in both of the integrated
variables, z and 6.

The conditions are now set to apply Theorems 7.7.5 and 7.7.6 in
[Ho6r2], to get the explicit asymptotic expansion of (42) down to or-
der m — 2. Of course, an important part of the proof has to do with
showing that c¢ is actually a symbol in S™, given by such an expan-
sion in the sense of symbolic calculus. But that follows from a stan-
dard argument, by using the estimates of the remainder terms in these
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stationary phase formulas, and applying the usual result in the sym-
bolic calculus (like Theorem 1.9 in [GrSj], Theorem 18.1.4 in [H6r3], or
Proposition 3.6 in [Shu]) that allow one to prove asymptotic expansions
of symbols without actually having to get estimates for all derivatives
(see [GrSj] for several instances of the application of this argument).

So we will just concentrate on computing the expansion itself. We
then get, from the application of these theorems,
(46)

o5 sen £ o (z(y,7),0)

0 )E|det 7). 07

(iln])~ o -
<X 5 e Ul 0) D Do)

=0 0<k<2j

X (gkab)‘(z(yﬁﬁ)ﬁo) (mod Sm_2).

The auxiliary function g(x,8;y,7) is the remainder term in the Taylor
formula of order two for the phase, centered at the critical points:

(47)  g(z,03y,7) = f(x,0;y,7) — f(x(y, 1), 0;y,7)
1 - - _
= 5 fe(@(y, 1), 0)(@ = x(y, 7),0) - (x — 2(y.7),0),
so it vanishes of third order when 6 =0 and = = z(y, 7).

The signature of the Hessian (44) is 0. This can be deduced from the
fact that the continuous family of non-singular block matrices

0 -U
—tu —rv|’

for 7 € [0,1], has an invariant signature. Which can easily be seen to
equal zero, in the simpler case of 7 = 0.

We can now start computing the terms in (46). The grouping of the
terms in (41), as well as the notation used, naturally correspond to the
possible pairs j, k in (46).

The first term is in S™ and corresponds to j = 0 for which & can only
be zero too. This yields

1
~ 5)b ~\ ~ ~
|det ;’,9(55(97 77)7 0)|1/2 CL({E(y, 77)7 Y, |77|77) (I(ya 77)5 Y, |77|77)

_ alz(y, ), y,m)b(x(y, n), 4, 1)
det 225 (2(y, ), n)

)

from which we get the formula for Co o(y, 7,7)-
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The next terms in the expansion, with symbols in S™~!, correspond
to the cases j = 1 and k = 0,1,2 in (46). These require the explicit
computation of (f/ ,)~" which can be determined from (44):

- _ ty-lyu-t —ty-!
f;lﬁ(x(yan)ao) 1: _U—l 0

We now handle each of these cases in turn.

j=1k=0:

For this case we get

1 — — —
WUU WU ™'D, - Dy —2U "Dy - Dg)(ab)|(x(y.7),0)
2i|n| ‘det awn‘
—i
= o1 (VU 00 U100 + 201 0; - 99)(a) (a(y.).0)-
2|n| |det awn‘

The |n| term, in the denominator, gets included in V' due to the homo-
geneity of degree —1 of the entries of this matrix, and gets canceled by
a multiplying factor of || that appears as a result of the 9y derivative
operating on a(z,y, [n|(6 + 77)). So that all the functions can be finally
evaluated at © = z(y,n) and 7, and we get C1,0(y,7,n) by writing the
above formulas in component notation.

j=1Lk=1:
Here (46) gives

1

8il] |det 255 |

(tU71VU71Dx - D, — 2U71Dz . Dg)z(gab)|(m(y7ﬁ)70)

- E(VU‘law-U‘law)2—%(VU‘law-U_law)(U_law - 0p)

T a2a |
nf |det 55| \ 8

1

+ 5 (U0, - 89)2> (90) (2 (y.7).0)-

Because g has a third order zero at the critical points, for the fourth
order differential operators not to annihilate the term gab, at least three
derivatives have to hit g. But then, from (47), it is clear that to compute
those derivatives, we can simply substitute g for —S(z, 7+ 6) + S(z, 7).
However, if only derivatives in x were involved, at the critical point § = 0
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these two terms would cancel each other. So we are reduced to the case
where at least three derivatives hit g, necessarily in mixed combinations
of z and 6. And these can be computed by just considering the func-
tion —S(x, 7+ 6).

So the term that only includes derivatives in x vanishes and brings no
contribution to the final formula. For the remaining two differential op-
erators, after grouping together symmetric contributions of derivatives,
we obtain the formula for Cy 1(y, §.n).

j=1,k=2:
Finally, for this last case we get

(U'VU™D, - D, — 20D, - Dg)*(g2ab)|(x(y.7).0)

96i|n| ’det = On’
i ( 1 1 1 1 Ut
e B (VU 10, -U19,)3 (VU 0, -U10,)2(U10,-0p)
|77|‘det 66155;7’ 96 16
1
g(VU L0, -UT10,) (U0, -09)?

1 _
- E(U 18x'89)3> (9%ab)|(x(y,7),0)-

The function ¢2 has a sixth order zero at the critical points, so all the
derivatives have to hit it, with the product ab not being differentiated
at all. Again, gathering together symmetric contributions of derivatives,
and disregarding the first two sixth order differential operators here, that
would bring only derivatives in x to at least one of the factors of g, we
obtain Ci 2(y, §,n). O

As Q = A*PA € 9™ (Y, Qi,ﬂ) is a pseudodifferential operator on Y,
given in the coordinate system chosen around gy by

27T // W=Dy, G, n)u(F) di dn,

its complete symbol ¢(y,n) € S™ in these coordinates has an asymptotic
expansion

u— Qu(y

aly.m) ~ Y (=) 0202 c(y, §,1) 5=y,

la|=0
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from which 0% (Q) can then be written, modulo symbols in S™2, as
(48)

n

o (Q)m) = aly ) + 5 D Oy Dea(yn)
k=1

= C(% Y, 77) —1 Z 8?§k87]kc(y7 ga 77)\1):11

J=1

NE

i
t32 90n. [c(y,y,m)]
k=1

= C(% Y, 77) -1 Z a?}kankc(yv ga 77)\1):11

j=1

+ Z (aUk aﬁk C(y7 Y, 77) + aﬂk 8"7k C(yu v, n))\g:y

1

N | .
bl
Il

=c(y,y,n) + (O, Oy c(y, 4, 1)

ol
[

E
Il
—

— 05, O, c(y, 23777))|g:y (mod Smiz)-

Before we proceed with the final computations, we should still make
some observations that allow us at this point to get a few further simplifi-
cations. First, we recall that the cut-off function x, used in the definition
of a, was constructed so that it is equal to one in a conic neighborhood
of (xo,y0,70) for large |n|. Moreover, from Lemma 2 we can immedi-
ately conclude that the dependence of ¢ on § comes exclusively from the
symbol b which, in turn, from (38) and (39), can be easily seen to be a
function of § only through the cut-off x in a. Therefore, when g = y,
|n| is large and (z,y,n/|n|) is close to (zq, Yo, n0/|m0|), the cut-off func-
tion is locally constant and equal to one, so that the second term in the
sum above is zero.

For the statement of Theorem 1 we are only concerned with obtain-
ing " (Q)(y,n) in a small conic neighborhood of (yo, o), for large |n|,
for which = = z(y,n) is close to zy. According to the previous remarks,
in this region (48) can then be simplified to

(49) o"(Q)(y,n) = c(y, y,n)+% > 0y On ey, §im)jg=y  (mod §™73).
k=1
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Because we are ignoring differences in S™~2, it is clear that the whole
expansion for b from (38) is only needed in (41) for the term Cpo. The
terms C1 9, C1.1 and Cj o, which are already in S™~!, require only the
consideration of the leading order term p(x, S% (x,n))a(z, §,n) from (38),
as far as their dependence on the symbol b is concerned.

Following this observation, the first term c(y,y,7n) in (49), modulo
symbols in S™~2 is then given by

(50)
pa? )
c(y,y.m) = +
‘det man(:v n ‘ ‘det man(:v n)‘
x _Zalﬂk afkp_ 5 Z 817 8{E Qaﬁjafkp
k=1 ],k 1 TSR

+ > ViU Uy 00, 0n, (pa?) ZU L8,., (pdy: (a*))
i,5,k,l=1 i,j=1
935 99

—177—1 2 2
b3 U5 (g o) + 255 0 )

,5,k,1=1

L0
ij(’“)xl(’“)mankp

- Zn: Vi, U UL U ! (6375 (pa?)
R JTak gt e Orpdx g Ony
238 9 o0*S 9
+ O0x,0x,0n, O,y (pa) + Bxk(’“)xlaxqanppa >
- S 9°S
+ ViU tU U U (
z‘,j,k,l;q,r,s L Ik 0x1,0x40n, 0x;0x50n);,
n 928 %S n %S 028 2
0x,0240n, 0x10x,0n,  Ox1,0x10M, 0x40xs0N;
- %S S
_ U-_-lU_1U71
Z G TR TP <8x18xq8m 0 ;0n,0ny;

i,5,k,l,p,q=1
5 928 028
0xj0x40n; Ox10M,0np

)pa2 (mod S™?).
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Asin Lemma 2, all the occurrences of the x variable in this formula are to
be evaluated at z = x(y, n). Also note that, except for the derivatives in &
of the symbol p, which come from the S™~! terms in (38), all the other
derivatives acting on p that we have written above, in the x variables,
really mean derivatives acting on the composed function p(x, S, (z,n)).

At this point we make a final simplification, observing that for the
(y,m) points that we are concerned with, the cut-off function x is equal
to one and does not play any role in the previous formulas. So that, for
practical purposes, the symbol a(z,y,n) in (39) can be regarded as just

1/2
being equal to ‘det a0 (x n) , when it comes to the computation of
the final formulas.

From the known property that the derivative of the determinant of a
nonsingular matrix M is given by

ddet M = det M tr(M~'0M),

we then have
2

9%S
detaa( )’

9% "L (9% 8PS

where the derivative J can be considered to be any of the partial deriva-
tives, in the x or 7 variables. A second derivative applied to a? requires

d(a®) =0

an extra formula for the derivative of the inverse of (%), which can

easily be obtained by differentiating the equation

" /928 -1 928
> (3$3?7(x’77)>ij m(%n) = dik.

This yields

S X/ 98 ~lro%s 928
8 a o 4 = a o 4 a o 4 87 ) )
(5omte n))ij Z_j( S n))ik (5ote n))lj ()

or, once z is evaluated at = z(y, n),

928 \ " a?s
(BB
001 / 35| a=x(y.n) k=1 &Ekaml

= wun)

We now use these facts to simplify (50), leading to the mutual cancel-
lation of all the terms that do not involve derivatives in p, except for the
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first one. Note that the points (z, S, (y,n)) at which p and its derivatives
are evaluated in (50), become

(xv Sa/c (Ia 77)) = (I(yv 77)7 f(y, 77)) = (I)(ya 77)7

once z is evaluated at z(y,n). In particular, p(x, S, (x,n)) becomes

p(x(y,n), Sy (x(y,n),n)) = p(®(y,n)).

From these considerations, we then obtain the final form of (50),
for (y,7n) in a small conic neighborhood of (yg,n0) and large |7,

(51)
c(y,y,m) = p(2(y,n))

i " 23S
Z vl 2
* 2 Z [ TR 90 On

,3,k,l,q,r=1

038
—1lr7—177—1
= ViU, U Uy, DundniOn, 0z,.p(®(y,1m))

n

o3S %S
UG U ) e = U
+ Z |:V;]Uik Ui 01,07,02, Yij 0z, 0x;0n;

%,5,k,l,p,q,r=1

s 928

S p—

Ui Ukt g omedms 90
PSS

_ VijUiglUilUil

; 0]
gl Y'pq &Ckaiﬂlanp &an«fﬂr 8&1’( (y,n))

+ Y (ViU U 0,00, p((y,m))

n
s

i,j,r,5=1
+ z": oV U U %S 0r O p(®(0.0)
e 1) Zar Y gk axkaxs x,. O, D Y, M
Y 9258 928
- yr—1r7—1
+iik;s:1 [VUUik Ui Ox 0z, 071075
928 -
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The conclusion of the computation of the transformation formula
for 0" (Q) will now follow once we explicitly determine the second term
n (49). In the (y,n) region that we are interested in, and disregarding
symbols in S™2, it is given by

N | .

—Zayk% (. 5.1 > 04,0y, [p(®(y.0))]  (mod 5™72),
k=1

which can be concluded from (41), noticing that only the leading order
term in Coo(y, 7, n) is relevant here (all the remaining terms becoming
symbols in S™~2 as a result of the derivative in the n variable).

The derivatives of the composed symbol are easily computed

P @) =3 2, p(@(yn)
6yka77kp y,n —T) ) 'z, P Yy, n

2 g (@)
8yk877k ¢ P y,n

(52) + 9z, dxs
Oyx Oy,

(5:vr 0 Oz O&s
O Oy Oy O,

0&, 0
Dyr O -

where, obviously, the functions z = z(y,n) and £ = £(y,n) represent
the z and £ components of the canonical transformation (z, &) = ®(y,n).
Formulas for their partial derivatives can be determined, depending on
the generating function S(z,n), by differentiating the equations:

y = Sy (x(y,m),m),
E(y,m) = Sy(x(y,n),m),

with respect to y and 7. From these we obtain

oz, 1 oz,
dye b o Z Ui

02,00, p(®(y, 7))

) 0z, 0. p(®(y,m))

. p(®(y,m)),

%:Z": S 0e %S —Zn:‘/ L, 8

i 9. 9. - Uy a. 9.
Yk M 0z;0x,. Onp  O0xrOng b ki O0x;0x,
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0%, - o1 O°S _1y—1-1 0’8
YOk _i,j§:1 ~Uir Uy O0x;0n; Oy, + Vi Ujg Ut U dx102,0m;”

6257‘ - —1 835 —1yr—1 835 825 a2$i
oy, Z ki O, 0,0ny, VUi Un 0x;0x,0, + Ox;0x, OyrOny

i,4,l=1

Substituting these formulas in (52) and adding the corresponding term
o (51) in (49), most terms cancel out and we are left with the final
formula for 0% (Q), with (y,7n) in a small conic neighborhood of (yg, 70)
and large |n],

a’(@Q)(y,n) = p(2(y,m)) + % Zamjagjp(@(y,n)) (mod S™?),
j=1

which is the formula ¢ (Q) = 0 (P) o ® that was our goal to prove.

The unitary properties of the operator A, given by (25) and (26),
are now easy to obtain. For the first one, we make P = Ix and
apply this improved version of Egorov’s theorem just proved, to con-
clude that Q = A*A € WO(Y, Qi,/ 2) has a Weyl principal symbol which,
in a conic neighborhood of (yg,7n0), equals 1. Therefore Q — Iy €
U~2 in this neighborhood. As for (26), we use the fact that A is el-
liptic at (zo,&o,¥0,M0) € Cs to ensure the existence of a microlocal
parametrix A=1 € I°(Y x X, O(I)—I;Q;//ix) in a neighborhood of that
point. Following the typical argument now, we get

* —2
A*A - Iy € \I](yoﬂm)

= AA*A—-Ael?

(£0,£0,Y0,M0)

= AATAA —AA € \IJ(;ZO £)

* -2
= AA* —Ix € \I](wo,fo)’

where the indices of the operator classes are obviously meant to indicate
the points in conic neighborhoods of which the assertions are valid. [
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