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HEAT KERNEL AND SEMIGROUP ESTIMATES FOR

SUBLAPLACIANS WITH DRIFT ON LIE GROUPS

Nick Dungey

Abstract

Let G be a Lie group. The main new result of this paper is
an estimate in L2(G) for the Davies perturbation of the semi-
group generated by a centered sublaplacian H on G. When G is
amenable, such estimates hold only for sublaplacians which are
centered. Our semigroup estimate enables us to give new proofs
of Gaussian heat kernel estimates established by Varopoulos on
amenable Lie groups and by Alexopoulos on Lie groups of poly-
nomial growth.

1. Introduction

In this paper we establish an estimate for the Davies perturbation of
the semigroup generated by a centered sublaplacian on a Lie group. This
result constitutes a new and useful form of L2 off-diagonal estimate for
such semigroups. From our result, we derive a new proof of a Gaussian
estimate of Varopoulos [18] for the heat kernel of a centered sublaplacian,
and also recover a more precise Gaussian estimate of Alexopoulos [2], [1]
for the case where the Lie group has polynomial volume growth.

The analyses of [18] and [2] are based on probabilistic methods to
study the diffusion associated with a sublaplacian. The approach of the
present paper, on the other hand, is functional-analytic rather than prob-
abilistic. Note that while [18] and [2] make essential use of the detailed
structure theory and geometry for amenable or polynomial growth Lie
groups, we largely avoid this and for this reason we feel our approach is
often technically simpler.

Our methods can be extended to study convolution powers of cen-
tered probability densities, but this extension is not trivial and will be
described elsewhere [7]. See [3], [18] for centered densities on Lie groups.
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To state our results precisely we fix some notation. Let G be a con-
nected Lie group. Denote by dg the left Haar measure on G and let
dĝ = d(g−1) = ∆(g−1) dg be the corresponding right Haar measure
where ∆: G → (0,∞) is the modular function. Let g be the Lie alge-
bra of G, consisting of all right invariant vector fields on G. Suppose
that A0, A1, . . . , Ad′ are elements of g such that A1, . . . , Ad′ algebraically
generate the Lie algebra g, and consider the subelliptic sublaplacian

H = −

d′∑

i=1

A2
i +A0

with drift term A0. It is well known (see for example [14, Section IV.4])
that H generates a contraction semigroup St = e−tH in the spaces Lp :=
Lp(G; dg), 1 ≤ p ≤ ∞, and we denote by Kt : G → (0,∞) the corre-
sponding heat kernel which satisfies

(1) (Stf)(g)=(Kt ∗ f)(g)=

∫

G

dhKt(h)f(h−1g)=

∫

G

dĥKt(gh
−1)f(h)

for all t > 0, g ∈ G and f ∈ C∞
c (G).

The notion of centeredness is defined as follows (cf. [2], [18]). Let
G0 be the closure of the group [G,G] in G, and consider the canonical
homomorphism π0 : G→ G/G0. Note that G/G0 is a connected abelian
Lie group and it can therefore be written as a direct product Rn1 ×Tn2 ,
where T = R/Z. Set G1 = π−1

0 ({0} × Tn2) ⊆ G and let g1 be the Lie
algebra of G1. Then g1 is an ideal of g and [g, g] ⊆ g1. (If G is simply
connected, one just has g1 = [g, g].) Observe that G/G1

∼= R
n1 . One

says that H = −
∑d′

i=1 A
2
i +A0 is centered if A0 ∈ g1.

It is not difficult to show that H is centered if and only if Hη = 0 for
every continuous homomorphism η : G→ R (one observes that any such
homomorphism vanishes on G1, so that A0η = 0 when A0 ∈ g1).

By a well known lemma (see [2, Section 1]), every sublaplacianH onG
is conjugate via a character with a centered sublaplacian. Explicitly, one
can find a multiplicative character Φ: G→ (0,∞), so Φ(gh) = Φ(g)Φ(h),
and a constant β ≥ 0 such thatH = Φ−1(Hc+β)Φ whereHc is a centered
sublaplacian.

In this sense, the study of general sublaplacians essentially reduces to
the centered case.

Let us state our basic result for the Davies perturbation of the semi-
group St. Let R+(G) denote the algebra of all real, right invariant
differential operators on G without constant term, so R+(G) is linearly
spanned by all monomials X1 . . . Xj where j ≥ 1 and X1, . . . , Xj ∈ g.
Introduce the set E consisting of all C∞-smooth functions ψ : G → R
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such that Pψ ∈ L∞ for all P ∈ R+(G); note that ψ itself may be un-
bounded. We write ‖ · ‖p→q for the norm of a bounded linear operator
from Lp = Lp(G; dg) to Lq.

Theorem 1.1. Let H be centered, let ψ ∈ E and set Hλ = eλψHe−λψ.
Then there exists k > 0 such that

Re(Hλf, f) ≥ −kλ2‖f‖2
2

for all λ ∈ R and f ∈ C∞
c (G). Moreover, Hλ extends to the generator

of a semigroup e−tHλ = eλψSte
−λψ in L2 satisfying

‖e−tHλ‖2→2 ≤ ekλ
2t

for all t > 0 and λ ∈ R.

Davies perturbation estimates are well known for various classes of
elliptic or subelliptic operators on manifolds: see, for example, [5], [14]
and [19]. In our situation, however, the drift term A0 creates new and
non-trivial difficulties in the proof. These can be overcome by carefully
utilizing the properties of the class E defined above.

When G is amenable, the estimates of Theorem 1.1 fail for non-
centered sublaplacians. We shall give a precise version of this statement
in Section 2 below. The main fact about amenability needed there is
that G is amenable if and only µ0 = 0, where

(2) µ0 := inf
06=f∈C∞

c (G)

∑d′

i=1 ‖Aif‖
2
2

‖f‖2
2

is the bottom of the L2 spectrum of the symmetric sublaplacian−
∑d′

i=1A
2
i .

If G is non-amenable, the statements of Theorem 1.1 hold for all
sublaplacians, centered or not, as an easy consequence of µ0 > 0 (see
remarks of Section 2 below). See also [18] for discussions of the role of
amenability.

We define a distance on G in the following standard way. Fix a
compact neighborhood U of the identity e of G which is symmetric
(U = U−1) and define ρ : G → N = {1, 2, 3, . . .} by

ρ(g) = inf{n ∈ N : g ∈ Un}, g ∈ G,

where Un := {g1g2 · · · gn : gj ∈ U}.
Although ρ /∈ E in general, we shall construct in Section 3 a func-

tion ψ0 ∈ E with the same global growth as ρ, that is, with c−1ρ≤ψ0≤cρ
for some c > 1. Together with Theorem 1.1, this leads to a new proof of
the following Gaussian estimate of Varopoulos [18].
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Theorem 1.2 ([18]). Let H be centered. Then there are c, b > 0 such
that

Kt(g) ≤ c∆(g)−1/2e−bρ(g)
2/t

for all t ≥ 1, g ∈ G.

Recall (cf. [10]) that G is said to have polynomial growth of orderD if
an estimate c−1nD ≤ dg(Un) ≤ cnD holds for some c > 1 and all n ∈ N;
alternatively, if dg(Un) ≥ aean for some constant a > 0 and all n ∈ N,
then we say G has exponential volume growth.

We shall give a new proof of the following theorem which was proved
by Alexopoulos [2] with a quite difficult proof. (In the special case where
G is nilpotent, an easier proof is given by Melzi [13]. The possibility of
using Davies perturbation estimates to prove Alexopoulos’ theorem is
mentioned in [18, p. 435] without giving details.)

Theorem 1.3 ([2]). Suppose G has polynomial growth of order D, and
let H be centered. Then there are c, b > 0 such that

Kt(g) ≤ ct−D/2e−bρ(g)
2/t

for all t ≥ 1 and g ∈ G.

Our proof of Theorem 1.3 is based on Theorem 1.1 and on ideas
of [6] and involves certain weighted Nash inequalities for convolution
operators.

The semigroup St = e−tH generated by a sublaplacian with drift
is not bounded analytic in general (it is, however, analytic if A0 is in
the linear span of the fields {Ai, [Ai, Aj ] : i, j ∈ {1, . . . , d′}}: see [9],
[15], [16] for small time estimates in this case). Thus the estimate
‖HSt‖2→2 = ‖∂tSt‖2→2 ≤ ct−1, t > 0, fails in general. Nevertheless,
whenH is centered we have the following interesting large time regularity
result for St.

Theorem 1.4. Let H be centered and let p ∈ (1,∞). Then there is
c = c(p) > 0 such that ‖HSt‖p→p ≤ ct−1 for all t ≥ 1.

From Theorem 1.4 and since
∑d′

i=1 ‖AiStf‖
2
2 = Re(HStf, Stf) for

all f ∈ L2, one deduces the estimate of spatial derivatives

‖AiSt‖2→2 ≤ ct−1/2

for all i ∈ {1, . . . , d′}, t ≥ 1, when H is centered. This estimate is
apparently new for centered sublaplacians on general Lie groups.

In the particular case where G has polynomial growth, Theorem 1.4
is contained in results of [2] (which also imply the analogous estimate
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for p = 1 and p = ∞). Our proof of Theorem 1.4 for general G will
be given elsewhere, since the proof seems best approached via a more
general study of regularity of the convolution powersK (n) =K∗K∗· · ·∗K
of a fixed probability density K on G, rather than by analyzing directly
the sublaplacian H .

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, and then give a converse result
showing that similar estimates fail for non-centered sublaplacians.

In general, c, c′ and so on denote positive constants whose value may
change from line to line when convenient. Also, sums over the variable i
are always taken over the range i ∈ {1, . . . , d′} unless otherwise indicated.

A key idea in the proof of Theorem 1.1 is to write the vector field A0 ∈
g1 in terms of second or higher order derivatives (or differences). To do
this we require the following algebraic result.

Proposition 2.1. There exists a compact, connected, abelian, possibly
trivial subgroup C of G such that g1 = c+[g, g], where c is the Lie algebra
of C and + denotes a sum of vector spaces which is not necessarily direct.

Some related descriptions of the algebra g1 are given in [18, Appendix]
in the case where G is amenable. For completeness, we give a proof of
Proposition 2.1 in the Appendix of this paper.

We remark that compactness of C, but not the fact that C is abelian,
will be essential in the arguments to follow.

To begin the proof of Theorem 1.1, let us fix ψ ∈ E . The norm

estimate ‖e−tHλ‖2→2 ≤ ekλ
2t follows in a routine manner from the first

estimate of the theorem. Indeed, using the first estimate one obtains the
differential inequality

(d/dt)(‖e−tHλf‖2
2) = −2 Re(Hλe

−tHλf, e−tHλf) ≤ 2kλ2‖e−tHλf‖2
2

which implies the desired norm estimate (compare, for example, [5, Sec-
tion 4]). Thus we concentrate on proving the first estimate of the theo-
rem.

Observing the basic identity eλψX(e−λψf) = Xf−λ(Xψ)f for λ ∈ R,
X ∈ g, f ∈ C∞

c (G), since H = −
∑
i A

2
i +A0 we find that

Hλf = −
∑

i

A2
i f +A0f + λ

∑

i

(Aiψ)Aif + λ
∑

i

Ai((Aiψ)f)

− λ2
∑

i

(Aiψ)2f − λ(A0ψ)f.
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Then

(Hλf, f) =
∑

i

‖Aif‖
2
2 + (A0f, f) + λ

∑

i

(Aif, (Aiψ)f)

− λ
∑

i

((Aiψ)f,Aif) − λ2
∑

i

‖(Aiψ)f‖2
2 − λ((A0ψ)f, f).

Because the terms (A0f, f) and (Aif, (Aiψ)f)−((Aiψ)f,Aif) are purely
imaginary, then

Re(Hλf, f) =
∑

i

‖Aif‖
2
2 − λ2

∑

i

‖(Aiψ)f‖2
2 − λ((A0ψ)f, f)

≥
∑

i

‖Aif‖
2
2 − cλ2‖f‖2

2 − λ((A0ψ)f, f),
(3)

where we used the finiteness of the norms ‖Aiψ‖∞, i ∈ {1, . . . , d′}. Our
main task will be to prove an estimate

(4) |((A0ψ)f, f)| ≤ c′
∑

i

‖Aif‖2‖f‖2

for all f ∈ C∞
c (G). Note the elementary estimate that

|λ|‖Aif‖2‖f‖2 ≤ 2−1ε‖Aif‖
2
2 + 2−1ε−1λ2‖f‖2

2

for all ε > 0, λ ∈ R and i ∈ {1, . . . , d′}. Then by choosing ε > 0
sufficiently small and using (3) and (4), we obtain for some k > 0 an
estimate of the desired form Re(Hλf, f) ≥ −kλ2‖f‖2

2, λ ∈ R.
Thus, it remains to establish (4). Apply Proposition 2.1 to decompose

A0 = A′
0 +A′′

0 with A′
0 ∈ [g, g] and A′′

0 ∈ c. We will estimately the terms
((A′

0ψ)f, f) and ((A′′
0ψ)f, f) separately.

Note that [g, g] is linearly spanned by all commutators of the form
[Ai1 , . . . , Aik ] with k ≥ 2 and i1, . . . , ik ∈ {1, . . . , d′}, since A1, . . . , Ad′

generate the Lie algebra g. Therefore A′
0 ∈ [g, g] is expressible as a sum

of terms each of the form AiP for some i ∈ {1, . . . , d′} and P ∈ R+(G).
Note that

((AiPψ)f, f) = (Ai((Pψ)f), f) − ((Pψ)(Aif), f)

= −((Pψ)f,Aif) − (Aif, (Pψ)f)

and hence |((AiPψ)f, f)| ≤ 2‖Pψ‖∞‖f‖2‖Aif‖2. Since ‖Pψ‖∞ is finite
for any P ∈ R+(G), this argument shows that

|((A′
0ψ)f, f)| ≤ c

∑

i

‖Aif‖2‖f‖2

for all f ∈ C∞
c (G).



Sublaplacians with Drift 381

To handle the term ((A′′
0ψ)f, f), define an operator P acting on C∞

functions ϕ : G→ R by

(Pϕ)(g) =

∫

C

dsϕ(sg) =

(∫

C

dsL(s)ϕ

)
(g), g ∈ G,

where ds denotes Haar measure on the compact group C = exp(c) nor-
malized so that ds(C) = 1. Here, L is the left regular representation
of G which acts by the formula (L(g)ϕ)(h) = ϕ(g−1h), g, h ∈ G.

Since A′′
0 ∈ c it is easy to see that PA′′

0ϕ = 0. Defining the differ-
ence operators ∂g := I − L(g) for g ∈ G, we may therefore write the
operator A′′

0 in the form

A′′
0 = (I −P)A′′

0 =

∫

C

ds ∂sA
′′
0 .

Observing the general identity ∂g(f1f2) = (∂gf1)f2 +(L(g)f1)(∂gf2), we
have

((∂sA
′′
0ψ)f, f) = (∂s((A

′′
0ψ)f), f) − ((L(s)A′′

0ψ)∂sf, f)

= ((A′′
0ψ)f, ∂s−1f) − ((L(s)A′′

0ψ)∂sf, f)

for all s ∈ C, since ∂s−1 is adjoint to ∂s. Since ‖L(s)A′′
0ψ‖∞ = ‖A′′

0ψ‖∞
is finite and ‖∂sf‖2 = ‖∂s−1f‖2, we see that

|((∂sA
′′
0ψ)f, f)| ≤ 2‖A′′

0ψ‖∞‖f‖2‖∂sf‖2

for all s ∈ C. Recall the standard inequality (cf. [14, pp. 267–268])

(5) ‖∂gf‖p ≤ cρ(g)
∑

i

‖Aif‖p

which is valid for all g ∈ G and p ∈ [1,∞]. From the above observations,
and the compactness of C which implies that sup{ρ(s) : s ∈ C} is finite,
we deduce that

|((A′′
0ψ)f, f)| ≤

∫

C

ds |((∂sA
′′
0ψ)f, f)| ≤ c

∑

i

‖Aif‖2‖f‖2

for all f ∈ C∞
c (G). This completes the proof of (4) and of Theo-

rem 1.1.

Remarks.

– In general, the constant k in Theorem 1.1 depends on the choice
of ψ ∈ E . However, if E ′ is some subset of E which is uniformly
bounded, in the sense that

sup
ψ∈E′

‖Pψ‖∞ <∞
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for each P ∈ R+(G), then it easily follows from the above proof
that one can choose the same constant k uniformly for all ψ ∈ E ′.

– The proof of the theorem, and (3), yield the following stronger
inequality for (Hλf, f): for each ε ∈ (0, 1) there is a c(ε) > 0 such
that

(6) Re(Hλf, f) ≥ (1 − ε)
∑

i

‖Aif‖
2
2 − c(ε)λ2‖f‖2

2

for all f ∈ C∞
c and λ ∈ R. This inequality will be needed in

the proof of Theorem 1.3. For a symmetric sublaplacian (that
is, A0 = 0) one can choose ε = 0 in (6), as follows from (3). We do
not know if one can take ε = 0 for a general centered sublaplacian.

– For an arbitrary sublaplacian (possibly non-centered), inequal-
ity (3) implies the crude estimate

Re(Hλf, f) ≥ (µ0 − cλ2 − c′|λ|)‖f‖2
2

for λ ∈ R, f ∈ C∞
c (G), where µ0 is as in (2) and c′ = ‖A0ψ‖∞.

If G is non-amenable, then since µ0 > 0 we see that the estimates
of Theorem 1.1 hold even for non-centered sublaplacians.

We next prove a result converse to Theorem 1.1.

Theorem 2.2. Suppose G is amenable and let H be a sublaplacian which
is not centered. Then the estimate of Theorem 1.1 fails when λ is close
to zero. More precisely, there exist a homomorphism Φ: G → R (so
Φ(gh) = Φ(g)+Φ(h), g, h ∈ G) with Φ ∈ E, and constants α, β > 0 such
that Hλ := eλΦHe−λΦ satisfies

inf
06=f∈C∞

c

Re(Hλf, f)

‖f‖2
2

= −βλ2 − αλ

and

(7) ‖e−tHλ‖2→2 = e(βλ
2+αλ)t

for all λ ∈ R and t > 0. It follows that sup{e−kλ
2t‖e−tHλ‖2→2 : t ≥

1, 0 < λ ≤ t−1/2} = ∞ for any number k > 0.

Proof: Consider the homomorphism π1 : G → G/G1
∼= Rn1 and identify

G/G1 with Rn1 . The vector fields A′
i := dπ1(Ai), i ∈ {0, 1, . . . , d′}, are

constant coefficient fields on Rn1 , and A′
0 6=0 because H is not centered.

Therefore one can find b ∈ Rn1 such that the function F (x) := 〈b, x〉
satisfies A′

0F = 1, where 〈·, ·〉 is the usual inner product in Rn1 . Be-
cause A1, . . . , Ad′ generate g, the fields A′

1, . . . , A
′
d′ must linearly span
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the tangent space of Rn1 , so at least one of the constants λi := A′
iF ,

i ∈ {1, . . . , d′}, is non-zero.
Then Φ := F ◦ π1 : G → R is a homomorphism satisfying AiΦ = λi,

i ∈ {1, . . . , d′}, and A0Φ = 1. Clearly PΦ is constant for any P ∈R+(G),

so Φ ∈ E . Note that β :=
∑d′

i=1 λ
2
i > 0, and by calculating as in the

proof of Theorem 1.1,

Hλ = eλΦHe−λΦ = −
∑

i

A2
i +A0 + 2

∑

i

(λλi)Ai − (βλ2 + λ).

Then Re(Hλf, f)/(‖f‖2
2) =

∑
i ‖Aif‖

2
2/(‖f‖

2
2) − (βλ2 + λ) and taking

infimums over f ∈ C∞
c (G) yields the first statement of the theorem,

since amenability means that µ0 = 0 in (2).

That ‖e−tHλ‖2→2 ≤ e(βλ
2+λ)t follows from the first statement of the

theorem. To prove the reverse inequality, consider H ′
λ := dπ1(Hλ) which

is an elliptic operator on Rn1 with constant coefficients and with constant
term −βλ2 −λ. It is easy to see, via the Fourier theory of L2(Rn1), that

‖e−tH
′

λ‖2→2 = e(βλ
2+λ)t. Since G is amenable, a well known transference

theorem [4, Theorem 2.4] gives ‖e−tH
′

λ‖2→2 ≤ ‖e−tHλ‖2→2, and (7) is
proved.

The final statement of the theorem follows directly from (7) upon
choosing λ ∼ t−1/2.

3. A smooth distance

The aim of this section is to prove the following lemma providing a
smooth distance function ψ0 ∈ E on any connected Lie group. This is
required for the applications of Theorem 1.1. Let ρ : G → N be defined
as in Section 1.

Lemma 3.1. There exists a ψ0 ∈ E satisfying ψ0(g) ≥ 1, ψ0(g) =
ψ(g−1), ψ0(gh) ≤ ψ0(g) + ψ0(h) and c−1ρ(g) ≤ ψ0(g) ≤ cρ(g) for
all g, h ∈ G and some constant c > 1.

As an aside, the function of Lemma 3.1 automatically satisfies Pψ0 ∈
L∞ for left invariant differential operators P without constant term onG.
(This follows easily from ψ0(g)=ψ0(g

−1) since the inversion map g 7→g−1

intertwines left invariant with right invariant operators.)

Proof of Lemma 3.1: Consider the modulus ρB : G → [0,∞) associated
with a fixed vector space basis B1, . . . , BN of the Lie algebra g. Then
ρB(g) is the distance from g to e, with respect to the right invariant
Riemannian metric on G such that B1, . . . , BN are orthonormal. The
functions ρ and ρB are equivalent at infinity (cf. [19, p. 41]) in the sense
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that c−1ρ ≤ ρB + 1 ≤ cρ for some c > 1. Note that ‖BjρB‖∞ ≤ 1 for
all j and that ρB(g) = ρB(g−1), ρB(gh) ≤ ρB(g)+ρB(h) for all g, h ∈ G.

Fix a function τ ∈ C∞
c (G) with τ ≥ 0,

∫
G dg τ(g) = 1, τ(g) = τ(g−1),

g ∈ G, and with support contained in the ball UB := {g∈G : ρB(g)<1}.
We define

ψ00 := τ ∗ ρB ∗ τ, ψ0 := ψ00 + 6.

Then ψ0 : G→ R is a C∞-smooth function and ψ0 ≥ 6. Because ρB(g) =
ρB(g−1) and τ(g) = τ(g−1), it is clear that ψ0(g) = ψ0(g

−1).
Next, since |ρB(hg)− ρB(g)| ≤ 1 and |ρB(gh)− ρB(g)| ≤ 1 whenever

h ∈ UB , it is straightforward to verify that

‖ψ00−ρB‖∞ ≤ ‖ρB−(τ ∗ρB)‖∞+‖(τ ∗ρB)−(τ ∗ρB ∗τ)‖∞ ≤ 1+1 = 2.

Then ‖ψ0−ρB‖∞ ≤ 8, and because ρB is equivalent to ρ, it easily follows
that c−1ρ ≤ ψ0 ≤ cρ for some c > 1.

The estimates ‖ψ00 − ρB‖∞ ≤ 2 and ρB(gh) ≤ ρB(g) + ρB(h) imply
that ψ00(gh) ≤ ψ00(g) + ψ00(h) + 6, so that ψ0(gh) ≤ ψ0(g) + ψ0(h).

It remains to show that ψ0 ∈ E . Let 〈·, ·〉 be the inner product
on g such that B1, . . . , BN are orthonormal, and define χij ∈ C∞(G)
by χij(g) := 〈Ad(g−1)Bi, Bj〉 where Ad is the adjoint representation
of G. For any ϕ ∈ C∞(G), the general identity (cf. [8, p. 200])

BiL(g)ϕ = L(g)(Ad(g−1)Bi)ϕ =

N∑

j=1

L(g)χij(g)Bjϕ

implies that

Bi(τ ∗ ϕ) =

N∑

j=1

(χijτ) ∗ (Bjϕ).

Let Q be any right invariant differential operator on G (possibly of order

zero). Then QBi(τ ∗ϕ) =
∑N

j=1(Q(χijτ))∗(Bjϕ), and setting ϕ = ρB ∗τ
yields

QBiψ0 = QBiψ00 =

N∑

j=1

(Q(χijτ)) ∗ (BjρB) ∗ τ.

Since BjρB ∈ L∞ and τ,Q(χijτ) ∈ C∞
c (G), we see that QBiψ0 ∈ L∞.

Because Q was arbitrary, this shows that ψ0 ∈ E .

4. Proof of Theorem 1.2

Given Theorem 1.1 and Lemma 3.1, we can obtain Theorem 1.2
by adapting essentially known arguments (compare, for example, [19,
pp. 126–127]).
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First, we need the following fact. For each t0 > 0 there exist c, b > 0,
depending on t0, such that

(8) Kt0(g) ≤ ce−bρ(g)
2

for all g ∈ G. This Gaussian estimate for a fixed time is known: see [17,
Appendix A.4] and [11]. Actually, (8) could be deduced from the semi-
group estimate of Theorem 1.1 by applying a local Harnack inequality:
see [19, pp. 126–127] for details which could be adapted to our situation.

Next, fix a ψ0 ∈ E with properties as in Lemma 3.1, and for λ ∈ R

write

Sλt := eλψ0Ste
−λψ0 , S̃λt := ∆1/2Sλt ∆−1/2.

One sees from (1) that the integral kernel of the operator S̃λt with respect
to right Haar measure dĝ = ∆(g−1) dg is given by

K̃λ
t (g, h) := eλψ0(g)∆1/2(g)Kt(gh

−1)∆−1/2(h)e−λψ0(h)

for g, h ∈ G. Choosing h = e, one derives an estimate of type

eλ(ψ0(g)−ψ0(e))∆1/2(g)Kt(g) ≤ ‖S̃λt ‖b1→∞

≤ ‖S̃λ1/3‖b2→∞‖S̃λt−(2/3)‖b2→b2‖S̃
λ
1/3‖b1→b2

≤ ceωλ
2t

for all t ≥ 1, g ∈ G and λ ∈ R, where ‖ · ‖bp→bq denotes the norm

from Lp(G; dĝ) to Lq(G; dĝ). Here we applied an estimate ‖S̃λs ‖b2→b2 ≤

eωλ
2s, which follows from Theorem 1.1 since ∆1/2 : L2(G; dg)→L2(G; dĝ)

is a unitary isomorphism, and estimates of type ‖S̃λ1/3‖b2→∞+‖S̃λ1/3‖b1→b2 ≤

c′eω
′λ2

which follow by a standard integration of (8) with t0 = 1/3. The-
orem 1.2 follows by optimizing over λ.

5. Proof of Theorem 1.3

The proof of Theorem 1.3 in this section is inspired by ideas of [6],
and is based on certain Nash type inequalities.

Let G have polynomial growth of order D ≥ 1. It is well known
(cf. [19, p. 124]) that G is unimodular.
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We shall fix ψ0 ∈ E as in Lemma 3.1 and denote by Uλ the operator
of pointwise multiplication by eλψ0 , for λ ∈ R. To prove Theorem 1.3, it
suffices to establish for some ω > 0 that

(9) ‖UλKt‖2 ≤ ct−D/4eωλ
2t

for all t ≥ 1 and λ ≥ 0. Indeed, since K2t = Kt ∗Kt and applying (9)
one gets

eλψ0(g)K2t(g) ≤

∫

G

dh eλψ0(h)Kt(h)e
λψ0(h

−1g)Kt(h
−1g)

≤ ‖UλKt‖
2
2 ≤ c′t−D/2e2ωλ

2t

for all g ∈ G, λ ≥ 0, t ≥ 1, and then Theorem 1.3 follows by optimizing
over λ.

We will derive (9) as a consequence of the following proposition, whose
proof is temporarily deferred. For a locally integrable function f : G→C,
denote by L(f) the convolution operator L(f)f1 := f ∗ f1, which is well
defined at least on bounded, compactly supported functions f1. Note
that St = L(Kt).

Proposition 5.1. There exist constants k′ > 1, r0 ≥ 1, such that

‖UλK1‖2 ≤ cek
′λ2

,

Re(UλHf,Uλf) + k′λ2‖Uλf‖
2
2 ≥ λ2‖Uλf‖

2
2,

‖U−λStUλ‖2→2 ≤ ek
′λ2t

for all λ ≥ 0, f ∈ C∞
c (G), t > 0, and

‖Uλf‖
2
2 ≤ cr2

{
Re(UλHf,Uλf) + k′λ2‖Uλf‖

2
2

}

+ cr−D(‖U−λL(f)Uλ‖2→2)
2

(10)

for all r ≥ r0, λ ≥ 0 and f ∈ C∞
c (G).

We call inequality (10) a weighted convolution Nash inequality
(cf. [6]). It differs essentially from standard Nash type inequalities (see
for example [14]) in replacing the L1 norm of f with the L2 operator
norm of the convolution operator L(f). This replacement allows one to
avoid semigroup estimates in L1 which occur in the use of standard Nash
inequalities.

Let us show how to obtain Theorem 1.3 from Proposition 5.1. Fix k′

as in the proposition, and define

Jλ(t) = e−2k′λ2t‖UλKt‖
2
2
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for t ≥ 1 and λ ≥ 0. (That Jλ(t) is finite follows from (8) or Theo-
rem 1.2.) Because (d/dt)Kt = −HKt, differentiation with respect to t
gives

J ′
λ(t) = −2e−2k′λ2t

(
(UλHKt, UλKt) + k′λ2‖UλKt‖

2
2

)
≤ 0

for all t ≥ 1, λ ≥ 0. The first estimate of Proposition 5.1 implies that
sup{Jλ(1) : λ ≥ 0} is finite, and since J ′

λ(t) ≤ 0 it follows that

(11) c0 := sup{Jλ(t) : t ≥ 1, λ ≥ 0} <∞.

In inequality (10) let us set f = e−k
′λ2tKt for t ≥ 1, λ ≥ 0, and observe

that ‖U−λL(f)Uλ‖2→2 ≤ 1 by the third estimate of Proposition 5.1. One
gets

(12) Jλ(t) ≤ cr2(−2−1J ′
λ(t)) + cr−D

for all t ≥ 1, r ≥ r0 and λ ≥ 0. Now for each t ≥ 1 and λ ≥ 0
set r = (εJλ(t))

−1/D , where ε > 0 is a fixed constant. By choosing ε
sufficiently small, we may arrange that r ≥ r0 because of (11), and that
cr−D ≤ 2−1Jλ(t) in the right side of (12). Then subtracting 2−1Jλ(t)
from both sides of (12) and rearranging yields, for some c′ > 0,

Jλ(t)
1+(2/D) ≤ −c′J ′

λ(t)

for all t ≥ 1 and λ ≥ 0. Thus

(d/dt)[Jλ(t)
−2/D ] ≥ c′′ > 0,

which implies, recalling (11), that

Jλ(t)
−2/D ≥ Jλ(1)−2/D +

∫ t

1

c′′ ≥ c
−2/D
0 + c′′(t− 1) ≥ ct

for all t ≥ 1, λ ≥ 0. That is, Jλ(t) ≤ c′t−D/2 for all t ≥ 1, λ ≥ 0, which
proves (9) and Theorem 1.3 follows.

It remains to prove Proposition 5.1. The first estimate of the propo-
sition follows from Theorem 1.2, or just from (8), while the second and
third estimates follow for sufficiently large k′ from Theorem 1.1.

It is left to prove (10). In fact, it is enough to obtain inequality (10) in
the case where λr ≤ 1. For given this case, we can assume (increasing c
if necessary) that c > 1; then by the second estimate of Proposition 5.1,
we see that (10) holds automatically in the case where λr ≥ 1.
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Set V0(r) = dg({g ∈ G : ψ0(g) ≤ r}) for r > 0. Let w : G → (0,∞)
be any continuous function satisfying w(g) = w(g−1), g ∈ G, and de-
note also by w the multiplication operator f 7→ wf . Setting ‖w‖∞,r =
sup{w(g) : g ∈ G, ψ0(g) ≤ r}, one has the “convolution Nash inequality”

‖wf‖2 ≤ sup
g∈G,ψ0(g)≤r

‖w∂gf‖2 + ‖w‖∞,rV0(r)
−1/2‖w−1L(f)w‖2→2

for all r > 0 and f ∈ Cc(G). See [6, Lemma 2.2] for the straightforward
proof of this estimate, which is valid in a general setting of unimodular
locally compact groups.

Since G has polynomial growth of order D, there exists r0 ≥ 1 such
that V0(r) ≥ c′rD for all r ≥ r0. Setting w = eλψ0 and squaring the last
displayed inequality, we therefore obtain

‖Uλf‖
2
2 ≤ 2 sup

ψ0(g)≤r

‖Uλ∂gf‖
2
2 + ce2λrr−D(‖U−λL(f)Uλ‖2→2)

2

for all r ≥ r0 and λ ≥ 0. We will prove the L2 estimate that

(13) ‖Uλ∂gf‖
2
2 ≤ cψ0(g)

2 Re(UλHf,Uλf) + cψ0(g)
2λ2ecψ0(g)λ‖Uλf‖

2
2

uniformly for all g ∈ G, λ ≥ 0 and f ∈ C∞
c (G). Inserting (13) in

the preceding displayed inequality yields (10) for all r ≥ r0 and λ ≥ 0
with λr ≤ 1, and Proposition 5.1 then follows.

To verify (13), first note the identity

Uλ∂gf = ∂gUλf + [1 − eλ∂gψ0 ]L(g)Uλf.

Applying (5), (6), and the fact that ρ ≤ cψ0, we find that

‖∂gUλf‖
2
2 ≤ c′ρ(g)2

∑

i

‖AiUλf‖
2
2

≤ c1ψ0(g)
2
{
Re(HλUλf, Uλf) + c2λ

2‖Uλf‖
2
2

}

= c1ψ0(g)
2
{
Re(UλHf,Uλf) + c2λ

2‖Uλf‖
2
2

}
.

From (5) and ρ ≤ cψ0, we have ‖∂gψ0‖∞ ≤ cρ(g)
∑
i ‖Aiψ0‖∞ ≤ c′ψ0(g),

and because |1 − es| ≤ |s|e|s|, s ∈ R, then

‖[1−eλ∂gψ0 ]L(g)Uλf‖2≤‖1−eλ∂gψ0‖∞‖Uλf‖2 ≤ cψ0(g)λe
cψ0(g)λ‖Uλf‖2

for all g ∈ G and λ ≥ 0. Combination of these estimates establishes (13),
and the proof of Proposition 5.1 and Theorem 1.3 is complete.
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6. Appendix

In this appendix we give a proof of Proposition 2.1 by appealing to Lie
structure theory (see [12]). Some similar results about g1 are described
in [18, Appendix].

Let G be any connected Lie group, and recall from Section 1 the
notations G0 = [G,G], π0 : G→ G/G0

∼= Rn1 ×Tn2 and G1 = π−1
0 ({0}×

T
n2).
Let M be a maximal compact subgroup of G; such subgroups exist

(see [12, p. 186]). Because π0(M) is a compact subgroup of G/G0, it is
contained in {0} × Tn2 , and hence M ⊆ G1. We claim that

(14) G1 = M [G,G].

The proof of (14) requires several observations. Note that G0 is a closed,
connected normal subgroup of G1, and G1/G0

∼= Tn2 is compact and
connected; since M ⊆ G1 is maximal compact, then G1 = MG0 by
applying [12, p. 186, Theorem 3.7]. Next, if K is an arbitrary compact
subgroup of G, the result of [12, pp. 180–181, Theorem 3.1] shows that
gKg−1 ⊆ M for some g ∈ G. Thus K ⊆ g−1Mg ⊆ M [G,G], proving
that any compact subgroup ofG is contained in the subgroupM [G,G]. It
follows that M [G,G] is closed in G, for otherwise (see [12, pp. 191–192])
there would exist a one-parameter subgroup {γ(t) : t ∈ R} of M [G,G]
whose closure is compact and not contained in M [G,G], a contradiction.

Closedness of M [G,G] implies that G0 = [G,G] ⊆M [G,G], and because
G1 = MG0, our claim (14) follows.

Passing to Lie algebras in (14) yields g1 = m+[g, g] where m is the Lie
algebra of M and the sum need not be direct. By a standard decomposi-
tion theorem for compact Lie groups (cf. [12, p. 144]), m = m1 ⊕ c where
m1, c are respectively semisimple and abelian ideals of m and C = exp(c)
is compact, connected and abelian. Since m1 = [m1,m1] ⊆ [g, g], we see
that g = c + [g, g] and the proof of Proposition 2.1 is complete.
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