Automatic fish counting from underwater video images: performance estimation and evaluation
Article Sidebar
Main Article Content
S. Marini
E. Azzurro
S. Coco
Joaquín del Río Fernandez
S. Enguídanos
E. Fanelli
Marc Nogueras Cervera
Valerio Sbragaglia
Daniel Toma
Jacopo Aguzzi
Cabled observatories offer new opportunities to monitor species abundances
at frequencies and durations never attained before. When nodes bear
cameras, these may be transformed into the first sensor capable of quantifying biological
activities at individual, populational, species, and community levels, if automation
image processing can be sufficiently implemented. Here, we developed a
binary classifier for the fish automated recognition based on Genetic Programming
tested on the images provided by OBSEA EMSO testing site platform located at 20
m of depth off Vilanova i la Gertrú (Spain). The performance evaluation of the automatic
classifier resulted in a 78% of accuracy compared with the manual counting.
Considering the huge dimension of data provided by cabled observatories and the
difficulty of manual processing, we consider this result highly promising also in view
of future implementation of the methodology to increase the accuracy.
at frequencies and durations never attained before. When nodes bear
cameras, these may be transformed into the first sensor capable of quantifying biological
activities at individual, populational, species, and community levels, if automation
image processing can be sufficiently implemented. Here, we developed a
binary classifier for the fish automated recognition based on Genetic Programming
tested on the images provided by OBSEA EMSO testing site platform located at 20
m of depth off Vilanova i la Gertrú (Spain). The performance evaluation of the automatic
classifier resulted in a 78% of accuracy compared with the manual counting.
Considering the huge dimension of data provided by cabled observatories and the
difficulty of manual processing, we consider this result highly promising also in view
of future implementation of the methodology to increase the accuracy.
Article Details
Com citar
Marini, S. et al. «Automatic fish counting from underwater video images: performance estimation and evaluation». Instrumentation viewpoint, 2016, núm. 19, https://raco.cat/index.php/Instrumentation/article/view/317852.
Articles més llegits del mateix autor/a
- Matias Carandell Widmer, Daniel Mihai Toma, Joaquín del Río Fernandez, Kaloyan Ganchev, Julien Peudennier, Evaluation of SigFox LPWAN technology for autonomous sensors in coastal applications , Instrumentation viewpoint: 2018: Núm.: 20
- Marc Nogueras Cervera, Joaquín del Río Fernandez, Automatic panoramic image creation system from OBSEA PTZ underwater camera , Instrumentation viewpoint: 2018: Núm.: 20
- Paolo Faviali, Juan José Dañobeitia, Laura Beranzoli, Jean-François Rolin, Vasilis Lykousis, Henry A. Ruhl, Paul Gaughan, Jaume Piera Fernández, Robert Huber, Joaquín del Río Fernandez, Octavio Llinás, Jorge M.A. de Miranda, Pedro Terrinha, Vlad Radulescu, Nick O'Neill, European Multidisciplinary and Water-Column Observatory - European Research Infrastructure Consortium (EMSO ERIC): challenges and opportunities for strategic European marine sciences , Instrumentation viewpoint: 2016: Núm.: 19
- Joaquín del Río Fernandez, Michel André, Thomas Folegot, Mike Connor Roger Malcolm Van der Schaar, Patrick Gorringe, Antonio Novellino, Albert Garcia Benadí, Enoc Martínez Padró, Dataflow of underwater noise measurements: from OBSEA to EMODnet , Instrumentation viewpoint: 2018: Núm.: 20
- Daniel Toma, Francesc Xavier Roset Juan, Xavi Alonso, Carola Artero Delgado, Joaquín del Río Fernandez, Near real time seismic data from the coastal ocean , Instrumentation viewpoint: 2016: Núm.: 19
- Pablo Álvarez, Albert García, Clara Almécija, Ignacio González, Cristian Simoes, Joaquín del Río Fernandez, Silvia Torres, Hydrophone installation in the Raia Ocean-Meteorological Observatory Net , Instrumentation viewpoint: 2018: Núm.: 20
- Ivan Masmitjà Rusiñol, Spartacus Gomáriz Castro, Joaquín del Río Fernandez, Brian Kieft, Tom O'Reilly, Range-only benthic rover localization off the central California coast , Instrumentation viewpoint: 2016: Núm.: 19
- Enoc Martínez Padró, Daniel Mihai Toma, Joaquín del Río Fernandez, Sensor web enablement implementations in marine observation platforms , Instrumentation viewpoint: 2018: Núm.: 20
- Joaquín del Río Fernández, Yves Auffret, Daniel Mihai Toma, Shahram Shariat Panahi, Xavier André, Stéphane Barbot, Eric Menut, Yannick Lenault, Antonio Manuel Lázaro, Oussama Kassem Zein, Joel Champeau, Dominique Kerjean, Smart sensor interface for sea bottom observatories , Instrumentation viewpoint: 2009: Núm.: 8
- Daniel Mihai Toma, Matias Carandell Widmer, Montserrat Carbonell Ventura, Lluis Vals, Joaquín del Río Fernandez, A nonlinear kinetic energy harvester for light suface ocean drifters , Instrumentation viewpoint: 2018: Núm.: 20