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ON FIXED POINTS OF AUTOMORPHISMS OF
NON-ORIENTABLE UNBORDERED KLEIN SURFACES

GRZEGORZ GROMADZKI

Abstract

In 1973, Macbeath found a general formula for the number of
points fixed by an arbitrary orientation preserving automorphism
of a Riemann surface X. It was given in terms of a group G of con-
formal automorphisms of X and the ramification data of the cover-
ing X — X/G, which corresponds to the so called universal cover-
ing transformation group. In these terms, for the case of a cyclic
group of automorphisms of an unbordered non-orientable Klein
surface, the formula was given later by Izquierdo and Singerman
and here we find formulas valid for an arbitrary (finite) group G
of automorphisms.

1. Introduction

It is not difficult to see, that the set of fixed points of an automor-
phism of a compact Riemann surface consists either of isolated points
or simple closed Jordan curves called ovals (and sometimes mirrors).
The last case occurs only for anticonformal involutions, in the literature
known as symmetries. In 1973, Macbeath found in [14] a formula for
the number of points fixed by an arbitrary automorphism of a Riemann
surface X in terms of the group of conformal automorphisms of X and
the ramification data of its action, which corresponds to the so called
universal covering transformation group. Later we found (in [7] —see
also [8]) a similar formula for the number of ovals of a symmetry.

It is worth mentioning here that the possible number of ovals of a sym-
metry of a Riemann surface is given by the classical Harnack-Weichold
Theorem [10], [17]. A useful role is also played by the method of Hoare-
Singerman [11], concerning non-normal subgroups of NEC-groups, which
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allowed the relations between the total number of ovals of two symme-
tries and the order of their product to be found in [4], and the nature
of the set of fixed points of involutions of compact Klein surfaces with
boundary in [3].

The case of non-orientable surfaces is essentially different, since both
types of fixed points may occur simultaneously. For a cyclic group G
of automorphisms, Izquierdo and Singerman found [12] formulas for the
number of isolated fixed points and the number of ovals of any automor-
phisms from G, in terms of the universal covering transformation group.
Here we find such formulas for an arbitrary group of automorphisms of
such a surface. We also give some illustrative examples.

2. Preliminaries

We shall use combinatorial methods based on the Riemann uni-
formization theorem and theory of Fuchsian and NEC-groups as in [5],
where the reader can find necessary concepts and facts together with
the precise references to the original sources. By an unbordered non-
orientable Klein surface we mean a non-orientable compact topological
surface with a dianalytic structure which, roughly speaking, differs from
the classical analytic one by the fact, that the complex conjugation is
allowed for transition functions of charts, see [1] for preciseness. The
principal role in combinatorial study of such surfaces is nowadays being
played by the counterpart of the Riemann uniformization theorem, by
which such a surface X can be represented as the orbit space H/T of the
hyperbolic plane, with respect to the action of some, so called surface
NEC-group [1]. The notion of a Klein surface has already been known to
Klein himself, but until seventies such surfaces have been studied either
as algebraic curves with real equations or as Riemann surfaces together
with a single antiholomorphic involution by considering automorphisms
commuting with it. By [1], for a surface given as such orbit space, its
group of automorphisms G can be represented as the factor group A/T
for some other NEC-group A and the pair (H, A) is called universal cov-
ering transformation group for the action (G, X).

An NEC-group is a discrete subgroup of the group of isometries G
of the hyperbolic plane H, including those reversing orientation with a
compact orbit space. If A contains no orientation preserving elements of
finite order, then it is called surface NEC-group. Using fundamental re-
gions, Macbeath and Wilkie [13], [18] associated to every NEC-group A
the so called signature, which determines its algebraic structure. It has
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the form

(1) (g; £ [ma,...ome]i {(n1rs s nasy )y oo, (Mt o5 Nk, ) })

and mentioned above surface groups have signatures (g;=+;[—];{—}).
The numbers m; > 2 are called the proper periods, the brackets
(41, - - ., Nis, ), the period cycles, the numbers n;; > 2 are the link peri-
ods and g > 0 is said to be the orbit genus of A. The orbit space H/A
is a surface with k& boundary components, orientable or not according
to the sign being + or —, having topological genus g and the canonical
projection H — H/A is a covering ramified over r interior points with
ramification indices m; and over s; points lying on each boundary com-
ponent with ramification indices n;;. A group with the signature (1) has
a presentation given by generators:

a) z; i=1,...,7 elliptic elements
( ) ) ) 3 3 p
(b) ¢y, i=1,....k,j=0,...,8, (hyperbolic reflections)
(c) e, i=1,...,k, (boundary generators)
d) a;, b;, i=1,...,gif the sign is +, (hyperbolic translations
g g y
d;, 1=1,...,¢if the sign is —, (glide reflections)

and relations

(1) & =1, =1,

(2) Cis; = e{lcioei, iZl,...,k,

(3) C%—:l, i=1,...,k, j=0,..., s,
(Cij_lcij)n” =1, i=1,...,k, j=1,...,s,

1,1 —17-1_
(4) x1...xpe1. .. eparbiay by ... agbga, b =1 or

xl...xTel...ekdf...dgzl.

Any system of generators of an NEC-group, which satisfies the above
relations, will be called a canonical system of generators and it is known,
that every element of finite order in A is conjugate either to a canonical
reflection or to a power of some canonical elliptic element x; or else to a
power of the product of two consecutive canonical reflections ¢;;_1, ¢;;.

For every NEC-group we have an associated fundamental region,
whose hyperbolic area p(A) depends only on the group and for a group
with signature (1) it is given by

r k  s;
2) 2n <Eg+k— 24> (1—1/mi)+1/2> > (1- 1/%—)) :

1=1 i=1
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where € = 2 or 1 according to the sign being + or —. It is known that an
abstract group with the presentation given by the above generators and
relations can be realized as an NEC-group with the signature (1) if and
only if (2) is positive. Finally, if A’ is a subgroup of finite index in an
NEC-group A, then it is an NEC-group itself and the Hurwitz-Riemann
formula (known also as the Hurwitz formula) says that

(3) (A A] = pu(A')/ p(A).

3. On fixed points of an automorphism of unbordered
non-orientable Klein surfaces

Let X = H/T be a non-orientable, unbordered Klein surface, where
I' is an NEC-group with signature (g; —;[—];{—}) and let the action
of G on X be defined by an epimorphism 6: A — G, where A is an
NEC-group with signature (1). We start this principal section of the
paper with the lemma describing the nature of the set of points fixed by
an automorphism of X.

Lemma 3.1. The set of points fixed by an automorphism of an unbor-
dered, non-orientable Klein surface consists of isolated points and ovals.

Proof: The canonical projection 7: H — X is a non-ramified covering
and the action of G on X is defined by

gr = w(Ah) if g = 6(N), x = w(h).

So if ¢ = 6(N), then x = 7w(h) is its fixed point if and only if Ah = ~yh for
some v € I', which means that v~ 1\ fixes h. But then y~1) is either an
elliptic element or a reflection, say c, since these are the only hyperbolic
isometries with fixed points. In the first case x is obviously an isolated
fixed point. Now, if in the second case ¢ is the axis of ¢, then on the
one hand 7(¢) is the fixed-point set of ¢, while on the other hand it is
homeomorphic to a circle, as 7 is an unramified covering. o

Theorem 3.2. The number of isolated fixed points of ¢ € G on X is
given by the formula

Na(D] (3 1/mi+>"1/n5),

where N stands for the normalizer and the sums are taken respectively
over canonical elliptic generators and consecutive canonical reflections
for which ¢ is conjugate to a power of 6(x;) and 6(c;ij—1¢;5) respectively.
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Theorem 3.3. An involution o of X has

> [C(G, () : 0(C(A, )]

ovals, where C denotes the centralizer and the sum is taken over non-
conjugate canonical reflections of A, whose images under 6 are conjugate
to o in G.

The proof of Theorem 3.2: If ¢ has order n, then the number of its fixed
points equals the number of the conjugacy classes of cyclic subgroups of
order n of T'y, = 67!({¢)). Clearly each such subgroup is generated by
an elliptic element. However, each elliptic element is conjugate either to
a power of some canonical elliptic generator or to a power of the product
of two consecutive canonical reflections of A and we say that fixed points
of ¢ are produced by x; or ¢;j_1c;; in each of these cases respectively. We
have to find how many fixed points of ¢ is produced by each element x;
and by each product c¢;j_1¢;;.

Assume first, that x; produces fixed points of ¢. Then, since conjugate
elements have the same number of fixed points, by exchanging ¢ with a
suitable conjugation, we may assume that z;* € I';, for n; = m;/n. Now
wzl"w™t € Ty, if and only if w € 071 (Ng((p))). Observe however, that
wz"w™! and w'z] w'~! are conjugate in I'y, if and only if w™tyw’ €
Na((z]')) = (z;) for some ~ € T',, which means that w™'w’ € (x;)T,.
Thus x; produces

[0~ (Ne((9))) : (@a)Ty] = [07' (Na((9))/T : (2:)Ty/T] = [N ((9))]/m

fixed points of ¢.

Similarly, assume that c;j_1c;; produces fixed points of ¢. Then
again we may assume that (c;j—1¢;;)"™% € Ty, for m;; = ni;/n. Also
w(cij—1ci;)™iw™! € Ty, if and only if w € 7' (Ng({(p))). On the other
hand w(c;j—1¢;;)™ 9wt and w'(cjj—1¢;5)™9w'~! are conjugate in Ty,
if and only if w™'yw’ belongs to Na({(cij—1¢i;)™7)) = (cij—1¢i5), for
some vy € I',, which means that w™'w’ € (¢;j_1¢;;)[',. Hence c;j_1¢45
produces

[0~ (Na () : {cij—1¢ij)T] = (0007 (Na((9)))) : 0({cij—1¢i5)T)]
= [Ne({p)) : (0(cij—1¢ij))]
= [Na((@))|/ni;

fixed points of ¢. O
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The proof of Theorem 3.3: The proof here is similar to the proof of the
formula for the number of ovals of a symmetry of Riemann surface
from [7]. We have to count reflections of A, which are in I', = §71({o))
but are not conjugate there. If Fix(o) contains an oval, then o is conju-
gate to 0(c;) for some canonical reflection ¢; of A. Now, without loss of
generality, we may assume that 0(c;) = o, since conjugate symmetries
have the same number of ovals. Observe that for w € A, ¢}’ € I', if and
only if w € 671(C(G, 0(c;))). Denote the last by C; and observe that it
normalizes I',. Thus for v,w € Cj, the reflections ¢} and ¢} of I', are
conjugate in ', if and only if w™'v € C(A,¢;)[,. As a consequence,
conjugates of ¢; give rise to

[C; : C(A, ci)T5] = [C(G,0(c;)) : O(C(A, ;)]

empty period cycles in T',.
Let now c% € T, for some i’ # i and w € A. Then 0(w)f(cy )0(w)~! =
o and so

(4) ’LUOl'/’LU_l = Ol

Indeed, if A € wCyw™! then O(w)~1O(N)0(w) € C(G,0(cir)). Thus 6(N)
centralizes o and so A € C;. Conversely, if A € C;, then 6(\) normal-
izes 0. Hence O(\)0(w)0(ci)0(w)~*0(N\)~! = o, which in turn means
that 6(w)~10(\)0(w) centralizes 6(c;/) and so A € wCyw™! as claimed.

Furthermore, ¢ € T, if and only if vw™! € C;. Indeed, if this is the
case, then 0(v)f(c;)0(v)~! = o and so O(w)~10(v) € C(A,0(ci)). Thus
w™lv € Cy, which gives vw™! € wCpw™! = C;. The converse is similar
and we omit it.

Finally, given u, v € C; and v = uw, v' = vw/w, the reflections ¥, cf,/
are conjugate in I', if and only if v=1v" € C(A, ¢;)w 1 Tyw = C(A, ¢;r)T,
which means that u='u’ € wC(A, ¢/ )Tw™!. Therefore, by (4), the con-
jugates of ¢;s give rise to

[Cl : ’LUC(A, Ci/)l—"wil] = [Cl/ : C(A, Ci/)r] = [C(@(A), H(Ci/)) : G(C(A, Ci/))]

empty period cycles in ', and so the result follows. O

Remark 3.4. The algebraic type of the centralizers of reflections was
found by Singerman in his thesis [15] (see also [16]). However, what
made Theorem 3.3 effective, is the fact that by going a bit more into
details in the Singerman’s papers, one can find explicit generators for
these groups (e.g. [2], [9]).
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4. Some examples

We finish the paper by developing some examples in which we find
topological type of the fixed-points sets for all automorphisms for some
extremal actions of finite groups on non-orientable, unbordered Klein
surfaces. Let v(g) be the largest possible number of automorphisms of a
non-orientable unbordered Klein surface of topological genus g. Then we
have the following result due to Conder, Maclachlan, Todorovic Vasilje-
vic and Wilson.

Theorem 4.1 ([6]). If g is odd then v(g) > 4g. If g is even then
v(g) > 8(g — 2). Furthermore, these bounds are sharp for infinitely
many g. O

Example 4.2. The action of order 4¢g from Theorem 4.1 is given in [6]
by the epimorphism

0: A — G =Dy, = (u,v | u?, v, (wv)?),
where A is an NEC-group with signature (0;+;[—]; {(2,2,2,9)}) and
O(co) =u, O(c1) =uv?, O(co) =29, 6O(c3)=uv.
Corollary 4.3. The following table gives the topological structures of the

sets of points fized by automorphisms acting on extremal Klein surfaces
from Example 4.2

Representative Isolated
. . Ovals
of a conjugacy class fixed points
u 2 1
vd 2g 1
uv? 1
uv9d T2 0
v32 0

Automorphisms from the remaining conjugacy classes have no fixed
points.

Proof: Here ¢;,ci11 € C(A,¢;) for i = 1,2 and so 8(C(A, ¢;)) has at least
4 elements. Also, ci,¢2,c3 € C(A,c2) and so §(C(A,c2)) = Dag. So
using our formulas and some obvious facts concerning normalizers and
centralizers in dihedral groups, we obtain the above topological structure
of the set of fixed points of all elements of G. O
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Example 4.4. The case of even g is technically more involved. Here,
the action of order 8(¢g — 2) was given in [6] in two steps. First, let
A be an NEC-group with signature (0;+; [—]; {(2,2,2,4)}) and consider
homomorphism
0: A — H =74 5x Dy xZs)=(w) x ((u,v] v (uw)?) x (1)),

given by

O(c1) = v*,  0(c2) =t,
where each of the generators u, v, t conjugates w to its inverse. Then,

the image G of 6 has order 8(¢g — 2) and it acts on a non-orientable
unbordered Klein surface of topological genus g.

0(co) = wu, 0(c3) = uw,

Corollary 4.5. The following table gives the topological structures of the
sets of points fized by automorphisms acting on extremal Klein surfaces
from Example 4./

Automorphisms from the remaining conjugacy classes have no fixed

points.

Representative Isolated Oval
of a conjugacy class fixed points vais
wu 0
v? 2(9 - 2)
t 0
uv 0 g/2—1
wuv? 4
v2t 8
4 =0(4
tuv 9=0(4) 0
8 g#0(4)
vw 4 0

Proof: Now,

C(A, co) = (co) @ (e1) * ((cocs)?),
C(A, c3) = (c3) @ (ca) * ((cocs)?),
C(A, ¢;) = {c;) ® ({ci—1) * {ci11)) fori=1,2
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by [16] (see also [2], [9]). Furthermore the images of cg, c1, c2, cs,
c1c2, Cac3, Cocs are pairwise non-conjugate in G and straightforward, but
rather tedious, calculations of their centralizers give the above
results. (]
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