Basement Structural Controls on the Jurassic Sedimentary Sequences in the Tampico-Misantla Basin, Northeastern Mexico from a 3-D Seismic Reflection Study Seismic Study Tampico-Misantla Basin

Main Article Content

Iza Canales-García
Guillermo Pérez-Cruz
Liz Orozco-Almazán
Jaime Urrutia-Fucugauch

The Tampico-Misantla basin is a mature oil rich province in northeastern Mexico with large unconventional oil plays currently being revitalized. Results of a 3-D seismic reflection study of the basement and Jurassic sequences are used to analyze the basement influence on sediment sequence and basin structure, by mapping the seismo-stratigraphic horizons for the (Tithonian) Pimienta, (Kimmeridigian) Taman/San Andrés, (Oxfordian) Santiago, (Callovian) Tepexic/Huehuetepec and (Bathonian) Cahuasas formations. The basement is characterized by stepped NW-SE tilted blocks of horst and grabens. The upper section in horsts to the northeast is at depths of 3200 m, whereas the lower section at 6500 mbsl lies to the southwest. Blocks are bounded by planar and curved, high angle normal faults with NW-SE and NE-SW orientation that form a conjugated system active from the Triassic to upper Jurassic, with two major pulses during the Bajocian and the Oxfordian. Vertical slips of main faults are variable and may reach 2000 m. The basement blocks play a major role in defining the depositional systems, with the thickness and distribution of overlying sedimentary units. Based on our analysis the middle Jurassic stratigraphic units of the Cahuasas Formation were deposited predominantly in continental environments, and exhibit large thickness variations. The Callovian Tepexic and Huehuetepec Formations were deposited in transitional and shallow marine environments, with relatively uniform thickness and distribution. The Oxfordian to Tithonian Santiago, Taman/San Andres and Pimienta Formations were deposited in varying marine environments, showing a tendency of progressively pinching out against the paleotopographic highs. The thickness variation in the Santiago Formation suggests episodes of increasing subsidence and fault reactivation. The seismic volume modeling documents the basement structure and stratigraphy of the Jurassic sequences in the Tampico-Misantla basin.

Paraules clau
Seismics, Basement, Tampico-Misantla Basin, Tectono-stratigraphic Evolution, Northeastern Mexico

Article Details

Com citar
Canales-García, Iza et al. «Basement Structural Controls on the Jurassic Sedimentary Sequences in the Tampico-Misantla Basin, Northeastern Mexico from a 3-D Seismic Reflection Study: Seismic Study Tampico-Misantla Basin». Geologica Acta, 2025, vol.VOL 23, p. 1-18, https://raco.cat/index.php/GeologicaActa/article/view/980000000650.
Referències

Abascal-Hernández, G., León-Francisco, J., Torres-Vargas, R., Garduño-Martínez, D., Franco-Navarrete, S., Méndez-Vázquez, J., Ortega-Lucach, S., Gutiérrez-Caminero, L. and Murillo-Muñetón, G., (2018), Sedimentological characterization of the Pimienta Formation in the central part of the Tampico-Misantla Basin, Veracruz, Mexico. In SPE/AAPG/SEG Unconventional Resources Technology Conference (p. D023S025R009). URTEC.

Aguilera, H.E., (1972), Ambientes de depósito de las formaciones del Jurásico Superior en la región Tampico Tuxpan. Boletin Asociacion Mexicana Geologos Petroleros, 24(1-3), 129-163.

Assis, C.A., Santos, H.B. and Schleicher, J., (2019). Colored and linear inversions to relative acoustic impedance. Geophysics, 84(2), N15-N27.

Bird, D.E., Burke, K., Hall, S.A. and Casey, J.F., (2005). Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution. AAPG Bulletin, 89(3), pp.311-328.

Busch, D. A., and Govela, S.A., (1978), Stratigraphy and structure of Chicontepec turbidites, southeastern Tampico-Mislanta Basin. AAPG Bulletin, 62, 235–246.

Cantú-Chapa, A., (1969). Estratigrafía del Jurásico Medio-Superior del Subsuelo de Poza Rica, Ver. (área de Soledad-Miquetla). Revista Instituto Mexicano Petroleo, 1(1), 3-9.

Cantú-Chapa, A., (1984), El Jurásico Superior de Tamán, San Luis Potosí, Este de México, en III Congreso Latinoamericano Paleontologia Memoria, 207-212.

Carrillo-Bravo, J., (1971). La Plataforma de Valles-San Luis Potosí: Boletin Asociacion Mexicana Geologos Petroleros, 23 (1-6), 1-102.

Comisión Nacional de Hidrocarburos, (2018), Atlas Geólogico Cuenca Tampico Misantla, Comision Nacional de Hidrocarburos CNH, Mexico.

Fitz-Díaz, E., Lawton, T.F., Juárez-Arriaga, E., and Chávez-Cabello, G., (2018), The Cretaceous–Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics: Earth-Science Reviews., 183, 56–84, https://doi.org/10.1016/ j.earscirev.2017.03.002.

Goldhammer, R.K., (1999), Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico, in C. Bartolini, J.L. Wilson, T.F. Lawton, Eds. Geological Society America Special Paper, 340, https://doi.org/10.1130/0-8137-2340-X.1

Goldhammer, R.K., and Johnson, C.A., (2001). Middle Jurassic-Upper Cretaceous paleogeographic evolution and sequence stratigraphic framework of the northwest Gulf of Mexico rim. The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems AAPG Memoir, 75, 45-81.

Goldhammer, R.K., Lehman, P.J., Todd, R.G., Wilson, J.L, Ward, W.C., and Johnson, C.R., (1991). Sequence stratigraphy and cyclostratigraphy of the Mesozoic of the Sierra Madre Oriental, northeast Mexico, a field guidebook. SEPM Gulf Coast Section, 85 p

Gonzalez-García, R., (1970), La Formación Huehuetepec, nueva unidad litoestratigráfica del Jurásico de Poza Rica. Revista Ingenieria Petrolera, Asociacion Ingenieros Petroleros México, 10(7), 5-22.

Gray, G.G., Pottorf, R.J., Yurewicz, D.A., Mahon, K.I., Pevear, D.R., and Chuchla, R.J., (2001), Thermal and chronological record of syn- to post Laramide burial and exhumation, Sierra Madre Oriental, Mexico, in Bartolini, C., Buffler, R.T., and Cantu-Chapa, A., eds., The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems: American Association of Petroleum Geologists Memoir 75, p. 159–181, https://doi.org/10.1306/M75768C7.

Gray, S.H., Etgen, J., Dellinger, J. and Whitmore, D., (2001). Seismic migration problems and solutions. Geophysics, 66(5), 1622-1640.

Guzman-Vega, M. A., L. Castro Ortiz, J. R. Roman Ramos, L. Medrano Morales, L. C. Valdez, E. Vazquez-Covarrubias, and Ziga Rodriguez, G. (2001), Classification and origin of petroleum in the Mexican Gulf Coast Basin: An overview, in C. Bartolini, R. T. Buffler, and A. Cantu-Chapa, eds., The western Gulf of Mexico Basin: Tectonics, sedimentary basins, and petroleum systems: AAPG Memoir 75, p. 127–142.

Guzman, A.E., (2022). Tampico-Misantla: A premier super basin in waiting. AAPG Bulletin, 106(3), 495-516.

Heim, A., (1926), Notes on the Jurassic of Tamazunchale (Sierra Madre Oriental, México): Eclogae Geologica Helvetiae, 20(1), 84-87.

Heim, A., (1940), The From Ranges of Sierra Madre Oriental, Mexico, from Ciudad Victoria to Tamazunchale. Eclogae Geologica Helvetiae, 33, 315-352.

Hermoso de La Torre, C., and Martínez-Pérez, J., (1972), Medición detallada de formaciones del Jurásico Superior en el frente de la Sierra Madre Oriental. Boletin Asociacion Mexicana Geologos Petroleros, 24(1-3), 45-63.

Jarvie, D.M., (2012), Shale resource systems for oil and gas: Part 2—Shale-oil resource systems, in J.A. Breyer, editor, Shale Reservoirs—Giant Resources for the 21st Century: AAPG Memoir 97, p. 89-119.

Jarvie, D., and Maende, A., (2016), Mexico’s Tithonian Pimienta Shale: Potential for unconventional production: Society of Petroleum Engineers/AAPG/Society of Exploration Geophysicists Unconventional Resources Technology Conference, San Antonio, Texas, August 1–3, 2016, URTEC-2016-2433439, doi:10.15530/urtec-2016-2433439.

Karimi, P., (2015). Structure-constrained relative acoustic impedance using stratigraphic coordinates. Geophysics, 80(3), A63-A67.

López-Infanzón, M., (1986). Estudio petrogenético de las rocas ígneas en las formaciones Huizachal y Nazas. Boletin Sociedad Geologica Mexicana, 47, (2), 1-42.

López-Ramos, E., (1979), Geología de México, Tomo II, 2da. Edición, México, D.F., 454 p.

Magoon L.B., Hudson, T.L., and Cook, H.E., (2001). Pimienta-Tamabra(!) - a giant supercharged petroleum system in the southern Gulf of Mexico, onshore and offshore Mexico. C. Bartolini, R.T. Buffler, A. Cantú-Chapa (Eds.), The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins, and Petroleum Systems, 75, 83-125, doi: 10.1306/M75768C4

Maende, A., (2016), Wildcat compositional analysis for conventional and unconventional reservoir assessments: HAWK Petroleum Assessment Method (H-PAM), Application Note 052016-1, 11p. Website 2016, http://www.wildcattechnologies.com/download_ file/view/136/358.

Martínez-Yáñez, M., F. Núñez-Useche, J.J. Enciso Cárdenas, L. Omaña, M. Colín-García, G. de la Rosa-Rodríguez, A. Ruiz-Correa, and Mesa-Rojas, J.L., (2023). Environmental controls on the microfacies distribution and spectral gamma ray response of the uppermost Jurassic–Lowermost Cretaceous succession (Pimienta–Lower Tamaulipas Formations) in central-eastern Mexico. Journal South American Earth Sciences, 124, 104240.

Medina, E., (2023), A basin scale assessment framework of onshore aquifer-based CO2 suitability storage in Tampico Misantla basin, Mexico. International Journal Greenhouse Gas Contributions, 125.

Morelos Garcia, J.A.M., (1996), Geochemical evaluation of southern Tampico-Misantla basin, Mexico. Oil-oil and oil source rock correlations: Ph.D. Thesis, The University of Texas at Dallas, 635p.

Muir, J. M., (1936), Geology of the Tampico Region, Mexico: AAPG, p. 4, doi:10.1306/SV8338.

Petróleos Mexicanos, (1988), Estratigrafía de la República Mexicana: Mesozoico, Petroleos Mexicanos, Pemex Subdirección de Producción Primaria, Coordinación Ejecutiva de Exploración, Mexico, 229 p.

Petróleos Mexicanos, (2008), Reservas de hidrocarburos, In: Pemex Memoria de Labores 2007, Petroleos Mexicanos, Mexico.

Ranson, W.A., Fernández, L.A., Simmons, W.B., and Enciso De La Vega, S., (1982), Petrology of the metamorphic rocks of Zacatecas, Zac., Mexico. Boletin Sociedad Geologica Mexicana, 43(1), 37-59.

Salvador, A., (1987), Late Triassic–Jurassic paleogeography and origin of Gulf of Mexico Basin. Am. Assoc. Petrol. Geol. Bull., 71, 419–451.

Salvador, A., (1991), Triassic-Jurassic in Salvador, A., (ed.) The Gulf of Mexico Basin: Boulder, Colorado, Geol. Soc. Am., The Geologic of North America, J., 131-180.

Strugale, M., da Silva Schmitt, R. and Cartwright, J., (2021). Basement geology and its controls on the nucleation and growth of rift faults in the northern Campos Basin, offshore Brazil. Basin Research, 33(3), pp.1906-1933.

Van Avendock, H.J., Christeson, G.L., Norton, I.O., and Eddy, D.R., (2015). Continental rifting and sediment infill in the northwestern Gulf of Mexico. Geology, 43(7), 631-634.

Vega-Ortiz, C., Beti, D.R., Setoyama, E., McLennan, J.D., Ring, T.A., Levey, R., and Martinez-Romero, N., (2020). Source rock evaluation I the central-western flank of the Tampico-Misantla basin, Mexico. Journal South American Earth Sciences, 100, 102552.

Wilson, J.L., (1986). Basement structural controls on Mesozoic carbonate facies in northeastern Mexico—a review. Carbonate Platforms: Facies, Sequences and Evolution, 235-255.