Multi-stage genetic fuzzy systems based on the iterative rule learning approach
Article Sidebar
Main Article Content
Antonio González Muñoz
Francisco Herrera Triguero
Genetic algorithms (GAs) represent a class of adaptive search techniques inspired by natural evolution mechanisms. The search properties of GAs make
them suitable to be used in machine learning processes and for developing
fuzzy systems, the so-called genetic
fuzzy systems (GFSs).
In this contribution, we discuss genetics-based machine learning processes presenting the iterative rule learning approach, and a special kind of GFS, a multi-stage GFS based on the iterative rule learning approach, by learning from examples.
them suitable to be used in machine learning processes and for developing
fuzzy systems, the so-called genetic
fuzzy systems (GFSs).
In this contribution, we discuss genetics-based machine learning processes presenting the iterative rule learning approach, and a special kind of GFS, a multi-stage GFS based on the iterative rule learning approach, by learning from examples.
Article Details
Com citar
González Muñoz, Antonio; Herrera Triguero, Francisco. «Multi-stage genetic fuzzy systems based on the iterative rule learning approach». Mathware & soft computing, 1997, vol.VOL 4, núm. 3, https://raco.cat/index.php/Mathware/article/view/84710.
Articles més llegits del mateix autor/a
- Oscar Cordón García, Francisco Herrera Triguero, Thomas Stützle, A review on the ant colony optimization metaheuristic: basis, models and new trends , Mathware & soft computing: 2002: Vol.: 9 Núm.: 2-3
- Oscar Cordón García, Francisco Herrera Triguero, Thomas Stützle, Ant colony optimization: models and applications [Guest editorial] , Mathware & soft computing: 2002: Vol.: 9 Núm.: 2-3
- Rafael Alcalá Fernández, Jorge Casillas Barranquero, Juan Luis Castro Peña, Antonio González Muñoz, Francisco Herrera Triguero, A multicriteria genetic tuning for fuzzy logic controllers , Mathware & soft computing: 2001: Vol.: 8 Núm.: 2
- Oscar Cordón García, Ma José del Jesús Díaz, Francisco Herrera Triguero, Analyzing the reasoning mechanisms in fuzzy rule based classification systems , Mathware & soft computing: 1998: Vol.: 5 Núm.: 2-3
- Eugenio Aguirre Molina, Juan Carlos Gámez, Antonio González Muñoz, A multi-agent system based on fuzzy logic applied to RoboCup's enviroment , Mathware & soft computing: 2001: Vol.: 8 Núm.: 2
- Francisco Herrera Triguero, M. Lozano, José Luis Verdegay, The use of fuzzy connectives to design real-coded genetic algorithms , Mathware & soft computing: 1994: Vol.: 1 Núm.: 3
- Oscar Cordón García, Iñaki Fernández de Viana, Francisco Herrera Triguero, Analysis of the best-worst ant system and its variants on the TSP , Mathware & soft computing: 2002: Vol.: 9 Núm.: 2-3
- Rafael Alcalá Fernández, Jorge Casillas Barranquero, Oscar Cordón García, Francisco Herrera Triguero, Improvement to the cooperative rules methodology by using the ant colony system algorithm , Mathware & soft computing: 2001: Vol.: 8 Núm.: 3
- Antonio González Muñoz, Raúl Pérez Rodríguez, Refinement of a fuzzy control rule set , Mathware & soft computing: 1998: Vol.: 5 Núm.: 2-3