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1. Introduction and statement of results

Recently, Fan, Liao, and Ma ([5]), and Kifer ([10]) proposed to cal-
culate the topological entropy spectrum of level sets of multiple ergodic
averages. Here, the topological entropy means Bowen’s topological en-
tropy (in the sense of [3]; see the definition in Section 2) which can be
defined for any subset, not necessarily invariant or closed.

Let Σ = {0, 1}N. Among other questions, Fan, Liao, and Ma ([5])
asked what is the topological entropy of

Aα :=

{
(ωk)∞1 ∈ Σ : lim

n→∞

1

n

n∑
k=1

ωkω2k = α

}
(α ∈ [0, 1]).

As a first step to solve the problem, they also suggested to study a subset
of A0:

A := {(ωk)∞1 ∈ Σ : ωkω2k = 0 for all k ≥ 1}.
The topological entropy of A, denoted by htop(A), was later given by
Kenyon, Peres, and Solomyak [9].

Theorem 1.1 (Kenyon–Peres–Solomyak). We have

htop(A) = − log(1− p) = 0.562399 . . . ,

where p is the unique real solution in [0, 1] of

p2 = (1− p)3.
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Building on the idea of [9], the question about the topological entropy
of Aα was finally answered by Peres and Solomyak [12], and then in
higher generality by Fan, Schmeling, and Wu [6].

Theorem 1.2 (Peres–Solomyak, Fan–Schmeling–Wu). For any α∈ [0, 1],
we have

htop(Aα) = − log(1− p)− α

2
log

q(1− p)
p(1− q)

,

where (p, q) is the unique solution in [0, 1]2 of the system{
p2(1− q) = (1− p)3,
2pq = α(2 + p− q).

In particular, htop(A0) = htop(A).

Another interesting related set is

B := {(ωk)∞1 ∈ Σ : ωk = ω2k for all k ≥ 1}.

A sequence ω ∈ {0, 1}N is said to be simple normal if the frequency of
the digit 0 in the sequence is 1/2. It is said to be normal if, for all n ∈ N,
each word in {0, 1}n has frequency 1/2n. We denote the set of normal
sequences by N .

We are interested in the intersection of N with the set Aα of given
frequency of the pattern 11 in ωkω2k. For the usual ergodic (Birkhoff)
averages the normal sequences all belong to one set in the multifractal
decomposition – the situation for multiple ergodic averages turns out to
be very different.

Our results are as follows:

Theorem 1.3. For α ≤ 1/2 we have

htop(N ∩Aα) =
1

2
log 2 +

1

2
H(2α),

where H(t) = −t log t− (1− t) log(1− t). For α > 1/2, the set N ∩ Aα
is empty.

Further,

htop(N ∩A) = htop(N ∩A0) =
1

2
log 2.

Moreover, N ∩B ⊂ A1/2 and

htop(N ∩B) = htop(N ∩A1/2) = htop(B) =
1

2
log 2.
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The last statement of Theorem 1.3 was recently proved, in higher
generality, by Aistleitner, Becher, and Carton [1].

Let us now define the set of sequences with prescribed frequency of 0’s
and 1’s:

Eθ :=

{
ω ∈ Σ : lim

n→∞

ω1(ω) + · · ·+ ωn(ω)

n
= θ

}
.

In particular, E1/2 is the set of simple normal sequences.

Theorem 1.4. We have

htop(Eθ ∩Aα) =

(
1− θ

2

)
H

(
2θ − α
2− θ

)
+
θ

2
H

(
θ − α
θ

)
for α ≤ θ ≤ (2 + α)/3, otherwise Eθ ∩Aα = ∅. Further,

htop(Eθ ∩A) = htop(Eθ ∩A0) =
2− θ

2
H

(
2θ

2− θ

)
.

Note that

htop(E1/2 ∩A) =
3

4
H

(
2

3

)
> htop(N ∩A).

Applying the results of [12], we have the following corollary.

Corollary 1.5. The equality

htop(Eθ ∩Aα) = htop(Aα)

holds if and only if α and θ satisfy the relation

(1.1) (2θ − α)2(θ − α)(2− θ) = θ(2− 3θ + α)3.

In particular, when

θ=
2

3

(
1 +

(
2

23

)2/3
3

√
3
√

69− 23−
(

2

23

)2/3
3

√
3
√

69 + 23

)
=0.354 . . . ,

i.e., the unique real solution of the equation 4θ2(2 − θ) = (2 − 3θ)3, we
have

dimH Eθ ∩A = dimH A.

We organize our paper as follows. In Section 2 we give some prelimi-
naries. Section 3 is devoted to the proof of Theorem 1.3. The proofs of
Theorem 1.4 and Corollary 1.5 are given in Section 4.
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2. Preliminaries

2.1. Bowen’s topological entropy. In 1973, Bowen ([3]) introduced
a definition of topological entropy for any subset which is not necessar-
ily invariant or closed. Though the original definition of Bowen’s topo-
logical entropy is for any topological dynamical systems we recall, for
simplicity, the definition of Bowen’s entropy for a topological dynamical
system (X,T ) equipped with a metric d. For x ∈ X, n ∈ N, n ≥ 1,
denote by Bn(x, ε) the Bowen ball defined by

Bn(x, ε) := {y ∈ X : d(T kx, T ky) < ε, ∀k = 0, . . . , n− 1}.

For E ⊂ X, s ≥ 0, N ≥ 1, and ε > 0, set

HsN (E, ε) = inf
∑
i

exp(−sni),

where the infimum is taken over all finite or countable families {Bni(xi, ε)}
such that xi ∈ X, ni ≥ N , and E ⊂

⋃
iBni(xi, ε). The quantityHsN (E, ε)

is non-decreasing as N increases, so the following limit exists

Hs(E, ε) = lim
N→∞

HsN (E, ε).

For the quantity Hs(E, ε) considered as a function of s, there exists a
critical value, which we denote by htop(E, ε), such that

Hs(E, ε) =

{
+∞, s < htop(E, ε),

0, s > htop(E, ε).

One can prove that the following limit exists

htop(E) = lim
ε→0

htop(E, ε).

The quantity htop(E) is called the topological entropy of E.
We remark that for the symbolic dynamical system (Σ, σ), where the

space Σ = {0, 1}N is equipped with the usual metric defined by

∀ω, τ ∈ Σ, d(ω, τ) := 2−min{n≥0:ωn+1 6=τn+1},

and σ is the left shift defined by

σ : ω1ω2 . . . 7→ ω2ω3 . . . ,

the Bowen ballBn(ω, ε) (ε<1) is nothing but the cylinder Cn(ω1, . . . , ωn)
of order n defined by

Cn(ω1, . . . , ωn) := {τ ∈ Σ : τ1 = ω1, . . . , τn = ωn},
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and Bowen’s topological entropy htop(E) and Hausdorff dimension of a
subset E ⊂ X, dimH(E), differ only by a constant:

htop(E) = (log 2) · dimH(E).

We refer to Falconer’s book [4] for the details on Hausdorff dimension.

2.2. Billingsley’s lemma for Bowen’s entropy. The Mass Distribu-
tion Principle ([4, Principle 4.2]) or, more generally, Billingsley’s lemma
([2]) for the Hausdorff dimension has the following topological entropy
version ([11]).

Let µ be a Borel probability measure on X. The local entropy hµ(x)
at a point x ∈ X is defined as

hµ(x) = lim
ε→0

lim inf
n→∞

− logµ(Bn(x, ε))

n
.

Theorem 2.1 (Ma–Wen, 2008). Let µ be a Borel probability measure
on X, E ⊂ X be a Borel subset, and 0 < h <∞. Then

(i) if hµ(x) ≤ h for all x ∈ E, then htop(E) ≤ h,
(ii) if hµ(x) ≥ h for all x ∈ E and µ(E) > 0, then htop(E) ≥ h.

We remark that in the symbolic dynamical system (Σ, σ), the local
entropy hµ(ω) at a point ω ∈ Σ is

hµ(ω) = lim inf
n→∞

− logµ(Cn(ω))

n
,

where Cn(ω) is the cylinder of order n containing the point ω.

2.3. A lemma of elementary analysis. The following lemma of Peres
and Solomyak ([12, Lemma 5]) will be applied several times.

Lemma 2.2 (Peres–Solomyak). Suppose that {zn} is a bounded real
sequence and there exists c > 0 such that |zn−zn+m| ≤ cmn for all m,n ∈
N. If z2kn → γ as k →∞ for all n ∈ N, then zn → γ.

2.4. A family of measures on {0, 1}N. For the lower bound esti-
mations of the topological entropy, the following family of measures
on {0, 1}N will be used. Let (p0, p1) be a probability vector, i.e., p0, p1 ≥
0 and p0 + p1 = 1. Let (

p00 p01
p10 p11

)
be a transition matrix with all coefficients pij ≥ 0 and pi0 + pi1 = 1
for i = 0, 1. We also assume the following condition which will guarantee
our measures to be non-trivial:

(2.1) |p01 − p11| 6= 1.
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With the data pi, pij (i, j ∈ {0, 1}), we define a Borel measure µ on
the space Σ = {0, 1}N as follows

• if k is odd, then ωk = 1 with probability p1,
• if k is even and ωk/2 = 1, then ωk = 1 with probability p11,
• if k is even and ωk/2 = 0, then ωk = 1 with probability p01,

with the events {ωk = 1} and {ω` = 1} independent except when k/`
is a power of 2. More precisely, we define the measure µ on any cylin-
der Cn(ω1 · · ·ωn) of order n ∈ N by

µ(Cn(ω1 · · ·ωn)) =

dn/2e∏
k=1

pω2k−1
·
bn/2c∏
k=1

pωkω2k
,

where d·e, b·c denote the ceiling function and the integer part function
respectively. Then by Kolmogorov consistence theorem, µ is well defined
on Σ. We remark that the measure µ depends on the given data pi, pij
(i, j ∈ {0, 1}). We will see later that by suitably choosing these data,
we can find suitable measures supported on the sets. Such measures are
essential for calculating the topological entropy of the sets.

For ω ∈ Σ and n ∈ N, set

xn(ω) =
2

n

n∑
k=n/2+1

ωk.

The following Lemmas 2.3, 2.6, and 2.9 will be useful.

Lemma 2.3. For µ-almost all ω, as n→∞,

x2n(ω) =
1

2
p1 +

xn(ω)

2
p11 +

1− xn(ω)

2
p01 + o(1).

Proof: Recall that, by the definition of the measure µ, the random vari-
ables ωk and ω` are independent except when k/` is a power of 2. Note
that xn(ω) is the average of ωk’s where no two different k’s have a quo-
tient that is a power of 2. Thus for those n/2 + 1 ≤ k ≤ n, ωk are
independent. Thus by Hoeffding’s inequality ([7, Theorem 1]), we have

(2.2) µ(|x2n − Eµ(x2n|xn)| > n−1/4) ≤ e−2
√
n.

To calculate Eµ(x2n|xn). Let us consider the expected numbers of {k ∈
(n/2, n] : ω2k−1 = 1}, of {k ∈ (n/2, n] : ωk = 1 ∧ ω2k = 1}, and of
{k ∈ (n/2, n] : ωk = 0 ∧ ω2k = 1} under the condition of xn. The
first one is not really conditional: it is equal to p1 · n/2. The second
equals p11 · ]{k ∈ (n/2, n] : ωk = 1} = p11 ·xn ·n/2. The third equals p01 ·
]{k ∈ (n/2, n] : ωk = 0} = p01 · (1− xn) · n/2. By noting that under the
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condition of xn, the value of x2n is the sum of the above three numbers
divided by n, we have

(2.3) Eµ(x2n|xn) =
1

2
p1 +

xn
2
p11 +

1− xn
2

p01.

Hence, by (2.2) and (2.3), we have

µ

(∣∣∣∣x2n(ω)−
(

1

2
p1 +

xn(ω)

2
p11 +

1− xn(ω)

2
p01

)∣∣∣∣ > n−1/4
)
≤ e−2

√
n.

Using the summability of the series e−2
√
n and applying the Borel–

Cantelli Lemma, we complete the proof.

Applying Lemma 2.2, we can determine the µ-almost sure limit of
xn(ω).

Corollary 2.4. For µ-almost all ω,

lim
n→∞

xn(ω) = ξ :=
p1 + p01

2− p11 + p01
.

Proof: Note that by condition (2.1),∣∣∣∣p01 − p112

∣∣∣∣ < 1.

Thus by Lemma 2.3, µ-almost surely, as k →∞,

x2kn(ω)→ p1 + p01
2− p11 + p01

.

By Lemma 2.2, this implies that µ-almost surely

(2.4) lim
n→∞

xn(ω) =
p1 + p01

2− p11 + p01
.

Proposition 2.5. For µ-almost all ω,

lim
n→∞

1

n

n∑
j=1

ωj = ξ =
p1 + p01

2− p11 + p01
.

Proof: By Corollary 2.4, for µ-almost all ω, for all n,

lim
k→∞

1

2kn

2kn∑
j=1

ωj = lim
k→∞

1

2kn

( k∑
i=1

2i−1n · x2in(ω) +

n∑
j=1

ωj

)
= ξ.

Applying Lemma 2.2, we have

lim
n→∞

1

n

n∑
j=1

ωj = ξ, µ-a.e.
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Lemma 2.6. We have, for (i, j)∈{0, 1}2, for µ-almost all ω, as n→∞,

2

n

n∑
k=n/2+1

1{ωkω2k=ij}(ω) =

(
2

n

n∑
k=n/2+1

1{ωk=i}(ω)

)
· pij + o(1),

and in particular,

2

n

n∑
k=n/2+1

ωkω2k = xn(ω) · p11 + o(1) (n→∞).

Proof: Note that for n/2 + 1 ≤ k ≤ n, the variables ωkω2k are indepen-
dent. Then the same argument as in the proof of Lemma 2.3 gives us the
assertion.

By Lemma 2.6 and Corollary 2.4, we immediately obtain the following
corollary.

Corollary 2.7. We have, for j ∈ {0, 1}, for µ-almost all ω,

lim
n→∞

2

n

n∑
k=n/2+1

1{ωkω2k=0j}(ω) = (1− ξ) · p0j

and

lim
n→∞

2

n

n∑
k=n/2+1

1{ωkω2k=1j}(ω) = ξ · p1j ,

and in particular,

lim
n→∞

2

n

n∑
k=n/2+1

ωkω2k = ξ · p11.

Proposition 2.8. For µ-almost all ω,

lim
n→∞

1

n

n∑
j=1

ωjω2j = ξ · p11.

Proof: The proof is the same as that of Proposition 2.5 by using Corol-
lary 2.7 and Lemma 2.2.

For n ∈ N and ω ∈ Σ, denote

hn(ω) := log µ(C2n(ω))− logµ(Cn(ω)).

Lemma 2.9. For µ-almost all ω, as n→∞,

2

n
hn(ω) = p0 log p0 + p1 log p1 + (1− xn(ω))(p00 log p00 + p01 log p01)

+ xn(ω)(p10 log p10 + p11 log p11) + o(1).



Normal Sequences with Given Limits of Multiple Ergodic Averages 279

Proof: Following [12], for positive integers m < n, we write ωnm for the
word ωmωm+1 · · ·ωn. For i, j ∈ {0, 1} and ω ∈ Σ, denote

Ni(ω
n
m) = ]{m ≤ k ≤ n : ωk = i}

and
Nij(ω

n
m) = ]{m ≤ k ≤ n : ωkω2k = ij}.

We also denote

Ni,odd(ωnm) = ]{m ≤ k ≤ n : k odd, ωk = i}.
Then we have

µ(C2n(ω))

µ(Cn(ω))
= p

N0,odd

0 p
N1,odd

1 pN00
00 pN01

01 pN10
10 pN11

11 ,

with Ni,odd = Ni,odd(ω2n
n+1) and Nij = Nij(ω

n
n/2+1). Thus

2

n
hn(ω) =

N0,odd

n/2
log p0 +

N1,odd

n/2
log p1

+
N00

n/2
log p00 +

N01

n/2
log p01 +

N10

n/2
log p10 +

N11

n/2
log p11.

By the classical strong Law of Large Numbers, for µ-almost all ω, as n→
∞,

N0,odd

n/2
= p0 + o(1),

N1,odd

n/2
= p1 + o(1).

By Lemma 2.6, for µ-almost all ω, as n→∞,

N00

n/2
= (1− xn(ω)) · p00 + o(1),

N01

n/2
= (1− xn(ω)) · p01 + o(1),

and
N10

n/2
= xn(ω) · p10 + o(1),

N11

n/2
= xn(ω) · p11 + o(1).

Therefore, as n→∞,

2

n
hn(ω) = p0 log p0 + p1 log p1 + (1− xn(ω))(p00 log p00 + p01 log p01)

+ xn(ω)(p10 log p10 + p11 log p11) + o(1).

By Lemma 2.9 and Corollary 2.4, we immediately have the following
corollary.

Corollary 2.10. For µ-almost all ω,

lim
n→∞

2

n
hn(ω) = p0 log p0 + p1 log p1 + (1− ξ)(p00 log p00 + p01 log p01)

+ ξ(p10 log p10 + p11 log p11).
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We close this section with the following proposition which gives the
local entropy hµ(ω) of the measure µ for a generic sequence ω.

Proposition 2.11. For µ-almost all ω,

hµ(ω) = −1

2

(
p0 log p0 + p1 log p1 + (1− ξ)(p00 log p00 + p01 log p01)

+ ξ(p10 log p10 + p11 log p11)
)
.

Proof: By Corollary 2.10, we need only to show that, as n→∞,

logµ(Cn(ω))

n
=
hn(ω)

n
+ o(1).

In fact, for all k, n ∈ N

1

2kn
logµ(C2kn(ω)) =

1

2kn

(k−1∑
i=1

h2in(ω) + log µ(Cn(ω))

)
.

Then µ-almost surely, for all n ∈ N, as k →∞,

1

2kn
logµ(C2kn(ω)) =

hn(ω)

n
+ o(1).

Applying Lemma 2.2, we complete the proof.

3. Proof of Theorem 1.3

We first prove the lower bound. We will need the measures defined in
Subsection 2.4 and we will conclude by applying Billingsley’s lemma for
Bowen’s entropy (Theorem 2.1).

Given α ∈ [0, 1], let µα be the probability measure on Σ constructed
in Subsection 2.4, by using the data (p0, p1) := (1/2, 1/2) and(

p00 p01
p10 p11

)
:=

(
2α 1− 2α

1− 2α 2α

)
.

Then

µα(Cn(ω1 · · ·ωn)) =
1

2dn/2e
·
bn/2c∏
k=1

pωkω2k
.

We will prove that the measure µα is supported on the set N ∩Aα.

Lemma 3.1. We have

µα(N ∩Aα) = 1.



Normal Sequences with Given Limits of Multiple Ergodic Averages 281

Proof: Note that by our choice of data,

ξ =
p1 + p01

2− p11 + p01
=

1
2 + 1− 2α

2− 2α+ 1− 2α
=

1

2
.

Hence by Proposition 2.8, for µα-almost all ω,

lim
n→∞

1

n

n∑
k=1

ωkω2k = ξ · p11 =
1

2
· 2α = α.

Thus µα(Aα) = 1.
Now, we show µα(N ) = 1. We can divide the set of natural numbers

into infinitely many subsets of the form

Ak = {2k − 1, 4k − 2, . . . , 2`(2k − 1), . . . } (k ≥ 1).

Let Bk be the σ-field generated by the events {ω2`(2k−1) = 1}, ` ≥
0. Observe that for the measure µα the σ-fields Bk are independent.
Observe further that µα(ω2`(2k−1) = 1) = 1/2 for every k, `. Indeed,
for ` = 0, it follows from the definition of µα. For general `, this is
proved by induction:

µα(ω2`(2k−1)=1)=µα(ω2`(2k−1) = 1 ∧ ω2`−1(2k−1) = 1)

+µα(ω2`(2k−1) = 1 ∧ ω2`−1(2k−1) = 0)

=µα(ω2`−1(2k−1) =1)·µα(ω2`(2k−1) =1|ω2`−1(2k−1) =1)

+µα(ω2`−1(2k−1) =0)·µα(ω2`(2k−1) =1|ω2`−1(2k−1)=0)

=
1

2
· 2α+

1

2
· (1− 2α) =

1

2
.

Consider now, for any n ≥ 1, the word ωm+1 · · ·ωm+n. If m ≥ n,
then the positions m+ 1, . . . ,m+ n come all from different Ak’s. Thus
ωm+1, . . . , ωm+n are independent and each of them takes values 0, 1
with probability 1/2 respectively. That is, the measure µ restricted to
such subset of positions is

(
1
2 ,

1
2

)
-Bernoulli, and for any word η∈{0, 1}n

with n ≤ m, the probability that we have ωm+i = ηi for i = 1, . . . , n
equals 2−n. Thus, for a given word η ∈ {0, 1}n we can divide N into
intervals [2j + 1, 2j+1], inside all except initial finitely many of them
(with j < log2 n), for any µα-generic sequence ω, the frequency of ap-
pearance of η equals 2−n + O(2−j/2j log j), and this means that the
µα-generic sequence ω is normal.

Next, we will calculate the local entropy hµα(ω) of the measure µα
for generic sequence ω. We denote, for t ∈ [0, 1],

H(t) = −t log t− (1− t) log(1− t),
with the convention that H(0) = H(1) = 0.



282 L. Liao, M. Rams

Lemma 3.2. We have

hµα(ω) =
1

2
log 2 +

1

2
H(2α), µα-a.e.

Proof: By Proposition 2.11, we have for µα-almost all ω,

hµα(ω)= −1

2

(
p0 log p0 + p1 log p1 + (1− ξ)(p00 log p00 + p01 log p01)

+ ξ(p10 log p10 + p11 log p11)
)

= −1

2

(
1

2
log

1

2
+

1

2
log

1

2
+

(
1− 1

2

)(
2α log(2α)

+(1−2α) log(1−2α)
)
+

1

2

(
(1−2α) log(1−2α)+2α log(2α)

))
=

1

2
log 2 +

1

2
H(2α).

Applying Theorem 2.1, by Lemmas 3.1 and 3.2, we immediately ob-
tain

htop(N ∩Aα) ≥ 1

2
log 2 +

1

2
H(2α).

To finish the proof of the lower bound we note that A ⊂ A0 but
the measure µ0 is actually supported on A, that the measure µ1/2 is
supported on B, and that the relation N ∩B ⊂ A1/2 follows from

1

n
]{n+ 1 ≤ j ≤ 2n : ωj = ω2j = 1} =

1

n
]{n+ 1 ≤ j ≤ 2n : ωj = 1} → 1

2

being satisfied for every ω ∈ N ∩B.

For the upper bound, let us first observe that

1

n

n∑
k=1

ωkω2k ≤
1

n

n∑
k=1

ωk

and the right hand side converges to 1/2 for every normal sequence ω.
Thus, the set N ∩Aα is empty for all α > 1/2.

To continue with the case α ≤ 1/2, we need the following lemma.

Lemma 3.3. Let ω be a normal sequence and let (nk = `1 + k`2) be an
arithmetic subsequence of N. Then ω restricted to the positions (nk) is
normal.

Proof: The result is originally due to Wall [13]. See also Kamae [8].
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Let us fix some m > 0. For N > m and i = 0, 1, . . . ,m, denote
by R(N, i) the set {2i(2k− 1), k ≤ 2N−i−1} (for example, R(N, 0) is the
set of odd numbers smaller than 2N ). Further, let

R(N, i, I) := R(N − 2, i),

R(N, i, II) := R(N − 1, i) \R(N − 2, i),

and

R(N, i, III) := R(N, i) \R(N − 1, i).

Note here the following obvious relations

2R(N, i, I) = R(N, i+ 1, I) ∪R(N, i+ 1, II),

2R(N, i, II) = R(N, i+ 1, III),

2R(N, i, III) ∩R(N, i+ 1) = ∅.

We denote by N (N,m, ε) the set of sequences ω such that for all n ≥
N in each R(n, i, ∗), i = 0, . . . ,m, ∗ ∈ {I, II, III} the frequency of 1’s
is between 1/2− ε and 1/2 + ε. By Lemma 3.3,

N ⊂
⋂
ε>0

∞⋂
m=1

∞⋃
N=m+1

N (N,m, ε).

Similarly, let us denote by A(α,N, ε) the set of sequences ω such that
for all n ≥ N we have

α− ε < 2−n+1
2n−1∑
j=1

ωjω2j < α+ ε.

Then

Aα =
⋂
ε>0

∞⋃
N=1

A(α,N, ε).

To obtain the upper bound, we will estimate from above the num-
ber of cylinders C2N (ω1, . . . , ω2N ) needed to cover the set N (N,m, ε) ∩
A(α,N, ε). Let us fix N , m, ε. To find the cylinders C2N (ω1, . . . , ω2N ),
we should determine for each position 1 ≤ n ≤ 2N , which value (0 or 1),
ωn will take. To this end, it would be convenient that we partition the po-
sitions from 1 to 2N into several classes according to the values of ωn and
those of the couple (ωn, ω2n). We will introduce the following notations
concerning the number of positions in each such class. For i = 1, . . . ,m,
k1, k2 ∈ {0, 1}, and ∗ ∈ {I, II}, we denote

Xi
k1k2,∗(ω) := ]{n ∈ R(N, i− 1, ∗) : ωn = k1, ω2n = k2}.
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For example, X1
01,I(ω) denotes the number of odd positions n smaller

than 2N−2 such that ωn = 0, ω2n = 1. Similarly, let

Xi
k1,∗(ω) := ]{n ∈ R(N, i, ∗); ωn = k1}.

The following relations are obvious: for any i,

Xi
10,I +Xi

11,I = Xi−1
1,I ,(3.1)

Xi
00,I +Xi

01,I = Xi−1
0,I ,(3.2)

Xi
10,II +Xi

11,II = Xi−1
1,II ,(3.3)

Xi
00,II +Xi

01,II = Xi−1
0,II ,(3.4)

Xi
01,I +Xi

11,I = Xi
1,I +Xi

1,II ,(3.5)

Xi
00,I +Xi

10,I = Xi
0,I +Xi

0,II ,(3.6)

Xi
01,II +Xi

11,II = Xi
1,III ,(3.7)

Xi
00,II +Xi

10,II = Xi
0,III .(3.8)

Note that, for a sequence ω ∈ N (N,m, ε), the right hand side in all
relations (3.1)–(3.8) are in range 2N−3−i · (1− ε, 1 + ε). Thus by (3.1),
(3.2), (3.5), (3.6), we have

(3.9) |Xi
11,I −Xi

00,I | ≤ ε · 2N−1−i,

and by (3.3), (3.4), (3.7), (3.8), we have

(3.10) |Xi
11,II −Xi

00,II | ≤ ε · 2N−1−i.

Note that once we know the values of the sequence

(3.11) (Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)

m
i=1,

then by (3.1)–(3.4), the values of (Xi
0,I , X

i
1,I , X

i
0,II , X

i
1,II)

m−1
i=1 are also

determined.
Let us start the counting of the possible (ω1, . . . , ω2N ). The idea is as

follows: we will first describe the sequences that can appear inN (N,m, ε),
starting with what can happen on the odd positions 2k − 1; after that
what can happen on positions of the form 2(2k − 1) provided that the
odd positions are already decided, and so on. Finally we will go back
and add another condition to our sequences to belong to A(α,N, ε).

Now assume that we know the values of the sequence (3.11) of number
of positions. We will count how many possible (ω1, . . . , ω2N ) we can have,
based on the information of the values of (3.11).
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The values of {ωn : n ∈ R(N, 0)} can be chosen in no more than

22
N−1

ways. After we have chosen {ωn : n ∈ R(N, i− 1)}, we can choose
{ωn : n ∈ R(N, i)} in no more than(

Xi−1
1,I

Xi
11,I

)
·
(
Xi−1

0,I

Xi
00,I

)
·
(
Xi−1

1,II

Xi
11,II

)
·
(
Xi−1

0,II

Xi
00,II

)
ways. Finally, after we have chosen {ωn : n ∈ R(N, i)} for all i ≤ m, we
will still have 2N−m−1 positions left, which we can choose in no more

than 22
N−m−1

ways.
To continue our estimation, we will use the following fact: for k, n ∈ N,

0 ≤ k ≤ n,

log

(
n
k

)
= n

(
−k
n

log
k

n
− n− k

n
log

n− k
n

)
+O(log n)

= n ·H
(
k

n

)
+O(log n),

(3.12)

where we recall that H(t) = −t log t − (1 − t) log(1 − t) is a concave
analytic function on [0, 1].

Note that Xi−1
1,I and Xi−1

1,I are in the range 2N−3−i · (1 − ε, 1 + ε).

Applying (3.12), by (3.9), we have

log

(
Xi−1

1,I

Xi
11,I

)
+ log

(
Xi−1

0,I

Xi
00,I

)
= 2 log

(
2N−3−i

Xi
11,I

)
+ 2N−3−iO(ε).

Similarly, by (3.10), we have

log

(
Xi−1

1,II

Xi
11,II

)
+ log

(
Xi−1

0,II

Xi
00,II

)
= 2 log

(
2N−3−i

Xi
11,II

)
+ 2N−3−iO(ε).

Thus, for fixed values of the sequence (3.11), the logarithm of the
total number Z of cylinders needed to cover the corresponding part
of N (N,m, ε) satisfies

logZ((Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)

m
i=1) ≤ (2N−1 + 2N−m−1) log 2

+

m∑
i=1

(
2 log

(
2N−3−i

Xi
11,I

)
+ 2 log

(
2N−3−i

Xi
11,II

)
+ 2N−3−iO(ε)

)
.
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By (3.12), applying the Jensen inequality for the concave function H,
we get

logZ((Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)

m
i=1) ≤ (2N−1 + 2N−m−1) log 2

+

m∑
i=1

2N−i−1 ·H

(
1∑m

i=1 2N−i−1
·
m∑
i=1

2N−i−2
Xi

11,I +Xi
11,II

2N−i−3

)

+

m∑
i=1

2N−i−3 ·O(ε).

Hence,

logZ((Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)

m
i=1)

≤ 2N−1 log 2 + 2N−1H

(
2−N+2

m∑
i=1

(Xi
11,I +Xi

11,II)

)
+ 2N · (O(ε+ 2−m)).

(3.13)

Moreover, there are no more than

(3.14)

m∏
i=1

24(N−i−3) < 24mN = o(22
N

)

possible values of (Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)

m
i=1. We remark here that

the number of possibilities is much less, because of (3.9) and (3.10). But
estimate (3.14) is enough for us.

On the other hand, for all ω ∈ A(α,N, ε),∣∣∣∣2−N+1
m∑
i=1

(Xi
11,I +Xi

11,II)− α
∣∣∣∣ < ε+ 2−m.

Thus by estimates (3.13) and (3.14), the logarithm of the number of cylin-
ders C2N (ω1, . . . , ω2N ) needed to cover the set N (N,m, ε)∩A(α,N, ε) is
less than

o(2N ) + logZ((Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)

m
i=1)

≤ 2N−1 log 2 + 2N−1(H(2α) +O(ε+ 2−m)) + 2N · (O(ε+ 2−m)).

Dividing the above value by 2N , and letting m, N go to infinity and ε
to 0, we finish the proof of the upper bound.
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4. Proofs of Theorem 1.4 and Corollary 1.5

Given p, q ∈ [0, 1], let µp,q be the probability measure on Σ con-
structed in Subsection 2.4 by using the data (p0, p1) := (1− p, p) and(

p00 p01
p10 p11

)
:=

(
1− p p
1− q q

)
.

The proof of Theorem 1.4 is based on the following lemmas.

Lemma 4.1. If p = (2θ − α)/(2− θ) and q = α/θ, then

µp,q(Eθ ∩Aα) = 1.

Proof: By Proposition 2.5, µp,q-almost surely

(4.1) lim
n→∞

1

n

n∑
k=1

ωk = ξ =
p1 + p01

2− p11 + p01
=

2p

2 + p− q
= θ,

where the last equality comes from the choices of p and q. Thus µp,q(Eθ)=
1.

On the other hand, by Proposition 2.8, for µp,q-almost all ω,

lim
n→∞

1

n

n∑
k=1

ωkω2k = ξ · p11 = θ · q = α.

By Lemma 2.2, we conclude µp,q(Aα) = 1.

Lemma 4.2. For p = (2θ − α)/(2− θ) and q = α/θ, we have

hµp,q (ω) =

(
1− θ

2

)
H

(
2θ − α
2− θ

)
+
θ

2
H

(
θ − α
θ

)
, µp,q-a.e.

Proof: By Proposition 2.11 we have, for µp,q almost all ω ∈ Σ,

hµp,q (ω) = −1

2

(
(1− p) log(1− p) + p log p+ (1− θ)(1− p) log(1− p)

+ (1− θ)p log p+ θ(1− q) log(1− q) + θq log q
)

=
1

2
((2− θ)H(p) + θH(q))

=

(
1− θ

2

)
H

(
2θ − α
2− θ

)
+
θ

2
H(θ − αθ).

Lemma 4.3. If θ /∈ [α, (2 +α)/3], we have Eθ ∩Aα = ∅. Otherwise, for
p = (2θ − α)/(2− θ) and q = α/θ, we have for all ω ∈ Eθ ∩Aα,

hµp,q (ω) =

(
1− θ

2

)
H

(
2θ − α
2− θ

)
+
θ

2
H

(
θ − α
θ

)
.
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Proof: Observe that, for any ω ∈ Eθ ∩ Aα, for any small ε > 0, and for
n large enough, we have

N1(ωnn/2) ∈
[
θn

2
(1− ε), θn

2
(1 + ε)

]
,

N1(ω2n
n ) ∈ [θn(1− ε), θn(1 + ε)],

N11(ω2n
n ) ∈

[αn
2

(1− ε), αn
2

(1 + ε)
]
.

The obvious inequalities

N11(ω2n
n ) ≤ N1(ωnn/2)

and

N1(ω2n
n )−N11(ω2n

n ) ≤ n/2 +N0(ωnn/2) = n−N1(ωnn/2)

imply θ ∈ [α, (2 + α)/3]. Furthermore, we have

logµp,q(C2n(ω))− logµp,q(Cn(ω))

= N11(ω2n
n ) log q + (N1(ωnn/2)−N11(ω2n

n )) log(1− q)

+ (N1(ω2n
n )−N11(ω2n

n )) log p

+ (n−N1(ωnn/2)−N1(ω2n
n ) +N11(ω2n

n )) log(1− p)

= n

((
1− θ

2

)
H

(
2θ − α
2− θ

)
+
θ

2
H

(
θ − α
θ

)
+ ε ·O(1)

)
.

Hence, by the same argument as in the proof of Proposition 2.11, we
have for all ω ∈ Eθ ∩Aα,

hµp,q (ω) = lim
n→∞

− logµp,q(Cn(ω))

n

=

(
1− θ

2

)
H

(
2θ − α
2− θ

)
+
θ

2
H

(
θ − α
θ

)
.

Proof of Theorem 1.4: We note that by Theorem 2.1, the lower bound
of Theorem 1.4 follows from Lemmas 4.1 and 4.2 and the upper bound
follows from Lemma 4.3. We thus have completed our proof.

Proof of Corollary 1.5: Note that for any θ, Eθ ∩ Aα ⊂ Aα. Thus, if
htop(Eθ ∩ Aα) = htop(Aα) for some θ, then this θ is the maximal point
for the entropy formula of htop(Eθ ∩ Aα). We remark that the entropy
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formula of htop(Eθ ∩ Aα) in Theorem 1.4 is analytic and concave with
respect to the variable θ and the partial derivative

∂htop(Eθ ∩Aα)

∂θ
=

1

2
log

θ(2− 3θ + α)3

(2θ − α)2(θ − α)(2− θ)
= 0

if and only if (1.1) holds. We then have proved the first assertion.
By Theorems 1.1 and 1.2, htop(A) = htop(A0). By Theorem 1.4,

htop(Eθ ∩ A) = htop(Eθ ∩ A0). Then the second assertion follows by
taking α = 0.
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